research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of phenyl N-(3,5-di­methyl­phenyl)carbamate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Polymer Science, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 22 April 2017; accepted 9 May 2017; online 12 May 2017)

The asymmetric unit of the title compound, C15H15NO2, contains two independent mol­ecules (A and B). The di­methyl­phenyl ring, the phenyl ring and the central carbamate N—C(=O)—O group are not coplanar. In mol­ecule A, the di­methyl­phenyl and phenyl rings are inclined to the carbamate group mean plane by 27.71 (13) and 71.70 (4)°, respectively, and to one another by 84.53 (13)°. The corresponding dihedral angles in mol­ecule B are 34.33 (11), 66.32 (13) and 85.48 (12)°, respectively. In the crystal, the A and B mol­ecules are arranged alternately linked through NHO(carbon­yl) hydrogen bonds, forming –ABAB– chains, which extend along [100]. Within the chains and linking neighbouring chains there are C—H⋯π inter­actions present, forming columns along the a-axis direction. The columns are linked by offset ππ stacking inter­actions, forming a three-dimensional network [shortest centroid–centroid distance = 3.606 (1) Å].

1. Chemical context

The The carbamate group is known in biochemistry for its role in biological processes. For example it tunes haemoglobin affinity for O2 during physiological respiration (O'Donnell et al., 1979[O'Donnell, S., Mandaro, R., Schuster, T. M. & Arnone, A. (1979). J. Biol. Chem. 254, 12204-12208.]). Carbamates are widely employed as pharmacological and therapeutic agents (Greig et al., 2005[Greig, N. H., Sambamurti, K., Yu, Q.-S., Brossi, A., Bruinsma, G. B. & Lahiri, D. K. (2005). Curr. Alzheimer Res. 2, 281-290.]), to inhibit different enzymes such as acetyl- and butyrylcholinesterases (Darvesh et al., 2008[Darvesh, S., Darvesh, K. V., McDonald, R. S., Mataija, D., Walsh, R., Mothana, S., Lockridge, O. & Martin, E. (2008). J. Med. Chem. 51, 4200-4212.]), cholesterol esterase (Hosie et al., 1987[Hosie, L., Sutton, L. D. & Quinn, D. M. (1987). J. Biol. Chem. 262, 260-264.]), elastase (Digenis et al., 1986[Digenis, G. A., Agha, B. J., Tsuji, K., Kato, M. & Shinogi, M. (1986). J. Med. Chem. 29, 1468-1476.]), chymotrypsin (Lin et al., 2006[Lin, G., Chiou, S.-Y., Hwu, B.-C. & Hsieh, C.-W. (2006). Protein J. 25, 33-43.]) and fatty acid amide hydro­lase (FAAH) (Kathuria et al., 2003[Kathuria, S., Gaetani, S., Fegley, D., Valiño, F., Duranti, A., Tontini, A., Mor, M., Tarzia, G., La Rana, G., Calignano, A., Giustino, A., Tattoli, M., Palmery, M., Cuomo, V. & Piomelli, D. (2003). Nat. Med. 9, 76-81.]). In the solid state, the carbamate group acts as both donor and acceptor in hydrogen bonding, favouring the formation of highly stable synthons. Thus, the carbamate group has been proposed as a building block for hydrogen-bonded solids in crystal engineering (Ghosh et al., 2006[Ghosh, K., Adhikari, S. & Fröhlich, R. (2006). J. Mol. Struct. 785, 63-67.]). Most carbamate compounds of inter­est are phenyl derivatives, similar to the title compound whose synthesis and crystal structure are reported on herein.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound, Fig. 1[link], contains two crystallographically independent mol­ecules (A and B), with similar conformations. In mol­ecule A, the di­methyl­phenyl ring (C1–C6) makes a dihedral angle of 84.53 (13)° with the phenyl ring (C10–C15), and in mol­ecule B the di­methyl­phenyl ring (C16–C21) makes a dihedral angle of 85.48 (12)° with the phenyl ring (C25–C30). In mol­ecule A, the aryl rings (C1–C6 and C10–C15) are inclined to the the mean plane of the carbamate N1—C9(=O2)—O1 unit by 27.71 (13) and 71.70 (14)°, respectively. In mol­ecule B, rings C16–C21 and C25–C39 are inclined to the the mean plane of the carbamate N2—C24(=O24)—O13 unit by 34.33 (11) and 66.32 (13)°, respectively. The C9—N1 and C24—N2 distances are 1.336 (3) and 1.335 (3) Å, respectively, indicating partial double-bond character in the carbamate unit.

[Figure 1]
Figure 1
A view of the two independent mol­ecules (A and B) of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, N—H⋯O(carbon­yl) hydrogen bonds link the mol­ecules to form –ABAB– chains, propagating along the a-axis direction (Table 1[link] and Fig. 2[link]). Within the chains and linking neighbouring chains there are C—H⋯π inter­actions, between the H16 and H29 hydrogen atoms of the aromatic and phenyl rings (C10–C15, centroid Cg2 and C16–C21, centroid Cg3; see Table 1[link] and Fig. 3[link]a). These inter­actions form columns along the a-axis direction, which are linked by offset ππ stacking inter­actions (Fig. 3[link]b), forming a three-dimensional network, as illustrated in Fig. 4[link] [Cg1⋯Cg1iii = 3.738 (2) Å, inter­planar distance = 3.521 (1) Å, slippage = 1.257 Å; Cg3⋯Cg3iv = 3.606 (1) Å, inter­planar distance = 3.462 (1) Å, slippage = 1.007 Å; Cg1 and Cg3 are the centroids of the C1–C6 and C16–C21 rings, respectively; symmetry codes: (iii) −x + 3, −y, −z + 1; (iv) −x + 2, −y + 1, −z + 1].

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of rings C10–C15 and C16–C21, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.86 2.14 2.957 (2) 159
N2—H2⋯O2 0.86 2.06 2.896 (2) 164
C16—H16⋯Cg2 0.93 2.93 3.659 (2) 136
C29—H29⋯Cg3ii 0.93 2.59 3.508 (3) 173
Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y+1, -z.
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound, with the N—H⋯O hydrogen bonds (see Table 1[link]) shown as dashed lines. For clarity, H atoms not involved in hydrogen bonding have been omitted.
[Figure 3]
Figure 3
Details of (a) the C—H⋯π inter­actions (thin lines; see Table 1[link]) involving adjacent aromatic rings of the title compound, and (b) the offset ππ inter­actions [dotted lines; Cg1 and Cg3 are the centroids of rings C1–C6 and C16–C21, respectively]. For clarity, H atoms are not involved in these inter­actions have been omitted.
[Figure 4]
Figure 4
A view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines and examples of the C—H⋯π inter­actions as black arrows (see Table 1[link]). The rings involved in ππ inter­actions are blue⋯blue (Cg1; mol­ecule A) and red⋯red (Cg3; mol­ecule B). For clarity, H atoms are not involved in these inter­actions have been omitted.

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, update February 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the skeleton phenyl phenyl­carbamate yielded 42 hits. Among these structures there are reports of two Pna21 polymorphs of phenyl phenyl­carbamate itself, viz. YEHPOQ (Lehr et al., 2001[Lehr, A., Reggelin, M. & Schollmeyer, D. (2001). Private communication (refcode YEHPOQ). CCDC, Cambridge, England.]) and YEHPOQ01 (Shahwar et al., 2009a[Shahwar, D., Tahir, M. N., Mughal, M. S., Khan, M. A. & Ahmad, N. (2009a). Acta Cryst. E65, o1363.]), and those of phenyl (4-methyl­phen­yl)carbamate (YOVHOH; Bao et al., 2009[Bao, S.-X., Fang, Z., Wang, Y.-L. & Wei, P. (2009). Acta Cryst. E65, o1606.]) and phen­yl(2-methyl­phen­yl)carbamate (YOVLIF; Shahwar et al., 2009b[Shahwar, D., Tahir, M. N., Ahmad, N., Yasmeen, A. & Ullah, S. (2009b). Acta Cryst. E65, o1629.]). The conformations of all four reported mol­ecules are different. For example, the aromatic rings are inclined to one another by ca 25.8° in YEHPOQ, 42.5° in YEHPOQ01, 59.0° in YOVHOH and 39.2° in YOVLIF, compared to 84.5 (1) and 85.5 (1)°, respectively, in mol­ecules A and B of the title compound.

5. Synthesis and crystallization

To a stirred solution of 1.0 g (5.45 mmol) of 3,5 dimethyl aniline dissolved in 100 ml of dry THF was added a calculated 5% excess of phenyl­chloro­foramate in 50 ml of dry THF. The addition rate was such that it took 1.5 h for complete transfer. After the addition was complete, stirring was continued overnight. Excess THF was removed under vacuum at room temperature. The crude product was extracted with ethyl acetate (3 × 100 ml), and then the organic layer was dried over anhydrous sodium sulfate. Removing the solvent under vacuum at room temperature, yielded a light-yellow product which was dried under vacuum to constant weight. Yellow block-like crystals were obtained by slow evaporation of an ethyl acetate solution at room temperature (yield 99%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The N– and C-bound H atoms were positioned geometrically (N—H = 0.86 Å and C—H = 0.93–0.96 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(N,C) for the H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C15H15NO2
Mr 241.28
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 9.4257 (4), 12.2054 (5), 13.2067 (6)
α, β, γ (°) 62.979 (3), 82.329 (3), 87.145 (3)
V3) 1341.29 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.20 × 0.18 × 0.17
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.984, 0.987
No. of measured, independent and observed [I > 2σ(I)] reflections 31199, 4723, 3376
Rint 0.031
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.143, 1.09
No. of reflections 4723
No. of parameters 325
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.20
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Phenyl N-(3,5-dimethylphenyl)carbamate top
Crystal data top
C15H15NO2Z = 4
Mr = 241.28F(000) = 512
Triclinic, P1Dx = 1.195 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4257 (4) ÅCell parameters from 3376 reflections
b = 12.2054 (5) Åθ = 1.7–25.0°
c = 13.2067 (6) ŵ = 0.08 mm1
α = 62.979 (3)°T = 293 K
β = 82.329 (3)°Block, yellow
γ = 87.145 (3)°0.20 × 0.18 × 0.17 mm
V = 1341.29 (10) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
4723 independent reflections
Radiation source: fine-focus sealed tube3376 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and φ scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.984, Tmax = 0.987k = 1414
31199 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.5754P]
where P = (Fo2 + 2Fc2)/3
4723 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.58017 (15)0.50462 (14)0.15809 (14)0.0562 (5)
O21.41427 (14)0.39474 (15)0.30750 (13)0.0566 (6)
N11.64082 (17)0.32555 (16)0.29043 (15)0.0457 (6)
C11.7338 (2)0.1239 (2)0.3932 (2)0.0532 (8)
C21.7388 (3)0.0131 (2)0.4911 (3)0.0626 (9)
C31.6482 (3)0.0046 (2)0.5884 (2)0.0642 (9)
O31.16793 (15)0.29093 (14)0.18417 (14)0.0529 (6)
C41.5555 (3)0.0854 (2)0.5912 (2)0.0590 (8)
O40.94345 (14)0.36607 (14)0.18663 (13)0.0491 (5)
C51.5507 (2)0.1955 (2)0.4921 (2)0.0503 (8)
C61.6388 (2)0.21386 (19)0.39347 (19)0.0435 (7)
C71.8376 (4)0.0869 (3)0.4895 (3)0.0977 (13)
C81.4618 (4)0.0653 (3)0.6999 (2)0.0914 (13)
C91.5337 (2)0.40501 (19)0.25803 (18)0.0420 (7)
C101.4810 (2)0.5974 (2)0.10787 (19)0.0505 (7)
C111.5007 (3)0.7082 (2)0.1060 (3)0.0703 (10)
C121.4096 (4)0.8039 (3)0.0507 (3)0.0948 (13)
C131.3023 (4)0.7864 (3)0.0004 (3)0.0933 (12)
C141.2842 (3)0.6744 (3)0.0022 (2)0.0795 (12)
C151.3748 (2)0.5789 (3)0.0561 (2)0.0595 (9)
N21.11656 (17)0.40705 (15)0.27069 (15)0.0425 (6)
C161.1256 (2)0.58070 (18)0.30825 (17)0.0422 (7)
C171.0624 (2)0.66070 (19)0.34863 (18)0.0468 (7)
C180.9176 (2)0.6468 (2)0.38825 (19)0.0505 (8)
C190.8359 (2)0.5547 (2)0.39031 (18)0.0467 (7)
C200.9016 (2)0.47436 (19)0.35201 (17)0.0418 (7)
C211.0452 (2)0.48834 (17)0.30963 (16)0.0365 (6)
C221.1512 (3)0.7594 (2)0.3502 (3)0.0725 (10)
C230.6792 (3)0.5403 (3)0.4352 (3)0.0721 (10)
C241.0631 (2)0.35729 (17)0.21212 (17)0.0382 (6)
C251.1406 (2)0.24132 (19)0.11142 (18)0.0417 (7)
C261.1482 (3)0.1170 (2)0.1526 (2)0.0724 (10)
C271.1370 (4)0.0660 (3)0.0796 (3)0.0925 (13)
C281.1152 (3)0.1379 (3)0.0306 (3)0.0758 (12)
C291.1068 (3)0.2615 (3)0.0702 (2)0.0630 (9)
C301.1207 (2)0.3150 (2)0.0001 (2)0.0522 (8)
H11.719100.343900.244200.0550*
H1A1.794700.137800.326900.0640*
H31.649600.079300.653900.0770*
H51.488100.256800.492400.0600*
H7A1.892100.058700.415100.1470*
H7B1.782300.158300.506000.1470*
H7C1.901500.107500.546200.1470*
H8A1.404400.136600.686300.1370*
H8B1.520600.051300.758500.1370*
H8C1.400600.005000.724100.1370*
H111.574000.719600.141100.0840*
H121.421700.880100.048500.1140*
H131.241200.850600.037100.1120*
H141.210600.662800.032600.0950*
H151.363700.503100.057100.0710*
H21.202800.387900.286300.0510*
H161.222400.589300.280200.0510*
H180.874000.700900.414200.0610*
H200.848900.410500.354800.0500*
H22A1.248400.755100.319500.1090*
H22B1.148500.747100.427600.1090*
H22C1.113200.838700.304600.1090*
H23A0.651300.603200.458200.1080*
H23B0.661700.460900.499800.1080*
H23C0.624400.547700.376100.1080*
H261.160800.067100.228800.0870*
H271.144400.018600.106500.1110*
H281.106000.102800.078800.0910*
H291.091600.310900.145800.0760*
H301.116500.400000.027800.0630*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0349 (8)0.0558 (9)0.0593 (10)0.0080 (7)0.0001 (7)0.0123 (8)
O20.0302 (8)0.0715 (11)0.0554 (10)0.0058 (7)0.0035 (7)0.0187 (8)
N10.0295 (8)0.0500 (10)0.0534 (11)0.0029 (7)0.0028 (8)0.0207 (9)
C10.0442 (12)0.0516 (13)0.0670 (15)0.0033 (10)0.0101 (11)0.0291 (12)
C20.0626 (15)0.0462 (14)0.0798 (19)0.0059 (11)0.0270 (14)0.0250 (13)
C30.0729 (17)0.0495 (14)0.0649 (17)0.0067 (13)0.0275 (14)0.0155 (13)
O30.0406 (8)0.0657 (10)0.0743 (11)0.0177 (7)0.0184 (7)0.0493 (9)
C40.0623 (15)0.0627 (15)0.0514 (14)0.0125 (12)0.0131 (12)0.0223 (12)
O40.0303 (7)0.0692 (10)0.0590 (10)0.0036 (7)0.0066 (6)0.0388 (8)
C50.0461 (12)0.0536 (13)0.0551 (14)0.0013 (10)0.0083 (11)0.0272 (12)
C60.0359 (10)0.0447 (12)0.0534 (13)0.0014 (9)0.0127 (10)0.0231 (11)
C70.101 (2)0.0603 (18)0.126 (3)0.0280 (17)0.033 (2)0.0349 (19)
C80.108 (3)0.099 (2)0.0551 (17)0.0149 (19)0.0002 (17)0.0254 (17)
C90.0308 (11)0.0498 (12)0.0473 (12)0.0006 (9)0.0068 (9)0.0230 (11)
C100.0377 (11)0.0548 (14)0.0459 (13)0.0068 (10)0.0015 (10)0.0138 (11)
C110.0558 (15)0.0610 (16)0.087 (2)0.0000 (12)0.0054 (14)0.0282 (15)
C120.084 (2)0.0554 (18)0.120 (3)0.0092 (16)0.006 (2)0.0237 (18)
C130.075 (2)0.086 (2)0.077 (2)0.0306 (18)0.0041 (17)0.0048 (18)
C140.0532 (15)0.123 (3)0.0531 (16)0.0237 (17)0.0125 (12)0.0324 (18)
C150.0443 (13)0.0827 (18)0.0530 (14)0.0074 (12)0.0024 (11)0.0337 (13)
N20.0291 (8)0.0530 (10)0.0556 (11)0.0062 (7)0.0086 (7)0.0332 (9)
C160.0387 (11)0.0465 (12)0.0404 (12)0.0029 (9)0.0024 (9)0.0192 (10)
C170.0582 (13)0.0401 (11)0.0411 (12)0.0021 (10)0.0078 (10)0.0169 (10)
C180.0579 (14)0.0536 (13)0.0463 (13)0.0118 (11)0.0064 (11)0.0291 (11)
C190.0407 (11)0.0610 (14)0.0447 (12)0.0064 (10)0.0052 (9)0.0299 (11)
C200.0358 (10)0.0506 (12)0.0431 (12)0.0009 (9)0.0025 (9)0.0252 (10)
C210.0345 (10)0.0395 (10)0.0353 (11)0.0036 (8)0.0058 (8)0.0168 (9)
C220.090 (2)0.0568 (15)0.0774 (19)0.0152 (14)0.0020 (15)0.0368 (15)
C230.0452 (13)0.105 (2)0.085 (2)0.0088 (13)0.0023 (13)0.0629 (18)
C240.0307 (10)0.0400 (11)0.0419 (11)0.0010 (8)0.0021 (8)0.0176 (9)
C250.0350 (10)0.0473 (12)0.0492 (13)0.0049 (9)0.0086 (9)0.0269 (11)
C260.118 (2)0.0460 (14)0.0578 (16)0.0122 (14)0.0381 (16)0.0215 (12)
C270.156 (3)0.0517 (16)0.090 (2)0.0190 (18)0.057 (2)0.0402 (16)
C280.095 (2)0.081 (2)0.077 (2)0.0157 (16)0.0331 (16)0.0534 (17)
C290.0631 (15)0.0784 (18)0.0446 (14)0.0112 (13)0.0104 (11)0.0253 (13)
C300.0514 (13)0.0453 (12)0.0529 (14)0.0058 (10)0.0045 (11)0.0172 (11)
Geometric parameters (Å, º) top
O1—C91.361 (3)C11—H110.9300
O1—C101.405 (3)C12—H120.9300
O2—C91.205 (2)C13—H130.9300
N1—C61.422 (3)C14—H140.9300
N1—C91.336 (3)C15—H150.9300
C1—C21.387 (4)N2—H20.8600
C1—C61.383 (3)C16—C211.381 (3)
N1—H10.8600C16—C171.387 (3)
C2—C31.379 (4)C17—C181.385 (3)
C2—C71.504 (5)C17—C221.510 (4)
O3—C251.402 (3)C18—C191.382 (3)
O3—C241.365 (3)C19—C201.381 (3)
C3—C41.380 (4)C19—C231.504 (4)
C4—C51.390 (3)C20—C211.382 (3)
C4—C81.505 (4)C25—C301.364 (3)
O4—C241.206 (2)C25—C261.361 (4)
C5—C61.379 (3)C26—C271.381 (5)
C10—C151.366 (3)C27—C281.354 (5)
C10—C111.363 (4)C28—C291.356 (5)
C11—C121.388 (5)C29—C301.378 (4)
C12—C131.363 (5)C16—H160.9300
C13—C141.370 (6)C18—H180.9300
C14—C151.380 (4)C20—H200.9300
C1—H1A0.9300C22—H22A0.9600
N2—C241.335 (3)C22—H22B0.9600
N2—C211.416 (3)C22—H22C0.9600
C3—H30.9300C23—H23A0.9600
C5—H50.9300C23—H23B0.9600
C7—H7C0.9600C23—H23C0.9600
C7—H7B0.9600C26—H260.9300
C7—H7A0.9600C27—H270.9300
C8—H8A0.9600C28—H280.9300
C8—H8C0.9600C29—H290.9300
C8—H8B0.9600C30—H300.9300
C9—O1—C10117.78 (16)C14—C15—H15120.00
C6—N1—C9126.72 (17)C10—C15—H15121.00
C2—C1—C6120.4 (2)C21—N2—H2117.00
C6—N1—H1117.00C24—N2—H2117.00
C9—N1—H1117.00C17—C16—C21120.19 (18)
C3—C2—C7120.9 (3)C18—C17—C22121.3 (2)
C1—C2—C3118.6 (3)C16—C17—C18118.5 (2)
C1—C2—C7120.5 (3)C16—C17—C22120.18 (19)
C2—C3—C4121.8 (2)C17—C18—C19121.9 (2)
C24—O3—C25118.46 (16)C20—C19—C23120.4 (2)
C3—C4—C5118.9 (2)C18—C19—C20118.64 (19)
C3—C4—C8120.6 (2)C18—C19—C23121.0 (2)
C5—C4—C8120.4 (3)C19—C20—C21120.4 (2)
C4—C5—C6120.0 (2)C16—C21—C20120.3 (2)
C1—C6—C5120.2 (2)N2—C21—C20122.0 (2)
N1—C6—C5122.4 (2)N2—C21—C16117.65 (17)
N1—C6—C1117.29 (19)O3—C24—O4123.5 (2)
O1—C9—O2123.5 (2)O3—C24—N2108.53 (17)
O1—C9—N1109.16 (17)O4—C24—N2127.9 (2)
O2—C9—N1127.3 (2)O3—C25—C26117.45 (19)
C11—C10—C15121.6 (3)C26—C25—C30120.9 (2)
O1—C10—C11117.6 (2)O3—C25—C30121.4 (2)
O1—C10—C15120.6 (3)C25—C26—C27119.0 (2)
C10—C11—C12118.9 (3)C26—C27—C28120.7 (4)
C11—C12—C13120.2 (4)C27—C28—C29119.6 (3)
C12—C13—C14120.2 (3)C28—C29—C30120.9 (3)
C13—C14—C15120.2 (3)C25—C30—C29118.9 (3)
C10—C15—C14119.0 (3)C17—C16—H16120.00
C6—C1—H1A120.00C21—C16—H16120.00
C2—C1—H1A120.00C17—C18—H18119.00
C21—N2—C24126.38 (17)C19—C18—H18119.00
C2—C3—H3119.00C19—C20—H20120.00
C4—C3—H3119.00C21—C20—H20120.00
C6—C5—H5120.00C17—C22—H22A109.00
C4—C5—H5120.00C17—C22—H22B109.00
C2—C7—H7C110.00C17—C22—H22C110.00
H7A—C7—H7B109.00H22A—C22—H22B109.00
H7A—C7—H7C109.00H22A—C22—H22C110.00
H7B—C7—H7C109.00H22B—C22—H22C109.00
C2—C7—H7A109.00C19—C23—H23A109.00
C2—C7—H7B109.00C19—C23—H23B110.00
C4—C8—H8A109.00C19—C23—H23C109.00
H8A—C8—H8B110.00H23A—C23—H23B110.00
H8A—C8—H8C109.00H23A—C23—H23C109.00
H8B—C8—H8C109.00H23B—C23—H23C109.00
C4—C8—H8B109.00C25—C26—H26121.00
C4—C8—H8C109.00C27—C26—H26120.00
C10—C11—H11121.00C26—C27—H27120.00
C12—C11—H11121.00C28—C27—H27120.00
C11—C12—H12120.00C27—C28—H28120.00
C13—C12—H12120.00C29—C28—H28120.00
C14—C13—H13120.00C28—C29—H29120.00
C12—C13—H13120.00C30—C29—H29119.00
C13—C14—H14120.00C25—C30—H30120.00
C15—C14—H14120.00C29—C30—H30121.00
C10—O1—C9—N1178.0 (2)C10—C11—C12—C130.2 (5)
C9—O1—C10—C1572.6 (3)C11—C12—C13—C140.3 (5)
C9—O1—C10—C11111.8 (3)C12—C13—C14—C150.3 (5)
C10—O1—C9—O23.0 (3)C13—C14—C15—C100.9 (4)
C6—N1—C9—O23.2 (4)C21—N2—C24—O44.3 (4)
C9—N1—C6—C1156.0 (2)C24—N2—C21—C16144.0 (2)
C9—N1—C6—C526.5 (4)C24—N2—C21—C2038.5 (3)
C6—N1—C9—O1175.8 (2)C21—N2—C24—O3176.05 (18)
C6—C1—C2—C30.6 (4)C21—C16—C17—C181.0 (3)
C6—C1—C2—C7177.4 (3)C21—C16—C17—C22178.3 (2)
C2—C1—C6—N1179.3 (2)C17—C16—C21—N2178.04 (18)
C2—C1—C6—C51.7 (4)C17—C16—C21—C200.5 (3)
C7—C2—C3—C4179.2 (3)C22—C17—C18—C19178.2 (2)
C1—C2—C3—C41.2 (4)C16—C17—C18—C191.1 (3)
C2—C3—C4—C8177.7 (3)C17—C18—C19—C23179.2 (2)
C25—O3—C24—O47.3 (3)C17—C18—C19—C200.3 (3)
C2—C3—C4—C51.9 (4)C18—C19—C20—C211.8 (3)
C24—O3—C25—C26120.5 (2)C23—C19—C20—C21179.3 (2)
C25—O3—C24—N2173.11 (18)C19—C20—C21—N2179.34 (19)
C24—O3—C25—C3065.6 (3)C19—C20—C21—C161.9 (3)
C3—C4—C5—C60.7 (4)O3—C25—C26—C27173.2 (3)
C8—C4—C5—C6178.9 (3)C30—C25—C26—C270.7 (4)
C4—C5—C6—C11.1 (3)O3—C25—C30—C29174.3 (2)
C4—C5—C6—N1178.5 (2)C26—C25—C30—C290.7 (3)
C11—C10—C15—C141.0 (4)C25—C26—C27—C281.6 (5)
O1—C10—C15—C14176.5 (2)C26—C27—C28—C291.2 (5)
O1—C10—C11—C12176.1 (3)C27—C28—C29—C300.3 (4)
C15—C10—C11—C120.5 (4)C28—C29—C30—C251.2 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of rings C10–C15 and C16–C21, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.862.142.957 (2)159
N2—H2···O20.862.062.896 (2)164
C16—H16···Cg20.932.933.659 (2)136
C29—H29···Cg3ii0.932.593.508 (3)173
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z.
 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationBao, S.-X., Fang, Z., Wang, Y.-L. & Wei, P. (2009). Acta Cryst. E65, o1606.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDarvesh, S., Darvesh, K. V., McDonald, R. S., Mataija, D., Walsh, R., Mothana, S., Lockridge, O. & Martin, E. (2008). J. Med. Chem. 51, 4200–4212.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDigenis, G. A., Agha, B. J., Tsuji, K., Kato, M. & Shinogi, M. (1986). J. Med. Chem. 29, 1468–1476.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGhosh, K., Adhikari, S. & Fröhlich, R. (2006). J. Mol. Struct. 785, 63–67.  Web of Science CSD CrossRef CAS Google Scholar
First citationGreig, N. H., Sambamurti, K., Yu, Q.-S., Brossi, A., Bruinsma, G. B. & Lahiri, D. K. (2005). Curr. Alzheimer Res. 2, 281–290.  CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHosie, L., Sutton, L. D. & Quinn, D. M. (1987). J. Biol. Chem. 262, 260–264.  CAS PubMed Web of Science Google Scholar
First citationKathuria, S., Gaetani, S., Fegley, D., Valiño, F., Duranti, A., Tontini, A., Mor, M., Tarzia, G., La Rana, G., Calignano, A., Giustino, A., Tattoli, M., Palmery, M., Cuomo, V. & Piomelli, D. (2003). Nat. Med. 9, 76–81.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLehr, A., Reggelin, M. & Schollmeyer, D. (2001). Private communication (refcode YEHPOQ). CCDC, Cambridge, England.  Google Scholar
First citationLin, G., Chiou, S.-Y., Hwu, B.-C. & Hsieh, C.-W. (2006). Protein J. 25, 33–43.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationO'Donnell, S., Mandaro, R., Schuster, T. M. & Arnone, A. (1979). J. Biol. Chem. 254, 12204–12208.  CAS PubMed Web of Science Google Scholar
First citationShahwar, D., Tahir, M. N., Ahmad, N., Yasmeen, A. & Ullah, S. (2009b). Acta Cryst. E65, o1629.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Mughal, M. S., Khan, M. A. & Ahmad, N. (2009a). Acta Cryst. E65, o1363.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds