research communications
N1-(5-phenyl-1H-pyrazol-3-yl)benzene-1,2-diamine
of 5-chloro-aV. N. Karazin Kharkiv National University, 4 Svobody Sq, Kharkiv 61077, Ukraine, bOles Honchar Dnipropetrovsk National University, 72 Gagarina St, Dnipropetrovsk 49010, Ukraine, and cSSI "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv 61001, Ukraine
*Correspondence e-mail: yartsev.yegor@gmail.com
The title compound, C15H13ClN4, crystallizes with two independent molecules (A and B) in the which are far from planar as a result of steric repulsion between the rings. The benzene and phenyl rings are inclined to the central pyrazole ring by 46.64 (10) and 17.87 (10)° in molecule A, and by 40.02 (10) and 14.18 (10)° in molecule B. The aromatic rings are inclined to one another by 58.77 (9)° in molecule A, and 36.95 (8)° in molecule B. In the crystal, the A and B molecules are linked by two pairs of N—H⋯N hydrogen bonds forming A–B dimers. These are further linked by a fifth N—H⋯N hydrogen bond, forming tetramer-like units that stack along the a-axis direction, forming columns, which are in turn linked by C—H⋯π interactions, forming layers parallel to the ac plane.
Keywords: crystal structure; pyrazol-3-amine; steric repulsion; hydrogen bonding.
CCDC reference: 703162
1. Chemical context
The synthesis and reactions of benzodiazepin-2-ones and thiones have been studied in detail by our group (Gaponov et al., 2016; Okovytyy et al., 2009). The mechanism of ethanol-assisted hydrazinolysis of 1,3-dihydro-2H-benzo[b][1,4]diazepine-2-thiones (Fig. 1) has been modelled by quantum-chemical calculations (Okovytyy et al., 2009). However, instead of obtaining the previously suggested products (IIIa) and (IIIb), compounds N1-(5-phenyl-1H-pyrazol-3-yl)benzene-1,2-diamine (Ia) and its 5-chloro-derivative (Ib) were prepared from 4-phenyl-1,3-dihydro-2H-benzo[b][1,4]diazepine-2-thiones (IIa) and (IIb) and hydrazine hydrate (Fig. 1). Aminopirazoles are useful building blocks for the synthesis of new pharmaceutical agents (Sakya et al., 2006) and agrochemicals (Yuan et al., 2013), due to their notable biological properties (Peng et al., 2013; Zhang et al., 2014; Ansari et al., 2017). The analysis of the title compound, (Ib), was undertaken as it may help to provide a better understanding of the properties of aminopirazoles.
2. Structural commentary
There are two independent molecules (A and B) in the of the title compound (Ib), as illustrated in Fig. 2. They are composed of three unsaturated rings, two of which are connected by a bridging amino group. The molecules are not planar as a result of steric repulsion between the rings, which results in some disturbance of the conjugation. Thus, the presence of a shortened intramolecular contact C2 ⋯ H11 [2.80 Å in molecule A and 2.81 Å in molecule B as compared with the sum of their van der Waals radii of 2.87 Å (Zefirov, 1997)], indicates the presence of repulsion between the pyrazole ring and the phenyl substituent. The is compensated for by the elongation of the C1—C10 bond: 1.486 (2) Å in molecule A and 1.482 (2) Å in molecule B compared to a mean bond length of 1.470 Å for a typical (Bürgi & Dunitz, 1994). In addition, the C2—C1—C10 bond angle increases to 130.6 (2)° in both molecules, and the pyrazole and phenyl rings are twisted with respect to each other, with torsion angle C2—C1—C10—C11 being 18.1 (3)° in molecule A and −14.3 (3)° in molecule B.
There is an even stronger repulsion between the aminochlorophenyl and pyrazole rings linked through the bridging amino group [shortened intramolecular contacts are: C2⋯C9 = 3.25 Å (A), 3.21 Å (B); C2⋯H9 = 2.75 Å (A), 2.67 Å (B); H3⋯H4 = 2.28 Å for both molecules; C3⋯H9 = 2.76 Å for both molecules] leads to a greater twist of these unsaturated rings relative to each other; the dihedral angle between the mean planes N1/N2/C1–C3 and C4–C9 is 46.6 (1)° for molecule A and 40.0 (1)° for B. Moreover, the N3—C3 bonds [1.395 (3) Å in A and 1.394 (2) Å in B; mean value of 1.339 Å] and the N3—C4 bonds [1.408 (2) Å in A, 1.406 (2) Å in B; mean value of 1.353 Å] are elongated with respect to the mean values for such bonds, and the C2=C3—N3 bond angle is increased to 130.3 (2)° in A and 130.5 (2)° in B.
The bridging nitrogen atom, N3, has an almost planar configuration (the bond-angle sum is 356° in A and 358° in B). The N4H2 amino group has a pyramidal configuration (bond-angle sum is 329° in A and 325° in B). The C5—N4 bond, 1.422 (3) Å in A and 1.425 (3) Å in B, is elongated in comparison with the mean value of 1.394 Å; this elongation is probably caused by the involvement of the nitrogen lone pair in hydrogen bonding (Table 1).
3. Supramolecular features
In the crystal, molecules are linked by two pairs of N—H⋯N hydrogen bonds, forming A–B dimers (Table 1 and Fig. 3). The dimers are linked by a fifth N—H⋯N hydrogen bond to form a tetramer-like arrangement (Table 1 and Fig. 3). These stack up the a-axis direction, forming columns (Table 2 and Fig. 4), which are linked by C—H⋯π interactions, forming layers parallel to the ac plane.
|
4. Database survey
A search of the Cambridge Structural Database (Version 5.38, update February 2017; Groom et al., 2016) for N,5-diphenyl-1H-pyrazol-3-amine (S1; Fig. 5) gave only two relevant hits, viz. methyl 3-nitro-4-[(5-phenyl-1H-pyrazol-3-yl)amino]benzoate (DIKSOG; Portilla et al., 2007) and N-(5-phenyl-1H-pyrazol-3-yl)benzene-1,2-diamine (KUTFAH; Doumbia et al., 2010). They differ from compound (Ib) in the substituents on one of the aromatic rings (see Fig. 5). The molecule of DIKSOG is practically planar, probably owing to the formation of intramolecular N—H⋯O and C—H⋯N hydrogen bonds. In compound KUTFAH, while the phenyl ring is almost coplanar with the pyrazole ring (dihedral angle is ca 3.68° cf. 2.15° in DIKSOG), the o-aminophenyl ring is inclined to the pyrazole ring by ca 64.03° (cf. 5.61° in DIKSOG). This conformation is similar to that of compound (Ib). In the crystal of DIKSOG, molecules are linked by pairs of N—H⋯N hydrogen bonds, forming inversion dimers, while in the crystal of KUTFAH, molecules are linked into chains by N—H⋯N hydrogen bonds.
5. Synthesis and crystallization
The initial 4-phenyl-1,3-dihydro-2H-benzo[b][1,4]diazepine-2-thiones (IIa) and (IIb) were synthesized from the corresponding 4-phenyl-1,3-dihydro-2H-benzo[b][1,4]diazepin-2-ones according to the procedure described previously (Solomko et al., 1990). The synthesis of the title compound (Ib) is illustrated in Fig. 1.
General procedure:
Hydrazine hydrate (0.5 ml, 85% aq. solution) was added to a solution of the corresponding 4-phenyl-1,3-dihydro-2H-benzo[b][1,4]diazepine-2-thiones, (IIa) or (IIb), (5 mmol) in ethanol (40 ml). The mixture was heated at reflux for 3 h (TLC monitoring), then the solvent and the excess of hydrazine hydrate were removed under reduced pressure. The residue was washed with small amounts of cold alcohol. Colourless crystals of (Ia) and (Ib) were grown by recrystallization of the crude product from ethanol solution.
Spectroscopic and analytical data for (Ia):
Yield 0.91 g, 73%; m.p. 415–417 K [415–417 K from ethanol in accordance with Essassi & Salem (1985)]. IR νmax (KBr): 3410–3220, 2970, 1605, 1545, 1505, 1260, 1030, 920, 860, 810 cm−1. 1H NMR (DMSO-d6, 400 MHz): δ 4.91 (s, 2H, NH2), 6.16 (s, 1H, CH), 6.40–6.79 (m, 3H, ArH + NH), 7.03–7.95 (m, 7H, ArH), 12.42 (s, 1H, NH) ppm. MS (EI) m/z (rel. intensity): 251 [M + H] (18), 250 [M+] (100), 249 [M – H] (52), 234 (8), 233 (7), 221 (5), 219 (13), 132 (18), 131 (10), 130 (5), 125 (5), 119 (16), 104 (6), 103 (8), 102 (4), 92 (4), 91 (4), 77 (9). Analysis calculated for C15H14N4 (250.12): C, 71.98; H, 5.64; N, 22.38; found: C, 72.12; H, 5.54; N, 22.26.
Spectroscopic and analytical data for (Ib):
Yield 0.99 g, 70%; m.p. 468–470 K. IR νmax (KBr): 3400–3210, 2975, 1600, 1560, 1500, 1250, 1145, 1000, 960, 920, 880, 855, 800 cm−1. 1H NMR (Solv, MHz): δ 4.95 (s, 2H, NH2), 6.27 (s, 1H, CH), 6.57–6.66 (m, 2H, ArH + NH), 7.30–7.79 (m, 7H, ArH), 12.49 (s, 1H, NH) ppm. MS (EI) m/z (rel. intensity): 285 [M + H] (34), 284 [M+] (100), 283 [M – H] (44), 269 (6), 268 (10), 267 (12), 255 (8), 253 (12), 168 (8), 167 (8), 166 (25), 165 (13), 164 (7), 131 (7), 119 (26), 104 (8), 103 (7), 102 (7), 91 (6), 77 (13). Analysis calculated for C15H13ClN4 (284.08): C, 63.27; H, 4.60; N, 19.68; found: C, 63.08; H, 4.71; N, 19.73.
6. Refinement
Crystal data, data collection and structure . All of the H atoms could be located from difference-Fourier maps. The C-bound H atoms were included in calculated positions and treated as riding: C—H = 0.93 Å with 1.2Ueq(C). The N-bound H atoms were located in difference-Fourier maps and freely refined.
details are summarized in Table 2Supporting information
CCDC reference: 703162
https://doi.org/10.1107/S2056989017007381/su5369sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017007381/su5369Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017007381/su5369Isup3.cml
Data collection: CrysAlis CCD (Agilent, 2012); cell
CrysAlis CCD (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).C15H13ClN4 | F(000) = 1184 |
Mr = 284.74 | Dx = 1.365 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.0709 (17) Å | Cell parameters from 5031 reflections |
b = 20.322 (6) Å | θ = 2.0–31.5° |
c = 13.886 (4) Å | µ = 0.27 mm−1 |
β = 102.776 (18)° | T = 293 K |
V = 2771.7 (12) Å3 | Parallelepiped, colourless |
Z = 8 | 0.20 × 0.10 × 0.10 mm |
Agilent Xcalibur Sapphire3 diffractometer | 4795 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3132 reflections with I > 2σ(I) |
Detector resolution: 16.1827 pixels mm-1 | Rint = 0.027 |
ω–scan | θmax = 25.0°, θmin = 2.5° |
Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012). | h = −11→11 |
Tmin = 0.649, Tmax = 1.000 | k = −24→24 |
15157 measured reflections | l = −16→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: mixed |
wR(F2) = 0.102 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.94 | w = 1/[σ2(Fo2) + (0.064P)2] where P = (Fo2 + 2Fc2)/3 |
4795 reflections | (Δ/σ)max = 0.001 |
393 parameters | Δρmax = 0.16 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
x | y | z | Uiso*/Ueq | ||
Cl1A | 0.49786 (7) | 0.24353 (3) | 0.83066 (4) | 0.0730 (2) | |
Cl1B | 0.96923 (7) | 0.24226 (3) | 0.84367 (4) | 0.0776 (2) | |
N1A | 0.21769 (16) | 0.51489 (7) | 0.60279 (10) | 0.0457 (5) | |
N2A | 0.18787 (17) | 0.55321 (8) | 0.67697 (11) | 0.0457 (5) | |
N3A | 0.39006 (18) | 0.44024 (8) | 0.58852 (12) | 0.0492 (6) | |
N4A | 0.55691 (19) | 0.39198 (9) | 0.47173 (13) | 0.0511 (6) | |
C1A | 0.27518 (18) | 0.54304 (9) | 0.76473 (12) | 0.0415 (6) | |
C2A | 0.36726 (19) | 0.49617 (9) | 0.74824 (12) | 0.0461 (6) | |
C3A | 0.32764 (18) | 0.48054 (9) | 0.64684 (12) | 0.0411 (6) | |
C4A | 0.46130 (18) | 0.38147 (8) | 0.61844 (12) | 0.0403 (6) | |
C5A | 0.54902 (18) | 0.35744 (9) | 0.55934 (13) | 0.0421 (6) | |
C6A | 0.61960 (19) | 0.29883 (9) | 0.58605 (14) | 0.0518 (7) | |
C7A | 0.6070 (2) | 0.26396 (10) | 0.66977 (15) | 0.0580 (7) | |
C8A | 0.5203 (2) | 0.28827 (9) | 0.72658 (13) | 0.0509 (7) | |
C9A | 0.44765 (19) | 0.34626 (9) | 0.70194 (12) | 0.0460 (6) | |
C10A | 0.26315 (19) | 0.57736 (8) | 0.85694 (12) | 0.0424 (6) | |
C11A | 0.3742 (2) | 0.57789 (10) | 0.93726 (13) | 0.0539 (7) | |
C12A | 0.3656 (2) | 0.60944 (11) | 1.02456 (15) | 0.0625 (8) | |
C13A | 0.2459 (2) | 0.64019 (10) | 1.03356 (15) | 0.0594 (8) | |
C14A | 0.1350 (2) | 0.63963 (10) | 0.95502 (15) | 0.0604 (8) | |
C15A | 0.1432 (2) | 0.60866 (9) | 0.86679 (14) | 0.0533 (7) | |
N1B | 0.72238 (17) | 0.52522 (8) | 0.62179 (11) | 0.0516 (5) | |
N2B | 0.69078 (18) | 0.56217 (9) | 0.69663 (11) | 0.0513 (6) | |
N3B | 0.88215 (17) | 0.44361 (8) | 0.60966 (12) | 0.0488 (6) | |
N4B | 1.04647 (18) | 0.39335 (9) | 0.49141 (13) | 0.0510 (6) | |
C1B | 0.76350 (18) | 0.54428 (9) | 0.78701 (12) | 0.0413 (6) | |
C2B | 0.84788 (18) | 0.49384 (9) | 0.77092 (12) | 0.0451 (6) | |
C3B | 0.81946 (18) | 0.48419 (9) | 0.66735 (12) | 0.0423 (6) | |
C4B | 0.94813 (18) | 0.38342 (9) | 0.63783 (12) | 0.0420 (6) | |
C5B | 1.03456 (18) | 0.35833 (9) | 0.57797 (13) | 0.0441 (6) | |
C6B | 1.0996 (2) | 0.29824 (9) | 0.60360 (14) | 0.0543 (7) | |
C7B | 1.0828 (2) | 0.26284 (10) | 0.68562 (15) | 0.0600 (8) | |
C8B | 0.9971 (2) | 0.28790 (10) | 0.74217 (14) | 0.0539 (7) | |
C9B | 0.93023 (19) | 0.34753 (9) | 0.71968 (13) | 0.0480 (6) | |
C10B | 0.75168 (17) | 0.57770 (9) | 0.87960 (12) | 0.0403 (6) | |
C11B | 0.8117 (2) | 0.54986 (10) | 0.97074 (13) | 0.0515 (7) | |
C12B | 0.8070 (2) | 0.58188 (11) | 1.05840 (14) | 0.0563 (7) | |
C13B | 0.74198 (19) | 0.64222 (10) | 1.05668 (14) | 0.0527 (7) | |
C14B | 0.6804 (2) | 0.67007 (10) | 0.96768 (15) | 0.0573 (7) | |
C15B | 0.6852 (2) | 0.63790 (9) | 0.87961 (14) | 0.0517 (7) | |
H2NA | 0.120 (2) | 0.5806 (10) | 0.6599 (14) | 0.059 (6)* | |
H3NA | 0.3590 (18) | 0.4435 (9) | 0.5292 (13) | 0.042 (5)* | |
H2A | 0.44000 | 0.47860 | 0.79430 | 0.0550* | |
H4NB | 0.631 (2) | 0.3782 (9) | 0.4504 (15) | 0.058 (6)* | |
H4NA | 0.563 (2) | 0.4346 (12) | 0.4845 (16) | 0.076 (7)* | |
H6A | 0.67640 | 0.28270 | 0.54700 | 0.0620* | |
H7A | 0.65550 | 0.22520 | 0.68740 | 0.0700* | |
H9A | 0.39010 | 0.36150 | 0.74100 | 0.0550* | |
H11A | 0.45470 | 0.55700 | 0.93240 | 0.0650* | |
H12A | 0.44070 | 0.60990 | 1.07740 | 0.0750* | |
H13A | 0.24060 | 0.66100 | 1.09220 | 0.0710* | |
H14A | 0.05440 | 0.66000 | 0.96080 | 0.0720* | |
H15A | 0.06800 | 0.60880 | 0.81400 | 0.0640* | |
H2B | 0.91050 | 0.47090 | 0.81830 | 0.0540* | |
H2NB | 0.624 (2) | 0.5897 (10) | 0.6809 (15) | 0.059 (6)* | |
H3NB | 0.8595 (18) | 0.4500 (9) | 0.5492 (14) | 0.045 (5)* | |
H6B | 1.15590 | 0.28140 | 0.56470 | 0.0650* | |
H4ND | 1.063 (2) | 0.4357 (11) | 0.5059 (15) | 0.065 (7)* | |
H7B | 1.12810 | 0.22320 | 0.70220 | 0.0720* | |
H4NC | 1.116 (2) | 0.3777 (10) | 0.4691 (15) | 0.062 (6)* | |
H9B | 0.87370 | 0.36350 | 0.75900 | 0.0580* | |
H11B | 0.85550 | 0.50940 | 0.97280 | 0.0620* | |
H12B | 0.84760 | 0.56270 | 1.11850 | 0.0680* | |
H13B | 0.74000 | 0.66370 | 1.11550 | 0.0630* | |
H14B | 0.63570 | 0.71020 | 0.96620 | 0.0690* | |
H15B | 0.64320 | 0.65700 | 0.81980 | 0.0620* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1A | 0.1159 (5) | 0.0493 (3) | 0.0465 (3) | −0.0072 (3) | 0.0021 (3) | 0.0085 (2) |
Cl1B | 0.1147 (5) | 0.0600 (4) | 0.0563 (3) | 0.0078 (3) | 0.0148 (3) | 0.0152 (3) |
N1A | 0.0554 (9) | 0.0491 (9) | 0.0332 (8) | 0.0080 (8) | 0.0110 (7) | −0.0007 (7) |
N2A | 0.0530 (10) | 0.0473 (9) | 0.0363 (8) | 0.0095 (9) | 0.0087 (8) | −0.0029 (7) |
N3A | 0.0674 (11) | 0.0510 (10) | 0.0297 (8) | 0.0155 (9) | 0.0120 (8) | 0.0032 (7) |
N4A | 0.0593 (11) | 0.0478 (11) | 0.0510 (10) | 0.0010 (9) | 0.0224 (9) | −0.0045 (8) |
C1A | 0.0506 (11) | 0.0394 (10) | 0.0353 (9) | −0.0022 (9) | 0.0110 (9) | 0.0019 (8) |
C2A | 0.0547 (11) | 0.0487 (11) | 0.0330 (9) | 0.0085 (10) | 0.0059 (9) | 0.0024 (8) |
C3A | 0.0503 (11) | 0.0394 (10) | 0.0349 (9) | 0.0028 (9) | 0.0122 (9) | 0.0033 (8) |
C4A | 0.0456 (10) | 0.0374 (10) | 0.0349 (9) | 0.0002 (9) | 0.0025 (8) | −0.0057 (8) |
C5A | 0.0448 (10) | 0.0397 (10) | 0.0403 (10) | −0.0049 (9) | 0.0065 (8) | −0.0070 (8) |
C6A | 0.0520 (12) | 0.0440 (11) | 0.0577 (12) | 0.0048 (10) | 0.0085 (10) | −0.0110 (10) |
C7A | 0.0652 (14) | 0.0389 (11) | 0.0615 (13) | 0.0079 (11) | −0.0037 (11) | −0.0020 (10) |
C8A | 0.0666 (13) | 0.0386 (11) | 0.0404 (10) | −0.0064 (10) | −0.0032 (10) | −0.0010 (8) |
C9A | 0.0557 (11) | 0.0439 (11) | 0.0363 (10) | −0.0007 (10) | 0.0059 (9) | −0.0035 (8) |
C10A | 0.0543 (11) | 0.0378 (10) | 0.0365 (9) | −0.0060 (9) | 0.0130 (9) | −0.0006 (8) |
C11A | 0.0550 (12) | 0.0610 (13) | 0.0452 (11) | −0.0021 (11) | 0.0103 (10) | −0.0064 (10) |
C12A | 0.0704 (14) | 0.0710 (14) | 0.0434 (12) | −0.0096 (12) | 0.0070 (11) | −0.0121 (10) |
C13A | 0.0803 (15) | 0.0569 (13) | 0.0451 (12) | −0.0094 (12) | 0.0224 (12) | −0.0136 (10) |
C14A | 0.0703 (14) | 0.0598 (13) | 0.0566 (13) | 0.0066 (12) | 0.0261 (12) | −0.0080 (11) |
C15A | 0.0580 (12) | 0.0562 (12) | 0.0448 (11) | 0.0044 (11) | 0.0096 (10) | −0.0028 (9) |
N1B | 0.0612 (10) | 0.0596 (10) | 0.0348 (8) | 0.0172 (9) | 0.0124 (8) | 0.0032 (7) |
N2B | 0.0591 (11) | 0.0596 (11) | 0.0360 (9) | 0.0234 (9) | 0.0123 (8) | 0.0060 (8) |
N3B | 0.0626 (11) | 0.0525 (10) | 0.0327 (8) | 0.0131 (8) | 0.0135 (8) | 0.0021 (8) |
N4B | 0.0554 (11) | 0.0484 (11) | 0.0526 (10) | 0.0004 (9) | 0.0193 (9) | −0.0085 (8) |
C1B | 0.0440 (10) | 0.0442 (10) | 0.0359 (9) | 0.0008 (9) | 0.0090 (8) | 0.0053 (8) |
C2B | 0.0483 (11) | 0.0489 (11) | 0.0360 (10) | 0.0101 (9) | 0.0047 (8) | 0.0016 (8) |
C3B | 0.0456 (11) | 0.0437 (10) | 0.0384 (10) | 0.0034 (9) | 0.0112 (9) | 0.0040 (8) |
C4B | 0.0437 (10) | 0.0413 (10) | 0.0373 (10) | 0.0005 (9) | 0.0010 (8) | −0.0048 (8) |
C5B | 0.0446 (10) | 0.0452 (11) | 0.0408 (10) | −0.0032 (9) | 0.0061 (8) | −0.0102 (9) |
C6B | 0.0586 (12) | 0.0474 (12) | 0.0565 (12) | 0.0068 (10) | 0.0117 (10) | −0.0089 (10) |
C7B | 0.0703 (14) | 0.0457 (12) | 0.0584 (13) | 0.0114 (11) | 0.0020 (11) | −0.0052 (10) |
C8B | 0.0671 (13) | 0.0460 (12) | 0.0435 (10) | −0.0013 (11) | 0.0016 (10) | −0.0017 (9) |
C9B | 0.0549 (12) | 0.0472 (11) | 0.0401 (10) | 0.0027 (10) | 0.0066 (9) | −0.0033 (9) |
C10B | 0.0416 (10) | 0.0427 (10) | 0.0380 (9) | −0.0035 (9) | 0.0119 (8) | 0.0025 (8) |
C11B | 0.0607 (12) | 0.0507 (12) | 0.0423 (11) | 0.0063 (10) | 0.0096 (10) | 0.0021 (9) |
C12B | 0.0603 (13) | 0.0687 (14) | 0.0383 (10) | −0.0018 (12) | 0.0073 (10) | 0.0015 (10) |
C13B | 0.0583 (12) | 0.0567 (12) | 0.0459 (11) | −0.0104 (11) | 0.0178 (10) | −0.0134 (10) |
C14B | 0.0655 (13) | 0.0531 (12) | 0.0565 (13) | 0.0059 (11) | 0.0206 (11) | −0.0018 (10) |
C15B | 0.0596 (12) | 0.0520 (12) | 0.0451 (11) | 0.0099 (10) | 0.0148 (10) | 0.0075 (9) |
Cl1A—C8A | 1.764 (2) | C7A—H7A | 0.9300 |
Cl1B—C8B | 1.761 (2) | C9A—H9A | 0.9300 |
N1A—C3A | 1.337 (2) | C11A—H11A | 0.9300 |
N1A—N2A | 1.376 (2) | C12A—H12A | 0.9300 |
N2A—C1A | 1.352 (2) | C13A—H13A | 0.9300 |
N3A—C4A | 1.408 (2) | C14A—H14A | 0.9300 |
N3A—C3A | 1.395 (2) | C15A—H15A | 0.9300 |
N4A—C5A | 1.422 (3) | C1B—C2B | 1.381 (3) |
C1A—C10A | 1.486 (2) | C1B—C10B | 1.482 (2) |
C1A—C2A | 1.383 (3) | C2B—C3B | 1.417 (2) |
C2A—C3A | 1.412 (2) | N2B—H2NB | 0.87 (2) |
N2A—H2NA | 0.87 (2) | N3B—H3NB | 0.830 (19) |
N3A—H3NA | 0.817 (18) | C4B—C9B | 1.395 (3) |
C4A—C9A | 1.395 (2) | C4B—C5B | 1.424 (3) |
N4A—H4NB | 0.91 (2) | N4B—H4ND | 0.89 (2) |
N4A—H4NA | 0.88 (2) | N4B—H4NC | 0.89 (2) |
C4A—C5A | 1.419 (3) | C5B—C6B | 1.394 (3) |
C5A—C6A | 1.395 (3) | C6B—C7B | 1.389 (3) |
C6A—C7A | 1.391 (3) | C7B—C8B | 1.386 (3) |
C7A—C8A | 1.391 (3) | C8B—C9B | 1.388 (3) |
C8A—C9A | 1.389 (3) | C10B—C11B | 1.396 (3) |
C10A—C15A | 1.398 (3) | C10B—C15B | 1.395 (3) |
C10A—C11A | 1.394 (3) | C11B—C12B | 1.390 (3) |
C11A—C12A | 1.391 (3) | C12B—C13B | 1.388 (3) |
C12A—C13A | 1.388 (3) | C13B—C14B | 1.376 (3) |
C13A—C14A | 1.378 (3) | C14B—C15B | 1.397 (3) |
C14A—C15A | 1.396 (3) | C2B—H2B | 0.9300 |
N1B—N2B | 1.375 (2) | C6B—H6B | 0.9300 |
N1B—C3B | 1.333 (2) | C7B—H7B | 0.9300 |
C2A—H2A | 0.9300 | C9B—H9B | 0.9300 |
N2B—C1B | 1.355 (2) | C11B—H11B | 0.9300 |
N3B—C4B | 1.406 (2) | C12B—H12B | 0.9300 |
N3B—C3B | 1.394 (2) | C13B—H13B | 0.9300 |
N4B—C5B | 1.425 (3) | C14B—H14B | 0.9300 |
C6A—H6A | 0.9300 | C15B—H15B | 0.9300 |
N2A—N1A—C3A | 104.40 (14) | C10A—C15A—H15A | 120.00 |
N1A—N2A—C1A | 112.47 (15) | C14A—C15A—H15A | 120.00 |
C3A—N3A—C4A | 126.32 (15) | N2B—C1B—C2B | 105.97 (15) |
N2A—C1A—C2A | 106.40 (15) | N2B—C1B—C10B | 123.35 (17) |
N2A—C1A—C10A | 122.97 (16) | C2B—C1B—C10B | 130.61 (16) |
C2A—C1A—C10A | 130.62 (16) | C1B—C2B—C3B | 105.88 (15) |
C1A—C2A—C3A | 105.54 (16) | N1B—N2B—H2NB | 117.3 (14) |
N1A—N2A—H2NA | 116.4 (13) | C1B—N2B—H2NB | 129.7 (14) |
C1A—N2A—H2NA | 131.1 (13) | N1B—C3B—N3B | 118.36 (15) |
N1A—C3A—N3A | 118.34 (15) | C3B—N3B—C4B | 126.95 (16) |
C3A—N3A—H3NA | 114.6 (13) | C3B—N3B—H3NB | 115.5 (13) |
C4A—N3A—H3NA | 115.0 (13) | C4B—N3B—H3NB | 115.1 (13) |
N1A—C3A—C2A | 111.19 (16) | N1B—C3B—C2B | 110.95 (16) |
N3A—C3A—C2A | 130.28 (17) | N3B—C3B—C2B | 130.52 (17) |
H4NB—N4A—H4NA | 110.1 (18) | H4ND—N4B—H4NC | 107.7 (19) |
C5A—C4A—C9A | 119.52 (16) | C5B—C4B—C9B | 119.60 (17) |
C5A—N4A—H4NA | 109.1 (14) | C5B—N4B—H4NC | 109.7 (13) |
N3A—C4A—C5A | 117.59 (15) | N3B—C4B—C5B | 117.48 (16) |
N3A—C4A—C9A | 122.89 (16) | N3B—C4B—C9B | 122.91 (17) |
C5A—N4A—H4NB | 109.5 (13) | C5B—N4B—H4ND | 109.8 (13) |
N4A—C5A—C4A | 119.00 (16) | N4B—C5B—C4B | 119.34 (16) |
N4A—C5A—C6A | 121.84 (17) | N4B—C5B—C6B | 122.04 (17) |
C4A—C5A—C6A | 119.08 (16) | C4B—C5B—C6B | 118.54 (17) |
C5A—C6A—C7A | 121.47 (18) | C5B—C6B—C7B | 121.84 (18) |
C6A—C7A—C8A | 118.55 (18) | C6B—C7B—C8B | 118.58 (19) |
C7A—C8A—C9A | 121.61 (17) | C7B—C8B—C9B | 121.69 (18) |
Cl1A—C8A—C7A | 119.48 (15) | Cl1B—C8B—C7B | 119.31 (16) |
Cl1A—C8A—C9A | 118.89 (15) | Cl1B—C8B—C9B | 118.99 (15) |
C4A—C9A—C8A | 119.77 (17) | C4B—C9B—C8B | 119.74 (17) |
C1A—C10A—C11A | 119.28 (17) | C1B—C10B—C11B | 119.94 (17) |
C1A—C10A—C15A | 122.31 (16) | C1B—C10B—C15B | 122.19 (16) |
C11A—C10A—C15A | 118.41 (16) | C11B—C10B—C15B | 117.84 (16) |
C10A—C11A—C12A | 120.49 (19) | C10B—C11B—C12B | 120.82 (19) |
C11A—C12A—C13A | 120.58 (19) | C11B—C12B—C13B | 120.38 (18) |
C12A—C13A—C14A | 119.55 (19) | C12B—C13B—C14B | 119.74 (18) |
C13A—C14A—C15A | 120.23 (19) | C13B—C14B—C15B | 119.86 (19) |
C10A—C15A—C14A | 120.73 (18) | C10B—C15B—C14B | 121.34 (17) |
N2B—N1B—C3B | 104.53 (14) | C1B—C2B—H2B | 127.00 |
C3A—C2A—H2A | 127.00 | C3B—C2B—H2B | 127.00 |
C1A—C2A—H2A | 127.00 | C5B—C6B—H6B | 119.00 |
N1B—N2B—C1B | 112.66 (16) | C7B—C6B—H6B | 119.00 |
C3B—N3B—C4B | 126.95 (16) | C6B—C7B—H7B | 121.00 |
C5A—C6A—H6A | 119.00 | C8B—C7B—H7B | 121.00 |
C7A—C6A—H6A | 119.00 | C4B—C9B—H9B | 120.00 |
C8A—C7A—H7A | 121.00 | C8B—C9B—H9B | 120.00 |
C6A—C7A—H7A | 121.00 | C10B—C11B—H11B | 120.00 |
C8A—C9A—H9A | 120.00 | C12B—C11B—H11B | 120.00 |
C4A—C9A—H9A | 120.00 | C11B—C12B—H12B | 120.00 |
C10A—C11A—H11A | 120.00 | C13B—C12B—H12B | 120.00 |
C12A—C11A—H11A | 120.00 | C12B—C13B—H13B | 120.00 |
C11A—C12A—H12A | 120.00 | C14B—C13B—H13B | 120.00 |
C13A—C12A—H12A | 120.00 | C13B—C14B—H14B | 120.00 |
C14A—C13A—H13A | 120.00 | C15B—C14B—H14B | 120.00 |
C12A—C13A—H13A | 120.00 | C10B—C15B—H15B | 119.00 |
C13A—C14A—H14A | 120.00 | C14B—C15B—H15B | 119.00 |
C15A—C14A—H14A | 120.00 | ||
C3A—N1A—N2A—C1A | −0.5 (2) | C3B—N1B—N2B—C1B | −1.2 (2) |
N2A—N1A—C3A—N3A | −175.01 (16) | N2B—N1B—C3B—N3B | −174.38 (17) |
N2A—N1A—C3A—C2A | 0.5 (2) | N2B—N1B—C3B—C2B | 1.2 (2) |
N1A—N2A—C1A—C2A | 0.2 (2) | N1B—N2B—C1B—C2B | 0.7 (2) |
N1A—N2A—C1A—C10A | −178.67 (16) | N1B—N2B—C1B—C10B | 178.09 (17) |
C4A—N3A—C3A—N1A | −149.84 (18) | C4B—N3B—C3B—N1B | −156.03 (18) |
C4A—N3A—C3A—C2A | 35.7 (3) | C4B—N3B—C3B—C2B | 29.4 (3) |
C3A—N3A—C4A—C5A | −162.61 (18) | C3B—N3B—C4B—C5B | −164.28 (18) |
C3A—N3A—C4A—C9A | 18.2 (3) | C3B—N3B—C4B—C9B | 16.9 (3) |
N2A—C1A—C2A—C3A | 0.1 (2) | N2B—C1B—C2B—C3B | 0.1 (2) |
C10A—C1A—C2A—C3A | 178.87 (19) | C10B—C1B—C2B—C3B | −177.05 (19) |
N2A—C1A—C10A—C11A | −163.29 (18) | N2B—C1B—C10B—C11B | 169.08 (19) |
N2A—C1A—C10A—C15A | 17.6 (3) | N2B—C1B—C10B—C15B | −12.8 (3) |
C2A—C1A—C10A—C11A | 18.1 (3) | C2B—C1B—C10B—C11B | −14.3 (3) |
C2A—C1A—C10A—C15A | −161.0 (2) | C2B—C1B—C10B—C15B | 163.8 (2) |
C1A—C2A—C3A—N1A | −0.4 (2) | C1B—C2B—C3B—N1B | −0.8 (2) |
C1A—C2A—C3A—N3A | 174.43 (19) | C1B—C2B—C3B—N3B | 174.08 (19) |
N3A—C4A—C5A—N4A | −2.4 (3) | N3B—C4B—C5B—N4B | −2.3 (3) |
N3A—C4A—C5A—C6A | −179.06 (17) | N3B—C4B—C5B—C6B | −179.09 (17) |
C9A—C4A—C5A—N4A | 176.89 (17) | C9B—C4B—C5B—N4B | 176.51 (17) |
C9A—C4A—C5A—C6A | 0.2 (3) | C9B—C4B—C5B—C6B | −0.3 (3) |
N3A—C4A—C9A—C8A | 179.43 (17) | N3B—C4B—C9B—C8B | 178.98 (18) |
C5A—C4A—C9A—C8A | 0.2 (3) | C5B—C4B—C9B—C8B | 0.2 (3) |
N4A—C5A—C6A—C7A | −177.36 (18) | N4B—C5B—C6B—C7B | −177.05 (19) |
C4A—C5A—C6A—C7A | −0.7 (3) | C4B—C5B—C6B—C7B | −0.4 (3) |
C5A—C6A—C7A—C8A | 0.9 (3) | C5B—C6B—C7B—C8B | 1.0 (3) |
C6A—C7A—C8A—Cl1A | 177.79 (15) | C6B—C7B—C8B—Cl1B | 177.56 (16) |
C6A—C7A—C8A—C9A | −0.4 (3) | C6B—C7B—C8B—C9B | −1.1 (3) |
Cl1A—C8A—C9A—C4A | −178.35 (14) | Cl1B—C8B—C9B—C4B | −178.18 (15) |
C7A—C8A—C9A—C4A | −0.1 (3) | C7B—C8B—C9B—C4B | 0.5 (3) |
C1A—C10A—C11A—C12A | −179.78 (18) | C1B—C10B—C11B—C12B | 177.10 (18) |
C15A—C10A—C11A—C12A | −0.6 (3) | C15B—C10B—C11B—C12B | −1.1 (3) |
C1A—C10A—C15A—C14A | 179.10 (17) | C1B—C10B—C15B—C14B | −177.09 (18) |
C11A—C10A—C15A—C14A | −0.1 (3) | C11B—C10B—C15B—C14B | 1.0 (3) |
C10A—C11A—C12A—C13A | 0.8 (3) | C10B—C11B—C12B—C13B | 0.2 (3) |
C11A—C12A—C13A—C14A | −0.3 (3) | C11B—C12B—C13B—C14B | 0.8 (3) |
C12A—C13A—C14A—C15A | −0.4 (3) | C12B—C13B—C14B—C15B | −0.8 (3) |
C13A—C14A—C15A—C10A | 0.5 (3) | C13B—C14B—C15B—C10B | −0.1 (3) |
Cg3 is the centroid of the C10A–C15A ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2A—H2NA···N4Bi | 0.87 (2) | 2.44 (2) | 3.127 (3) | 136 (2) |
N3A—H3NA···N1Bi | 0.82 (2) | 2.17 (2) | 2.973 (2) | 168 (2) |
N2B—H2NB···N4Ai | 0.87 (2) | 2.50 (2) | 3.159 (3) | 134 (2) |
N3B—H3NB···N1Ai | 0.83 (2) | 2.20 (2) | 3.019 (2) | 169 (2) |
N4B—H4ND···N1Aii | 0.89 (2) | 2.43 (2) | 3.207 (3) | 146 (2) |
C11B—H11B···Cg3iii | 0.93 | 2.97 | 3.541 (2) | 121 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+1, −y+1, −z+2. |
References
Agilent (2012). CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Ansari, A., Ali, A., Asif, M. & Shamsuzzaman, S. (2017). New J. Chem. 41, 16–41. CrossRef CAS Google Scholar
Bürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767–784. Weinheim: VCH. Google Scholar
Doumbia, M. L., Bouhfid, R., Essassi, E. M. & El Ammari, L. (2010). Acta Cryst. E66, o841. CSD CrossRef IUCr Journals Google Scholar
Essassi, E. M. & Salem, M. (1985). Bull. Soc. Chim. Belg. 94, 755–758. CrossRef CAS Google Scholar
Gaponov, A. A., Zlenko, E. T., Shishkina, S. V., Shishkin, O. V., Antypenko, O. M., Tretiakov, S. V. & Palchikov, V. A. (2016). Med. Chem. Res. 25, 1768–1780. CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Okovytyy, S. I., Sviatenko, L., Gaponov, A., Tarabara, I., Kasyan, L. & Leszczynski, J. (2009). J. Phys. Chem. A, 113, 11376–11381. CrossRef CAS Google Scholar
Peng, X.-M., Cai, G.-X. & Zhou, C.-H. (2013). Curr. Top. Med. Chem. 13, 1963–2010. CrossRef CAS PubMed Google Scholar
Portilla, J., Mata, E. G., Cobo, J., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o510–o513. CSD CrossRef IUCr Journals Google Scholar
Sakya, S. M., Lundy DeMello, K. M., Minich, M. L., Rast, B., Shavnya, A., Rafka, R. J., Koss, D. A., Cheng, H., Li, J., Jaynes, B. H., Ziegler, C. B., Mann, D. W., Petras, C. F., Seibel, S. B., Silvia, A. M., George, D. M., Lund, L. A., Denis, S. S., Hickman, A., Haven, M. L. & Lynch, M. P. (2006). Bioorg. Med. Chem. Lett. 16, 288–292. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Solomko, Z. F., Sharbatyan, P. A., Gaponov, A. A. & Avraraenko, V. I. (1990). Chem. Heterocycl. Compd. 26, 341–345. CrossRef Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yuan, J.-G., Wu, H.-X., Lu, M.-L., Song, G.-P. & Xu, H.-H. (2013). J. Agric. Food Chem. 61, 4236–4241. Web of Science CrossRef CAS PubMed Google Scholar
Zefirov, Yu. V. (1997). Kristallografiya, 42, 936–958. CAS Google Scholar
Zhang, Z., Ojo, K. K., Vidadala, R., Huang, W., Geiger, J. A., Scheele, S., Choi, R., Reid, M. C., Keyloun, K. R., Rivas, K., Siddaramaiah, L. K., Comess, K. M., Robinson, K. P., Merta, P. J., Kifle, L., Hol, W. G. J., Parsons, M., Merritt, E. A., Maly, D. J., Verlinde, C. L. M. J., Van Voorhis, W. C. & Fan, E. (2014). ACS Med. Chem. Lett. 5, 40–44. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.