research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 5-chloro-N1-(5-phenyl-1H-pyrazol-3-yl)benzene-1,2-di­amine

CROSSMARK_Color_square_no_text.svg

aV. N. Karazin Kharkiv National University, 4 Svobody Sq, Kharkiv 61077, Ukraine, bOles Honchar Dnipropetrovsk National University, 72 Gagarina St, Dnipropetrovsk 49010, Ukraine, and cSSI "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv 61001, Ukraine
*Correspondence e-mail: yartsev.yegor@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 22 April 2017; accepted 19 May 2017; online 26 May 2017)

The title compound, C15H13ClN4, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit, which are far from planar as a result of steric repulsion between the rings. The benzene and phenyl rings are inclined to the central pyrazole ring by 46.64 (10) and 17.87 (10)° in mol­ecule A, and by 40.02 (10) and 14.18 (10)° in mol­ecule B. The aromatic rings are inclined to one another by 58.77 (9)° in mol­ecule A, and 36.95 (8)° in mol­ecule B. In the crystal, the A and B mol­ecules are linked by two pairs of N—H⋯N hydrogen bonds forming AB dimers. These are further linked by a fifth N—H⋯N hydrogen bond, forming tetra­mer-like units that stack along the a-axis direction, forming columns, which are in turn linked by C—H⋯π inter­actions, forming layers parallel to the ac plane.

1. Chemical context

The synthesis and reactions of benzodiazepin-2-ones and thio­nes have been studied in detail by our group (Gaponov et al., 2016[Gaponov, A. A., Zlenko, E. T., Shishkina, S. V., Shishkin, O. V., Antypenko, O. M., Tretiakov, S. V. & Palchikov, V. A. (2016). Med. Chem. Res. 25, 1768-1780.]; Okovytyy et al., 2009[Okovytyy, S. I., Sviatenko, L., Gaponov, A., Tarabara, I., Kasyan, L. & Leszczynski, J. (2009). J. Phys. Chem. A, 113, 11376-11381.]). The mechanism of ethanol-assisted hydrazinolysis of 1,3-di­hydro-2H-benzo[b][1,4]diazepine-2-thio­nes (Fig. 1[link]) has been modelled by quantum-chemical calculations (Okovytyy et al., 2009[Okovytyy, S. I., Sviatenko, L., Gaponov, A., Tarabara, I., Kasyan, L. & Leszczynski, J. (2009). J. Phys. Chem. A, 113, 11376-11381.]). However, instead of obtaining the previously suggested products (IIIa) and (IIIb), compounds N1-(5-phenyl-1H-pyrazol-3-yl)benzene-1,2-di­amine (Ia) and its 5-chloro-derivative (Ib) were prepared from 4-phenyl-1,3-di­hydro-2H-benzo[b][1,4]diazepine-2-thio­nes (IIa) and (IIb) and hydrazine hydrate (Fig. 1[link]). Amino­pirazoles are useful building blocks for the synthesis of new pharmaceutical agents (Sakya et al., 2006[Sakya, S. M., Lundy DeMello, K. M., Minich, M. L., Rast, B., Shavnya, A., Rafka, R. J., Koss, D. A., Cheng, H., Li, J., Jaynes, B. H., Ziegler, C. B., Mann, D. W., Petras, C. F., Seibel, S. B., Silvia, A. M., George, D. M., Lund, L. A., Denis, S. S., Hickman, A., Haven, M. L. & Lynch, M. P. (2006). Bioorg. Med. Chem. Lett. 16, 288-292.]) and agrochemicals (Yuan et al., 2013[Yuan, J.-G., Wu, H.-X., Lu, M.-L., Song, G.-P. & Xu, H.-H. (2013). J. Agric. Food Chem. 61, 4236-4241.]), due to their notable biological properties (Peng et al., 2013[Peng, X.-M., Cai, G.-X. & Zhou, C.-H. (2013). Curr. Top. Med. Chem. 13, 1963-2010.]; Zhang et al., 2014[Zhang, Z., Ojo, K. K., Vidadala, R., Huang, W., Geiger, J. A., Scheele, S., Choi, R., Reid, M. C., Keyloun, K. R., Rivas, K., Siddaramaiah, L. K., Comess, K. M., Robinson, K. P., Merta, P. J., Kifle, L., Hol, W. G. J., Parsons, M., Merritt, E. A., Maly, D. J., Verlinde, C. L. M. J., Van Voorhis, W. C. & Fan, E. (2014). ACS Med. Chem. Lett. 5, 40-44.]; Ansari et al., 2017[Ansari, A., Ali, A., Asif, M. & Shamsuzzaman, S. (2017). New J. Chem. 41, 16-41.]). The crystal structure analysis of the title compound, (Ib), was undertaken as it may help to provide a better understanding of the properties of amino­pirazoles.

[Figure 1]
Figure 1
Synthesis scheme for the title compound (Ib).

2. Structural commentary

There are two independent mol­ecules (A and B) in the asymmetric unit of the title compound (Ib), as illustrated in Fig. 2[link]. They are composed of three unsaturated rings, two of which are connected by a bridging amino group. The mol­ecules are not planar as a result of steric repulsion between the rings, which results in some disturbance of the conjugation. Thus, the presence of a shortened intra­molecular contact C2 ⋯ H11 [2.80 Å in mol­ecule A and 2.81 Å in mol­ecule B as compared with the sum of their van der Waals radii of 2.87 Å (Zefirov, 1997[Zefirov, Yu. V. (1997). Kristallografiya, 42, 936-958.])], indicates the presence of repulsion between the pyrazole ring and the phenyl substituent. The steric strain is compensated for by the elongation of the C1—C10 bond: 1.486 (2) Å in mol­ecule A and 1.482 (2) Å in mol­ecule B compared to a mean bond length of 1.470 Å for a typical conjugated system (Bürgi & Dunitz, 1994[Bürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767-784. Weinheim: VCH.]). In addition, the C2—C1—C10 bond angle increases to 130.6 (2)° in both mol­ecules, and the pyrazole and phenyl rings are twisted with respect to each other, with torsion angle C2—C1—C10—C11 being 18.1 (3)° in mol­ecule A and −14.3 (3)° in mol­ecule B.

[Scheme 1]
[Figure 2]
Figure 2
The mol­ecular structure of the two independent mol­ecules (A and B) of compound (Ib), with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

There is an even stronger repulsion between the amino­chloro­phenyl and pyrazole rings linked through the bridging amino group [shortened intra­molecular contacts are: C2⋯C9 = 3.25 Å (A), 3.21 Å (B); C2⋯H9 = 2.75 Å (A), 2.67 Å (B); H3⋯H4 = 2.28 Å for both mol­ecules; C3⋯H9 = 2.76 Å for both mol­ecules] leads to a greater twist of these unsaturated rings relative to each other; the dihedral angle between the mean planes N1/N2/C1–C3 and C4–C9 is 46.6 (1)° for mol­ecule A and 40.0 (1)° for B. Moreover, the N3—C3 bonds [1.395 (3) Å in A and 1.394 (2) Å in B; mean value of 1.339 Å] and the N3—C4 bonds [1.408 (2) Å in A, 1.406 (2) Å in B; mean value of 1.353 Å] are elongated with respect to the mean values for such bonds, and the C2=C3—N3 bond angle is increased to 130.3 (2)° in A and 130.5 (2)° in B.

The bridging nitro­gen atom, N3, has an almost planar configuration (the bond-angle sum is 356° in A and 358° in B). The N4H2 amino group has a pyramidal configuration (bond-angle sum is 329° in A and 325° in B). The C5—N4 bond, 1.422 (3) Å in A and 1.425 (3) Å in B, is elongated in comparison with the mean value of 1.394 Å; this elongation is probably caused by the involvement of the nitro­gen lone pair in hydrogen bonding (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C10A–C15A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2NA⋯N4Bi 0.87 (2) 2.44 (2) 3.127 (3) 136 (2)
N3A—H3NA⋯N1Bi 0.82 (2) 2.17 (2) 2.973 (2) 168 (2)
N2B—H2NB⋯N4Ai 0.87 (2) 2.50 (2) 3.159 (3) 134 (2)
N3B—H3NB⋯N1Ai 0.83 (2) 2.20 (2) 3.019 (2) 169 (2)
N4B—H4ND⋯N1Aii 0.89 (2) 2.43 (2) 3.207 (3) 146 (2)
C11B—H11BCg3iii 0.93 2.97 3.541 (2) 121
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+2.

3. Supra­molecular features

In the crystal, mol­ecules are linked by two pairs of N—H⋯N hydrogen bonds, forming AB dimers (Table 1[link] and Fig. 3[link]). The dimers are linked by a fifth N—H⋯N hydrogen bond to form a tetra­mer-like arrangement (Table 1[link] and Fig. 3[link]). These stack up the a-axis direction, forming columns (Table 2[link] and Fig. 4[link]), which are linked by C—H⋯π inter­actions, forming layers parallel to the ac plane.

Table 2
Experimental details

Crystal data
Chemical formula C15H13ClN4
Mr 284.74
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 10.0709 (17), 20.322 (6), 13.886 (4)
β (°) 102.776 (18)
V3) 2771.7 (12)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.20 × 0.10 × 0.10
 
Data collection
Diffractometer Agilent Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.]).
Tmin, Tmax 0.649, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15157, 4795, 3132
Rint 0.027
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 0.94
No. of reflections 4795
No. of parameters 393
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.21
Computer programs: CrysAlis CCD and CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).
[Figure 3]
Figure 3
A view of the hydrogen-bonded (dashed lines; see Table 1[link]) tetra­meric units of compound (Ib). For clarity, only H atoms involved in hydrogen bonding have been included.
[Figure 4]
Figure 4
A view along the a axis of the crystal packing of compound (Ib). The N—H⋯N hydrogen bonds are shown as dashed lines and the C—H⋯π inter­actions as blue arrows (see Table 1[link]). For clarity, only the H atoms involved in these inter­actions have been included.

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, update February 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for N,5-diphenyl-1H-pyrazol-3-amine (S1; Fig. 5[link]) gave only two relevant hits, viz. methyl 3-nitro-4-[(5-phenyl-1H-pyrazol-3-yl)amino]­benzo­ate (DIKSOG; Portilla et al., 2007[Portilla, J., Mata, E. G., Cobo, J., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o510-o513.]) and N-(5-phenyl-1H-pyrazol-3-yl)benzene-1,2-di­amine (KUTFAH; Doumbia et al., 2010[Doumbia, M. L., Bouhfid, R., Essassi, E. M. & El Ammari, L. (2010). Acta Cryst. E66, o841.]). They differ from compound (Ib) in the substituents on one of the aromatic rings (see Fig. 5[link]). The mol­ecule of DIKSOG is practically planar, probably owing to the formation of intra­molecular N—H⋯O and C—H⋯N hydrogen bonds. In compound KUTFAH, while the phenyl ring is almost coplanar with the pyrazole ring (dihedral angle is ca 3.68° cf. 2.15° in DIKSOG), the o-amino­phenyl ring is inclined to the pyrazole ring by ca 64.03° (cf. 5.61° in DIKSOG). This conformation is similar to that of compound (Ib). In the crystal of DIKSOG, mol­ecules are linked by pairs of N—H⋯N hydrogen bonds, forming inversion dimers, while in the crystal of KUTFAH, mol­ecules are linked into chains by N—H⋯N hydrogen bonds.

[Figure 5]
Figure 5
CSD search substructure S1, and relevant hits, KUTFAH and DIKSOG.

5. Synthesis and crystallization

The initial 4-phenyl-1,3-di­hydro-2H-benzo[b][1,4]diazepine-2-thio­nes (IIa) and (IIb) were synthesized from the corres­ponding 4-phenyl-1,3-di­hydro-2H-benzo[b][1,4]diazepin-2-ones according to the procedure described previously (Solomko et al., 1990[Solomko, Z. F., Sharbatyan, P. A., Gaponov, A. A. & Avraraenko, V. I. (1990). Chem. Heterocycl. Compd. 26, 341-345.]). The synthesis of the title compound (Ib) is illustrated in Fig. 1[link].

General procedure:

Hydrazine hydrate (0.5 ml, 85% aq. solution) was added to a solution of the corresponding 4-phenyl-1,3-di­hydro-2H-benzo[b][1,4]diazepine-2-thio­nes, (IIa) or (IIb), (5 mmol) in ethanol (40 ml). The mixture was heated at reflux for 3 h (TLC monitoring), then the solvent and the excess of hydrazine hydrate were removed under reduced pressure. The residue was washed with small amounts of cold alcohol. Colourless crystals of (Ia) and (Ib) were grown by recrystallization of the crude product from ethanol solution.

Spectroscopic and analytical data for (Ia):

Yield 0.91 g, 73%; m.p. 415–417 K [415–417 K from ethanol in accordance with Essassi & Salem (1985[Essassi, E. M. & Salem, M. (1985). Bull. Soc. Chim. Belg. 94, 755-758.])]. IR νmax (KBr): 3410–3220, 2970, 1605, 1545, 1505, 1260, 1030, 920, 860, 810 cm−1. 1H NMR (DMSO-d6, 400 MHz): δ 4.91 (s, 2H, NH2), 6.16 (s, 1H, CH), 6.40–6.79 (m, 3H, ArH + NH), 7.03–7.95 (m, 7H, ArH), 12.42 (s, 1H, NH) ppm. MS (EI) m/z (rel. intensity): 251 [M + H] (18), 250 [M+] (100), 249 [M – H] (52), 234 (8), 233 (7), 221 (5), 219 (13), 132 (18), 131 (10), 130 (5), 125 (5), 119 (16), 104 (6), 103 (8), 102 (4), 92 (4), 91 (4), 77 (9). Analysis calculated for C15H14N4 (250.12): C, 71.98; H, 5.64; N, 22.38; found: C, 72.12; H, 5.54; N, 22.26.

Spectroscopic and analytical data for (Ib):

Yield 0.99 g, 70%; m.p. 468–470 K. IR νmax (KBr): 3400–3210, 2975, 1600, 1560, 1500, 1250, 1145, 1000, 960, 920, 880, 855, 800 cm−1. 1H NMR (Solv, MHz): δ 4.95 (s, 2H, NH2), 6.27 (s, 1H, CH), 6.57–6.66 (m, 2H, ArH + NH), 7.30–7.79 (m, 7H, ArH), 12.49 (s, 1H, NH) ppm. MS (EI) m/z (rel. intensity): 285 [M + H] (34), 284 [M+] (100), 283 [M – H] (44), 269 (6), 268 (10), 267 (12), 255 (8), 253 (12), 168 (8), 167 (8), 166 (25), 165 (13), 164 (7), 131 (7), 119 (26), 104 (8), 103 (7), 102 (7), 91 (6), 77 (13). Analysis calculated for C15H13ClN4 (284.08): C, 63.27; H, 4.60; N, 19.68; found: C, 63.08; H, 4.71; N, 19.73.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All of the H atoms could be located from difference-Fourier maps. The C-bound H atoms were included in calculated positions and treated as riding: C—H = 0.93 Å with 1.2Ueq(C). The N-bound H atoms were located in difference-Fourier maps and freely refined.

Supporting information


Computing details top

Data collection: CrysAlis CCD (Agilent, 2012); cell refinement: CrysAlis CCD (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

5-Chloro-N1-(5-phenyl-1H-pyrazol-3-yl)benzene-1,2-diamine top
Crystal data top
C15H13ClN4F(000) = 1184
Mr = 284.74Dx = 1.365 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.0709 (17) ÅCell parameters from 5031 reflections
b = 20.322 (6) Åθ = 2.0–31.5°
c = 13.886 (4) ŵ = 0.27 mm1
β = 102.776 (18)°T = 293 K
V = 2771.7 (12) Å3Parallelepiped, colourless
Z = 80.20 × 0.10 × 0.10 mm
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
4795 independent reflections
Radiation source: Enhance (Mo) X-ray Source3132 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.027
ω–scanθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012).
h = 1111
Tmin = 0.649, Tmax = 1.000k = 2424
15157 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: mixed
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.064P)2]
where P = (Fo2 + 2Fc2)/3
4795 reflections(Δ/σ)max = 0.001
393 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1A0.49786 (7)0.24353 (3)0.83066 (4)0.0730 (2)
Cl1B0.96923 (7)0.24226 (3)0.84367 (4)0.0776 (2)
N1A0.21769 (16)0.51489 (7)0.60279 (10)0.0457 (5)
N2A0.18787 (17)0.55321 (8)0.67697 (11)0.0457 (5)
N3A0.39006 (18)0.44024 (8)0.58852 (12)0.0492 (6)
N4A0.55691 (19)0.39198 (9)0.47173 (13)0.0511 (6)
C1A0.27518 (18)0.54304 (9)0.76473 (12)0.0415 (6)
C2A0.36726 (19)0.49617 (9)0.74824 (12)0.0461 (6)
C3A0.32764 (18)0.48054 (9)0.64684 (12)0.0411 (6)
C4A0.46130 (18)0.38147 (8)0.61844 (12)0.0403 (6)
C5A0.54902 (18)0.35744 (9)0.55934 (13)0.0421 (6)
C6A0.61960 (19)0.29883 (9)0.58605 (14)0.0518 (7)
C7A0.6070 (2)0.26396 (10)0.66977 (15)0.0580 (7)
C8A0.5203 (2)0.28827 (9)0.72658 (13)0.0509 (7)
C9A0.44765 (19)0.34626 (9)0.70194 (12)0.0460 (6)
C10A0.26315 (19)0.57736 (8)0.85694 (12)0.0424 (6)
C11A0.3742 (2)0.57789 (10)0.93726 (13)0.0539 (7)
C12A0.3656 (2)0.60944 (11)1.02456 (15)0.0625 (8)
C13A0.2459 (2)0.64019 (10)1.03356 (15)0.0594 (8)
C14A0.1350 (2)0.63963 (10)0.95502 (15)0.0604 (8)
C15A0.1432 (2)0.60866 (9)0.86679 (14)0.0533 (7)
N1B0.72238 (17)0.52522 (8)0.62179 (11)0.0516 (5)
N2B0.69078 (18)0.56217 (9)0.69663 (11)0.0513 (6)
N3B0.88215 (17)0.44361 (8)0.60966 (12)0.0488 (6)
N4B1.04647 (18)0.39335 (9)0.49141 (13)0.0510 (6)
C1B0.76350 (18)0.54428 (9)0.78701 (12)0.0413 (6)
C2B0.84788 (18)0.49384 (9)0.77092 (12)0.0451 (6)
C3B0.81946 (18)0.48419 (9)0.66735 (12)0.0423 (6)
C4B0.94813 (18)0.38342 (9)0.63783 (12)0.0420 (6)
C5B1.03456 (18)0.35833 (9)0.57797 (13)0.0441 (6)
C6B1.0996 (2)0.29824 (9)0.60360 (14)0.0543 (7)
C7B1.0828 (2)0.26284 (10)0.68562 (15)0.0600 (8)
C8B0.9971 (2)0.28790 (10)0.74217 (14)0.0539 (7)
C9B0.93023 (19)0.34753 (9)0.71968 (13)0.0480 (6)
C10B0.75168 (17)0.57770 (9)0.87960 (12)0.0403 (6)
C11B0.8117 (2)0.54986 (10)0.97074 (13)0.0515 (7)
C12B0.8070 (2)0.58188 (11)1.05840 (14)0.0563 (7)
C13B0.74198 (19)0.64222 (10)1.05668 (14)0.0527 (7)
C14B0.6804 (2)0.67007 (10)0.96768 (15)0.0573 (7)
C15B0.6852 (2)0.63790 (9)0.87961 (14)0.0517 (7)
H2NA0.120 (2)0.5806 (10)0.6599 (14)0.059 (6)*
H3NA0.3590 (18)0.4435 (9)0.5292 (13)0.042 (5)*
H2A0.440000.478600.794300.0550*
H4NB0.631 (2)0.3782 (9)0.4504 (15)0.058 (6)*
H4NA0.563 (2)0.4346 (12)0.4845 (16)0.076 (7)*
H6A0.676400.282700.547000.0620*
H7A0.655500.225200.687400.0700*
H9A0.390100.361500.741000.0550*
H11A0.454700.557000.932400.0650*
H12A0.440700.609901.077400.0750*
H13A0.240600.661001.092200.0710*
H14A0.054400.660000.960800.0720*
H15A0.068000.608800.814000.0640*
H2B0.910500.470900.818300.0540*
H2NB0.624 (2)0.5897 (10)0.6809 (15)0.059 (6)*
H3NB0.8595 (18)0.4500 (9)0.5492 (14)0.045 (5)*
H6B1.155900.281400.564700.0650*
H4ND1.063 (2)0.4357 (11)0.5059 (15)0.065 (7)*
H7B1.128100.223200.702200.0720*
H4NC1.116 (2)0.3777 (10)0.4691 (15)0.062 (6)*
H9B0.873700.363500.759000.0580*
H11B0.855500.509400.972800.0620*
H12B0.847600.562701.118500.0680*
H13B0.740000.663701.115500.0630*
H14B0.635700.710200.966200.0690*
H15B0.643200.657000.819800.0620*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.1159 (5)0.0493 (3)0.0465 (3)0.0072 (3)0.0021 (3)0.0085 (2)
Cl1B0.1147 (5)0.0600 (4)0.0563 (3)0.0078 (3)0.0148 (3)0.0152 (3)
N1A0.0554 (9)0.0491 (9)0.0332 (8)0.0080 (8)0.0110 (7)0.0007 (7)
N2A0.0530 (10)0.0473 (9)0.0363 (8)0.0095 (9)0.0087 (8)0.0029 (7)
N3A0.0674 (11)0.0510 (10)0.0297 (8)0.0155 (9)0.0120 (8)0.0032 (7)
N4A0.0593 (11)0.0478 (11)0.0510 (10)0.0010 (9)0.0224 (9)0.0045 (8)
C1A0.0506 (11)0.0394 (10)0.0353 (9)0.0022 (9)0.0110 (9)0.0019 (8)
C2A0.0547 (11)0.0487 (11)0.0330 (9)0.0085 (10)0.0059 (9)0.0024 (8)
C3A0.0503 (11)0.0394 (10)0.0349 (9)0.0028 (9)0.0122 (9)0.0033 (8)
C4A0.0456 (10)0.0374 (10)0.0349 (9)0.0002 (9)0.0025 (8)0.0057 (8)
C5A0.0448 (10)0.0397 (10)0.0403 (10)0.0049 (9)0.0065 (8)0.0070 (8)
C6A0.0520 (12)0.0440 (11)0.0577 (12)0.0048 (10)0.0085 (10)0.0110 (10)
C7A0.0652 (14)0.0389 (11)0.0615 (13)0.0079 (11)0.0037 (11)0.0020 (10)
C8A0.0666 (13)0.0386 (11)0.0404 (10)0.0064 (10)0.0032 (10)0.0010 (8)
C9A0.0557 (11)0.0439 (11)0.0363 (10)0.0007 (10)0.0059 (9)0.0035 (8)
C10A0.0543 (11)0.0378 (10)0.0365 (9)0.0060 (9)0.0130 (9)0.0006 (8)
C11A0.0550 (12)0.0610 (13)0.0452 (11)0.0021 (11)0.0103 (10)0.0064 (10)
C12A0.0704 (14)0.0710 (14)0.0434 (12)0.0096 (12)0.0070 (11)0.0121 (10)
C13A0.0803 (15)0.0569 (13)0.0451 (12)0.0094 (12)0.0224 (12)0.0136 (10)
C14A0.0703 (14)0.0598 (13)0.0566 (13)0.0066 (12)0.0261 (12)0.0080 (11)
C15A0.0580 (12)0.0562 (12)0.0448 (11)0.0044 (11)0.0096 (10)0.0028 (9)
N1B0.0612 (10)0.0596 (10)0.0348 (8)0.0172 (9)0.0124 (8)0.0032 (7)
N2B0.0591 (11)0.0596 (11)0.0360 (9)0.0234 (9)0.0123 (8)0.0060 (8)
N3B0.0626 (11)0.0525 (10)0.0327 (8)0.0131 (8)0.0135 (8)0.0021 (8)
N4B0.0554 (11)0.0484 (11)0.0526 (10)0.0004 (9)0.0193 (9)0.0085 (8)
C1B0.0440 (10)0.0442 (10)0.0359 (9)0.0008 (9)0.0090 (8)0.0053 (8)
C2B0.0483 (11)0.0489 (11)0.0360 (10)0.0101 (9)0.0047 (8)0.0016 (8)
C3B0.0456 (11)0.0437 (10)0.0384 (10)0.0034 (9)0.0112 (9)0.0040 (8)
C4B0.0437 (10)0.0413 (10)0.0373 (10)0.0005 (9)0.0010 (8)0.0048 (8)
C5B0.0446 (10)0.0452 (11)0.0408 (10)0.0032 (9)0.0061 (8)0.0102 (9)
C6B0.0586 (12)0.0474 (12)0.0565 (12)0.0068 (10)0.0117 (10)0.0089 (10)
C7B0.0703 (14)0.0457 (12)0.0584 (13)0.0114 (11)0.0020 (11)0.0052 (10)
C8B0.0671 (13)0.0460 (12)0.0435 (10)0.0013 (11)0.0016 (10)0.0017 (9)
C9B0.0549 (12)0.0472 (11)0.0401 (10)0.0027 (10)0.0066 (9)0.0033 (9)
C10B0.0416 (10)0.0427 (10)0.0380 (9)0.0035 (9)0.0119 (8)0.0025 (8)
C11B0.0607 (12)0.0507 (12)0.0423 (11)0.0063 (10)0.0096 (10)0.0021 (9)
C12B0.0603 (13)0.0687 (14)0.0383 (10)0.0018 (12)0.0073 (10)0.0015 (10)
C13B0.0583 (12)0.0567 (12)0.0459 (11)0.0104 (11)0.0178 (10)0.0134 (10)
C14B0.0655 (13)0.0531 (12)0.0565 (13)0.0059 (11)0.0206 (11)0.0018 (10)
C15B0.0596 (12)0.0520 (12)0.0451 (11)0.0099 (10)0.0148 (10)0.0075 (9)
Geometric parameters (Å, º) top
Cl1A—C8A1.764 (2)C7A—H7A0.9300
Cl1B—C8B1.761 (2)C9A—H9A0.9300
N1A—C3A1.337 (2)C11A—H11A0.9300
N1A—N2A1.376 (2)C12A—H12A0.9300
N2A—C1A1.352 (2)C13A—H13A0.9300
N3A—C4A1.408 (2)C14A—H14A0.9300
N3A—C3A1.395 (2)C15A—H15A0.9300
N4A—C5A1.422 (3)C1B—C2B1.381 (3)
C1A—C10A1.486 (2)C1B—C10B1.482 (2)
C1A—C2A1.383 (3)C2B—C3B1.417 (2)
C2A—C3A1.412 (2)N2B—H2NB0.87 (2)
N2A—H2NA0.87 (2)N3B—H3NB0.830 (19)
N3A—H3NA0.817 (18)C4B—C9B1.395 (3)
C4A—C9A1.395 (2)C4B—C5B1.424 (3)
N4A—H4NB0.91 (2)N4B—H4ND0.89 (2)
N4A—H4NA0.88 (2)N4B—H4NC0.89 (2)
C4A—C5A1.419 (3)C5B—C6B1.394 (3)
C5A—C6A1.395 (3)C6B—C7B1.389 (3)
C6A—C7A1.391 (3)C7B—C8B1.386 (3)
C7A—C8A1.391 (3)C8B—C9B1.388 (3)
C8A—C9A1.389 (3)C10B—C11B1.396 (3)
C10A—C15A1.398 (3)C10B—C15B1.395 (3)
C10A—C11A1.394 (3)C11B—C12B1.390 (3)
C11A—C12A1.391 (3)C12B—C13B1.388 (3)
C12A—C13A1.388 (3)C13B—C14B1.376 (3)
C13A—C14A1.378 (3)C14B—C15B1.397 (3)
C14A—C15A1.396 (3)C2B—H2B0.9300
N1B—N2B1.375 (2)C6B—H6B0.9300
N1B—C3B1.333 (2)C7B—H7B0.9300
C2A—H2A0.9300C9B—H9B0.9300
N2B—C1B1.355 (2)C11B—H11B0.9300
N3B—C4B1.406 (2)C12B—H12B0.9300
N3B—C3B1.394 (2)C13B—H13B0.9300
N4B—C5B1.425 (3)C14B—H14B0.9300
C6A—H6A0.9300C15B—H15B0.9300
N2A—N1A—C3A104.40 (14)C10A—C15A—H15A120.00
N1A—N2A—C1A112.47 (15)C14A—C15A—H15A120.00
C3A—N3A—C4A126.32 (15)N2B—C1B—C2B105.97 (15)
N2A—C1A—C2A106.40 (15)N2B—C1B—C10B123.35 (17)
N2A—C1A—C10A122.97 (16)C2B—C1B—C10B130.61 (16)
C2A—C1A—C10A130.62 (16)C1B—C2B—C3B105.88 (15)
C1A—C2A—C3A105.54 (16)N1B—N2B—H2NB117.3 (14)
N1A—N2A—H2NA116.4 (13)C1B—N2B—H2NB129.7 (14)
C1A—N2A—H2NA131.1 (13)N1B—C3B—N3B118.36 (15)
N1A—C3A—N3A118.34 (15)C3B—N3B—C4B126.95 (16)
C3A—N3A—H3NA114.6 (13)C3B—N3B—H3NB115.5 (13)
C4A—N3A—H3NA115.0 (13)C4B—N3B—H3NB115.1 (13)
N1A—C3A—C2A111.19 (16)N1B—C3B—C2B110.95 (16)
N3A—C3A—C2A130.28 (17)N3B—C3B—C2B130.52 (17)
H4NB—N4A—H4NA110.1 (18)H4ND—N4B—H4NC107.7 (19)
C5A—C4A—C9A119.52 (16)C5B—C4B—C9B119.60 (17)
C5A—N4A—H4NA109.1 (14)C5B—N4B—H4NC109.7 (13)
N3A—C4A—C5A117.59 (15)N3B—C4B—C5B117.48 (16)
N3A—C4A—C9A122.89 (16)N3B—C4B—C9B122.91 (17)
C5A—N4A—H4NB109.5 (13)C5B—N4B—H4ND109.8 (13)
N4A—C5A—C4A119.00 (16)N4B—C5B—C4B119.34 (16)
N4A—C5A—C6A121.84 (17)N4B—C5B—C6B122.04 (17)
C4A—C5A—C6A119.08 (16)C4B—C5B—C6B118.54 (17)
C5A—C6A—C7A121.47 (18)C5B—C6B—C7B121.84 (18)
C6A—C7A—C8A118.55 (18)C6B—C7B—C8B118.58 (19)
C7A—C8A—C9A121.61 (17)C7B—C8B—C9B121.69 (18)
Cl1A—C8A—C7A119.48 (15)Cl1B—C8B—C7B119.31 (16)
Cl1A—C8A—C9A118.89 (15)Cl1B—C8B—C9B118.99 (15)
C4A—C9A—C8A119.77 (17)C4B—C9B—C8B119.74 (17)
C1A—C10A—C11A119.28 (17)C1B—C10B—C11B119.94 (17)
C1A—C10A—C15A122.31 (16)C1B—C10B—C15B122.19 (16)
C11A—C10A—C15A118.41 (16)C11B—C10B—C15B117.84 (16)
C10A—C11A—C12A120.49 (19)C10B—C11B—C12B120.82 (19)
C11A—C12A—C13A120.58 (19)C11B—C12B—C13B120.38 (18)
C12A—C13A—C14A119.55 (19)C12B—C13B—C14B119.74 (18)
C13A—C14A—C15A120.23 (19)C13B—C14B—C15B119.86 (19)
C10A—C15A—C14A120.73 (18)C10B—C15B—C14B121.34 (17)
N2B—N1B—C3B104.53 (14)C1B—C2B—H2B127.00
C3A—C2A—H2A127.00C3B—C2B—H2B127.00
C1A—C2A—H2A127.00C5B—C6B—H6B119.00
N1B—N2B—C1B112.66 (16)C7B—C6B—H6B119.00
C3B—N3B—C4B126.95 (16)C6B—C7B—H7B121.00
C5A—C6A—H6A119.00C8B—C7B—H7B121.00
C7A—C6A—H6A119.00C4B—C9B—H9B120.00
C8A—C7A—H7A121.00C8B—C9B—H9B120.00
C6A—C7A—H7A121.00C10B—C11B—H11B120.00
C8A—C9A—H9A120.00C12B—C11B—H11B120.00
C4A—C9A—H9A120.00C11B—C12B—H12B120.00
C10A—C11A—H11A120.00C13B—C12B—H12B120.00
C12A—C11A—H11A120.00C12B—C13B—H13B120.00
C11A—C12A—H12A120.00C14B—C13B—H13B120.00
C13A—C12A—H12A120.00C13B—C14B—H14B120.00
C14A—C13A—H13A120.00C15B—C14B—H14B120.00
C12A—C13A—H13A120.00C10B—C15B—H15B119.00
C13A—C14A—H14A120.00C14B—C15B—H15B119.00
C15A—C14A—H14A120.00
C3A—N1A—N2A—C1A0.5 (2)C3B—N1B—N2B—C1B1.2 (2)
N2A—N1A—C3A—N3A175.01 (16)N2B—N1B—C3B—N3B174.38 (17)
N2A—N1A—C3A—C2A0.5 (2)N2B—N1B—C3B—C2B1.2 (2)
N1A—N2A—C1A—C2A0.2 (2)N1B—N2B—C1B—C2B0.7 (2)
N1A—N2A—C1A—C10A178.67 (16)N1B—N2B—C1B—C10B178.09 (17)
C4A—N3A—C3A—N1A149.84 (18)C4B—N3B—C3B—N1B156.03 (18)
C4A—N3A—C3A—C2A35.7 (3)C4B—N3B—C3B—C2B29.4 (3)
C3A—N3A—C4A—C5A162.61 (18)C3B—N3B—C4B—C5B164.28 (18)
C3A—N3A—C4A—C9A18.2 (3)C3B—N3B—C4B—C9B16.9 (3)
N2A—C1A—C2A—C3A0.1 (2)N2B—C1B—C2B—C3B0.1 (2)
C10A—C1A—C2A—C3A178.87 (19)C10B—C1B—C2B—C3B177.05 (19)
N2A—C1A—C10A—C11A163.29 (18)N2B—C1B—C10B—C11B169.08 (19)
N2A—C1A—C10A—C15A17.6 (3)N2B—C1B—C10B—C15B12.8 (3)
C2A—C1A—C10A—C11A18.1 (3)C2B—C1B—C10B—C11B14.3 (3)
C2A—C1A—C10A—C15A161.0 (2)C2B—C1B—C10B—C15B163.8 (2)
C1A—C2A—C3A—N1A0.4 (2)C1B—C2B—C3B—N1B0.8 (2)
C1A—C2A—C3A—N3A174.43 (19)C1B—C2B—C3B—N3B174.08 (19)
N3A—C4A—C5A—N4A2.4 (3)N3B—C4B—C5B—N4B2.3 (3)
N3A—C4A—C5A—C6A179.06 (17)N3B—C4B—C5B—C6B179.09 (17)
C9A—C4A—C5A—N4A176.89 (17)C9B—C4B—C5B—N4B176.51 (17)
C9A—C4A—C5A—C6A0.2 (3)C9B—C4B—C5B—C6B0.3 (3)
N3A—C4A—C9A—C8A179.43 (17)N3B—C4B—C9B—C8B178.98 (18)
C5A—C4A—C9A—C8A0.2 (3)C5B—C4B—C9B—C8B0.2 (3)
N4A—C5A—C6A—C7A177.36 (18)N4B—C5B—C6B—C7B177.05 (19)
C4A—C5A—C6A—C7A0.7 (3)C4B—C5B—C6B—C7B0.4 (3)
C5A—C6A—C7A—C8A0.9 (3)C5B—C6B—C7B—C8B1.0 (3)
C6A—C7A—C8A—Cl1A177.79 (15)C6B—C7B—C8B—Cl1B177.56 (16)
C6A—C7A—C8A—C9A0.4 (3)C6B—C7B—C8B—C9B1.1 (3)
Cl1A—C8A—C9A—C4A178.35 (14)Cl1B—C8B—C9B—C4B178.18 (15)
C7A—C8A—C9A—C4A0.1 (3)C7B—C8B—C9B—C4B0.5 (3)
C1A—C10A—C11A—C12A179.78 (18)C1B—C10B—C11B—C12B177.10 (18)
C15A—C10A—C11A—C12A0.6 (3)C15B—C10B—C11B—C12B1.1 (3)
C1A—C10A—C15A—C14A179.10 (17)C1B—C10B—C15B—C14B177.09 (18)
C11A—C10A—C15A—C14A0.1 (3)C11B—C10B—C15B—C14B1.0 (3)
C10A—C11A—C12A—C13A0.8 (3)C10B—C11B—C12B—C13B0.2 (3)
C11A—C12A—C13A—C14A0.3 (3)C11B—C12B—C13B—C14B0.8 (3)
C12A—C13A—C14A—C15A0.4 (3)C12B—C13B—C14B—C15B0.8 (3)
C13A—C14A—C15A—C10A0.5 (3)C13B—C14B—C15B—C10B0.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C10A–C15A ring.
D—H···AD—HH···AD···AD—H···A
N2A—H2NA···N4Bi0.87 (2)2.44 (2)3.127 (3)136 (2)
N3A—H3NA···N1Bi0.82 (2)2.17 (2)2.973 (2)168 (2)
N2B—H2NB···N4Ai0.87 (2)2.50 (2)3.159 (3)134 (2)
N3B—H3NB···N1Ai0.83 (2)2.20 (2)3.019 (2)169 (2)
N4B—H4ND···N1Aii0.89 (2)2.43 (2)3.207 (3)146 (2)
C11B—H11B···Cg3iii0.932.973.541 (2)121
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z+2.
 

References

First citationAgilent (2012). CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAnsari, A., Ali, A., Asif, M. & Shamsuzzaman, S. (2017). New J. Chem. 41, 16–41.  CrossRef CAS Google Scholar
First citationBürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767–784. Weinheim: VCH.  Google Scholar
First citationDoumbia, M. L., Bouhfid, R., Essassi, E. M. & El Ammari, L. (2010). Acta Cryst. E66, o841.  CSD CrossRef IUCr Journals Google Scholar
First citationEssassi, E. M. & Salem, M. (1985). Bull. Soc. Chim. Belg. 94, 755–758.  CrossRef CAS Google Scholar
First citationGaponov, A. A., Zlenko, E. T., Shishkina, S. V., Shishkin, O. V., Antypenko, O. M., Tretiakov, S. V. & Palchikov, V. A. (2016). Med. Chem. Res. 25, 1768–1780.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOkovytyy, S. I., Sviatenko, L., Gaponov, A., Tarabara, I., Kasyan, L. & Leszczynski, J. (2009). J. Phys. Chem. A, 113, 11376–11381.  CrossRef CAS Google Scholar
First citationPeng, X.-M., Cai, G.-X. & Zhou, C.-H. (2013). Curr. Top. Med. Chem. 13, 1963–2010.  CrossRef CAS PubMed Google Scholar
First citationPortilla, J., Mata, E. G., Cobo, J., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o510–o513.  CSD CrossRef IUCr Journals Google Scholar
First citationSakya, S. M., Lundy DeMello, K. M., Minich, M. L., Rast, B., Shavnya, A., Rafka, R. J., Koss, D. A., Cheng, H., Li, J., Jaynes, B. H., Ziegler, C. B., Mann, D. W., Petras, C. F., Seibel, S. B., Silvia, A. M., George, D. M., Lund, L. A., Denis, S. S., Hickman, A., Haven, M. L. & Lynch, M. P. (2006). Bioorg. Med. Chem. Lett. 16, 288–292.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSolomko, Z. F., Sharbatyan, P. A., Gaponov, A. A. & Avraraenko, V. I. (1990). Chem. Heterocycl. Compd. 26, 341–345.  CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuan, J.-G., Wu, H.-X., Lu, M.-L., Song, G.-P. & Xu, H.-H. (2013). J. Agric. Food Chem. 61, 4236–4241.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZefirov, Yu. V. (1997). Kristallografiya, 42, 936–958.  CAS Google Scholar
First citationZhang, Z., Ojo, K. K., Vidadala, R., Huang, W., Geiger, J. A., Scheele, S., Choi, R., Reid, M. C., Keyloun, K. R., Rivas, K., Siddaramaiah, L. K., Comess, K. M., Robinson, K. P., Merta, P. J., Kifle, L., Hol, W. G. J., Parsons, M., Merritt, E. A., Maly, D. J., Verlinde, C. L. M. J., Van Voorhis, W. C. & Fan, E. (2014). ACS Med. Chem. Lett. 5, 40–44.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds