research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-amino­pyridinium 1′-carb­­oxy­ferrocene-1-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russian Federation, bInstitute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prosp. 31, Moscow 119991, Russian Federation, and cState Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
*Correspondence e-mail: zurabych@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 25 April 2017; accepted 10 May 2017; online 16 May 2017)

The structure of the title salt, (C5H7N2)[Fe(C6H4O2)(C6H5O2)], consists of 3-amino­pyridinium cations and 1′-carb­oxy­ferrocene-1-carboxyl­ate monoanions. The ferrocenyl moiety of the anion adopts a typical sandwich structure, with Fe—C distances in the range 2.0270 (15)–2.0568 (17) Å. The anion possesses an eclipsed conformation, with the torsion angle φ (Csubst—Cpcent—Cpcent— Csubst) equal to 66.0°. The conformations of other 1′-carb­oxy­ferrocene-1-carboxyl­ate monoanions are compared and analyzed on the basis of literature data.

1. Chemical context

The idea behind this research was to use ferrocenedi­carb­oxy­lic acid as a dianionic building block in supra­molecular polymer and conventional polymer design (Amer et al., 2013[Amer, W. A., Yu, H., Wang, L., Vatsadze, S. & Tong, R. (2013). J. Inorg. Organomet. Polym. 23, 1431-1444.]; Sun et al., 2016[Sun, R., Wang, L., Yu, H., Zain-ul-Abdin Chen, Y., Khalid, H., Abbasi, N., Akram, M., Vatsadze, S. Z. & Lemenovskii, D. A. (2016). J. Inorg. Organomet. Polym. 26, 545-554.]; Zheng et al., 2016[Zheng, D., Haojie, Y., Li, W., Xiaoting, Z., Yongsheng, C. & Vatsadze, S. Z. (2016). J. Organomet. Chem. 821, 48-53.]).

[Scheme 1]

We tried to apply the trio of available amino­pyridines, namely 2-, 3- and 4-amino­pyridine, as basic counterparts to ferrocenedi­carb­oxy­lic diacid. One of the ideas was to check the possibility of obtaining gels with a supra­molecular arrangement of the constituents in alcoholic media. All those reactions were carried out in a 1:2 ratio of acid–amine in order to exploit both carb­oxy­lic acid groups of the diacid. The experiments revealed, however, that while in cases of 2- and 4-amino­pyridine, only amorphous powders could be obtained, the reaction of 3-amino­pyridine led to a crystalline salt, 3-amino­pyridinium 1′-carb­oxy­ferrocene-1-carboxyl­ate, (1), but with a 1:1 composition.

2. Structural commentary

The crystal structure of (1) consists of one 3-amino­pyridinium cation and one 1′-carb­oxy­ferrocene-1-carboxyl­ate monoanion (Fig. 1[link]). In the cation, the pyridine N atom is protonated. The ferrocenyl moieties adopt the characteristic sandwich structure, with typical Fe—C distances in the range 2.0270 (15)–2.0568 (17) Å (Table 1[link]). The FeII atom is slightly (∼0.01 Å) shifted towards the substituted C11 and C21 atoms. The C16—O bond lengths within the carboxyl­ate anion are almost equal [1.2604 (19) and 1.2636 (19) Å], whereas, in contrast, they differ greatly within the carb­oxy­lic acid group, with C26=O22 = 1.2128 (19) Å and C26—O21 = 1.326 (2) Å, the latter involving the OH group. The planes of the cyclo­penta­dienyl (Cp) rings are almost parallel to the planes of the corresponding carb­oxy/carboxyl­ate groups, with O—C—C—C torsion angles less than 13°. The conformation of 1,1′-disubstituted ferrocenes is described by the torsion angle Csubst—Cpcent—Cpcent—Csubst, where Csubst stands for a ferrocene C atom with an additional bonding partner and Cpcent for the centre of gravity of the C atoms of the ring; this angle is hereafter referred to as φ. In (1), the anion possesses an eclipsed conformation with φ = 66.0° (ideal value 72°) (Fig. 2[link]).

Table 1
Selected geometric parameters (Å, °)

Fe1—C21 2.0270 (15) Fe1—C24 2.0515 (16)
Fe1—C15 2.0341 (16) Fe1—C13 2.0517 (18)
Fe1—C11 2.0359 (16) Fe1—C23 2.0568 (17)
Fe1—C22 2.0414 (17) O11—C16 1.2604 (19)
Fe1—C25 2.0451 (16) O12—C16 1.2636 (19)
Fe1—C12 2.0459 (17) O21—C26 1.326 (2)
Fe1—C14 2.0496 (17) O22—C26 1.2128 (19)
       
C12—C11—C16—O11 14.1 (2) C25—C21—C26—O21 10.2 (2)
[Figure 1]
Figure 1
The structures of the mol­ecular components in (1). Displacement ellipsoids are shown at the 50% probability level. Hydrogen bonding is shown as dashed lines.
[Figure 2]
Figure 2
The four known conformations of the (HO2C-η5-C5H4)Fe(η5-C5H4—CO2) anion.

3. Supra­molecular features

In the title crystal, adjacent cationic and anionic units are combined into a layered arrangement parallel to (100) by charge-supported NH⋯O2C hydrogen bonds of medium–strong-to-weak nature and of CO2H⋯O2C hydrogen bonds of strong nature (Table 2[link] and Fig. 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯O12 0.87 (3) 2.08 (3) 2.918 (2) 161 (2)
N1—H10⋯O11i 0.84 (3) 2.07 (3) 2.906 (2) 171 (3)
N2—H2⋯O11ii 0.89 (2) 1.79 (2) 2.675 (2) 177 (2)
O21—H21⋯O12iii 0.81 (2) 1.77 (2) 2.5621 (16) 164 (2)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
The formation of hydrogen-bonded layers parallel to (100) in the crystal. Hydrogen bonds are drawn as dashed lines.

4. Database survey

The Cambridge Structural Database (CSD, Version 5.38 of February 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains data for 11 structures comprising (HO2C-η5-C5H4)Fe(η5-C5H4-CO2) units from 14 crystallographically independent monoanions. Among these 14 fragments, three adopt a trans-staggered conformation, with m = 5 (as defined in Zakaria et al., 2002[Zakaria, C. M., Ferguson, G., Lough, A. J. & Glidewell, C. (2002). Acta Cryst. B58, 786-802.]). Others adopt three eclipsed conformations with m = 0, 2 and 4 (3, 4 and 4 cases, respectively; Fig. 2[link]). Surprisingly, two staggered conformations with m = 1 and 3 (Fig. 4[link]) were not observed.

[Figure 4]
Figure 4
Unobserved staggered conformations in the structures containing a 1′-carb­oxy­ferrocene-1-carboxyl­ate acid monoanion.

5. Synthesis and crystallization

5.1. Preparation of ferrocene-1,1′-di­carb­oxy­lic acid (Gao et al., 2009[Gao, B., Yang, B., Li, T. & Zhang, B. (2009). Synth. Commun. 39, 2973-2981.])

An 8% NaOCl aqueous solution (100 ml) was added dropwise to 1,1′-di­acetyl­ferrocene (5.37 g, 20 mmol) under stirring at a temperature of 317–320 K. The solution was stirred at this temperature for 2 h. Three more 25 ml portions of NaOCl solution were added every 2 h. The reaction mixture was filtered and acidified to a pH of 1.1 with 10% hydro­chloric acid and cooled to 277 K overnight. The yellow precipitate which formed was filtered off and recrystallized from ethanol to give an orange microcrystalline powder (yield 2.18 g, 40%).

5.2. Preparation of 3-amino­pyridinium 1′-carb­oxy­ferrocene-1-carboxyl­ate, (1)

Ferrocene-1,1′-di­carb­oxy­lic acid (50 mg, 0.18 mmol) was dissolved in methanol and mixed with a methano­lic solution of 3-amino­pyridine (33.8 mg, 0.36 mmol). The reaction mixture was filtered and subjected to slow evaporation at room temperature to give orange crystals of the title salt.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were located from a difference Fourier synthesis and refined isotropically without constraints or restraints.

Table 3
Experimental details

Crystal data
Chemical formula (C5H7N2)[Fe(C6H4O2)(C6H5O2)]
Mr 368.17
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 13.2246 (10), 10.3040 (8), 11.7402 (9)
β (°) 101.703 (1)
V3) 1566.5 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.99
Crystal size (mm) 0.22 × 0.20 × 0.02
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.812, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 14616, 3409, 2812
Rint 0.026
(sin θ/λ)max−1) 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.073, 1.03
No. of reflections 3409
No. of parameters 281
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.37, −0.23
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

3-Aminopyridinium 1'-carboxyferrocene-1-carboxylate top
Crystal data top
(C5H7N2)[Fe(C6H4O2)(C6H5O2)]F(000) = 760
Mr = 368.17Dx = 1.561 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5525 reflections
a = 13.2246 (10) Åθ = 2.5–30.1°
b = 10.3040 (8) ŵ = 0.99 mm1
c = 11.7402 (9) ÅT = 150 K
β = 101.703 (1)°Plate, orange
V = 1566.5 (2) Å30.22 × 0.20 × 0.02 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
3409 independent reflections
Radiation source: fine-focus sealed tube2812 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1616
Tmin = 0.812, Tmax = 0.981k = 1313
14616 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: difference Fourier map
wR(F2) = 0.073All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.5357P]
where P = (Fo2 + 2Fc2)/3
3409 reflections(Δ/σ)max = 0.001
281 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.374096 (17)0.50216 (2)0.671077 (19)0.01937 (8)
O110.09010 (9)0.36772 (12)0.61033 (10)0.0311 (3)
O120.16389 (8)0.34091 (11)0.45865 (10)0.0257 (3)
O210.30237 (9)0.21837 (12)0.84337 (11)0.0277 (3)
O220.35822 (10)0.38212 (12)0.96535 (10)0.0291 (3)
C110.22302 (12)0.51243 (15)0.58942 (14)0.0228 (3)
C120.23757 (13)0.57474 (17)0.70015 (15)0.0272 (4)
C130.30979 (14)0.67653 (17)0.70209 (17)0.0321 (4)
C140.34025 (14)0.67928 (17)0.59322 (17)0.0311 (4)
C150.28745 (13)0.57799 (16)0.52300 (15)0.0254 (4)
C160.15563 (12)0.39937 (16)0.55094 (13)0.0219 (3)
C210.42157 (12)0.36219 (15)0.79136 (13)0.0210 (3)
C220.49364 (13)0.46741 (16)0.80757 (15)0.0234 (3)
C230.53193 (13)0.48018 (16)0.70361 (16)0.0255 (4)
C240.48348 (13)0.38427 (16)0.62345 (15)0.0248 (3)
C250.41579 (12)0.31077 (15)0.67722 (14)0.0214 (3)
C260.35821 (12)0.32398 (15)0.87553 (13)0.0212 (3)
H120.2043 (15)0.5490 (19)0.7600 (17)0.029 (5)*
H130.3336 (15)0.727 (2)0.7642 (18)0.037 (5)*
H140.3905 (16)0.737 (2)0.5730 (17)0.037 (5)*
H150.2915 (15)0.555 (2)0.4446 (18)0.035 (5)*
H210.2655 (18)0.207 (2)0.8897 (19)0.048 (7)*
H220.5128 (15)0.5176 (18)0.8710 (18)0.030 (5)*
H230.5770 (15)0.543 (2)0.6893 (16)0.030 (5)*
H240.4920 (14)0.3759 (18)0.5428 (18)0.030 (5)*
H250.3712 (14)0.2455 (18)0.6409 (15)0.023 (5)*
N10.04432 (16)0.4901 (2)0.26631 (16)0.0457 (5)
N20.03611 (12)0.69407 (15)0.01507 (13)0.0281 (3)
C10.01186 (13)0.64261 (17)0.11058 (15)0.0288 (4)
C20.07267 (14)0.54610 (19)0.17299 (15)0.0303 (4)
C30.16037 (14)0.50701 (18)0.13113 (17)0.0324 (4)
C40.18291 (14)0.56395 (19)0.03310 (17)0.0340 (4)
C50.11970 (14)0.65834 (19)0.02507 (17)0.0321 (4)
H10.0489 (15)0.6761 (19)0.1314 (16)0.030 (5)*
H20.0059 (17)0.753 (2)0.0242 (19)0.044 (6)*
H30.2027 (15)0.446 (2)0.1703 (17)0.033 (5)*
H40.2411 (17)0.538 (2)0.0051 (19)0.041 (6)*
H50.1301 (16)0.700 (2)0.0915 (18)0.039 (6)*
H100.000 (2)0.529 (3)0.296 (2)0.058 (8)*
H110.0872 (19)0.439 (2)0.311 (2)0.049 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01955 (13)0.01805 (13)0.02010 (13)0.00017 (9)0.00306 (9)0.00002 (9)
O110.0287 (6)0.0375 (7)0.0308 (6)0.0076 (5)0.0146 (5)0.0072 (5)
O120.0222 (6)0.0317 (6)0.0240 (6)0.0020 (5)0.0063 (5)0.0074 (5)
O210.0306 (6)0.0273 (6)0.0291 (6)0.0060 (5)0.0153 (5)0.0031 (5)
O220.0395 (7)0.0296 (6)0.0189 (6)0.0017 (5)0.0073 (5)0.0024 (5)
C110.0204 (7)0.0244 (8)0.0233 (8)0.0044 (6)0.0035 (6)0.0004 (6)
C120.0243 (8)0.0291 (9)0.0281 (9)0.0045 (7)0.0051 (7)0.0057 (7)
C130.0309 (9)0.0233 (9)0.0389 (10)0.0050 (7)0.0008 (8)0.0088 (8)
C140.0290 (9)0.0203 (8)0.0417 (10)0.0020 (7)0.0015 (8)0.0071 (8)
C150.0242 (8)0.0253 (8)0.0255 (9)0.0020 (7)0.0020 (7)0.0059 (7)
C160.0182 (7)0.0256 (8)0.0211 (8)0.0037 (6)0.0026 (6)0.0003 (6)
C210.0218 (7)0.0202 (8)0.0202 (8)0.0020 (6)0.0026 (6)0.0015 (6)
C220.0214 (8)0.0225 (8)0.0242 (8)0.0007 (6)0.0004 (6)0.0003 (7)
C230.0204 (8)0.0245 (9)0.0316 (9)0.0005 (6)0.0053 (7)0.0045 (7)
C240.0243 (8)0.0259 (8)0.0256 (9)0.0040 (7)0.0083 (7)0.0019 (7)
C250.0233 (8)0.0186 (8)0.0226 (8)0.0028 (6)0.0050 (6)0.0008 (6)
C260.0221 (8)0.0207 (7)0.0199 (8)0.0043 (6)0.0021 (6)0.0034 (6)
N10.0483 (11)0.0575 (12)0.0334 (9)0.0270 (9)0.0135 (8)0.0118 (9)
N20.0255 (7)0.0261 (8)0.0313 (8)0.0006 (6)0.0024 (6)0.0017 (6)
C10.0254 (9)0.0313 (9)0.0292 (9)0.0046 (7)0.0047 (7)0.0042 (7)
C20.0296 (9)0.0342 (9)0.0260 (9)0.0049 (8)0.0028 (7)0.0042 (7)
C30.0280 (9)0.0323 (10)0.0343 (10)0.0078 (8)0.0001 (8)0.0053 (8)
C40.0243 (9)0.0366 (10)0.0422 (11)0.0010 (8)0.0096 (8)0.0093 (9)
C50.0295 (9)0.0324 (10)0.0356 (10)0.0045 (8)0.0092 (8)0.0060 (8)
Geometric parameters (Å, º) top
Fe1—C212.0270 (15)C21—C251.429 (2)
Fe1—C152.0341 (16)C21—C221.431 (2)
Fe1—C112.0359 (16)C21—C261.473 (2)
Fe1—C222.0414 (17)C22—C231.419 (2)
Fe1—C252.0451 (16)C22—H220.90 (2)
Fe1—C122.0459 (17)C23—C241.424 (2)
Fe1—C142.0496 (17)C23—H230.92 (2)
Fe1—C242.0515 (16)C24—C251.415 (2)
Fe1—C132.0517 (18)C24—H240.98 (2)
Fe1—C232.0568 (17)C25—H250.938 (19)
O11—C161.2604 (19)N1—C21.357 (3)
O12—C161.2636 (19)N1—H100.84 (3)
O21—C261.326 (2)N1—H110.87 (3)
O21—H210.81 (2)N2—C11.337 (2)
O22—C261.2128 (19)N2—C51.338 (2)
C11—C121.427 (2)N2—H20.89 (2)
C11—C151.435 (2)C1—C21.391 (3)
C11—C161.481 (2)C1—H10.95 (2)
C12—C131.416 (3)C2—C31.407 (3)
C12—H120.94 (2)C3—C41.377 (3)
C13—C141.416 (3)C3—H30.91 (2)
C13—H130.90 (2)C4—C51.371 (3)
C14—C151.422 (3)C4—H40.94 (2)
C14—H140.96 (2)C5—H50.92 (2)
C15—H150.96 (2)
C21—Fe1—C15155.49 (7)C13—C14—H14125.0 (12)
C21—Fe1—C11120.05 (6)C15—C14—H14126.7 (12)
C15—Fe1—C1141.30 (7)Fe1—C14—H14124.5 (12)
C21—Fe1—C2241.17 (6)C14—C15—C11107.83 (15)
C15—Fe1—C22161.90 (7)C14—C15—Fe170.20 (10)
C11—Fe1—C22155.29 (7)C11—C15—Fe169.42 (9)
C21—Fe1—C2541.07 (6)C14—C15—H15128.3 (12)
C15—Fe1—C25120.11 (7)C11—C15—H15123.9 (12)
C11—Fe1—C25107.37 (6)Fe1—C15—H15126.2 (12)
C22—Fe1—C2569.07 (7)O11—C16—O12122.66 (15)
C21—Fe1—C12107.64 (7)O11—C16—C11118.27 (14)
C15—Fe1—C1268.83 (7)O12—C16—C11119.03 (14)
C11—Fe1—C1240.94 (6)C25—C21—C22108.26 (14)
C22—Fe1—C12120.15 (7)C25—C21—C26126.92 (15)
C25—Fe1—C12125.97 (7)C22—C21—C26124.58 (14)
C21—Fe1—C14162.37 (7)C25—C21—Fe170.14 (9)
C15—Fe1—C1440.76 (7)C22—C21—Fe169.95 (9)
C11—Fe1—C1468.84 (7)C26—C21—Fe1121.30 (11)
C22—Fe1—C14124.79 (7)C23—C22—C21107.47 (15)
C25—Fe1—C14155.14 (7)C23—C22—Fe170.32 (10)
C12—Fe1—C1468.20 (8)C21—C22—Fe168.87 (9)
C21—Fe1—C2468.45 (6)C23—C22—H22124.7 (13)
C15—Fe1—C24107.50 (7)C21—C22—H22127.9 (13)
C11—Fe1—C24125.54 (7)Fe1—C22—H22126.3 (13)
C22—Fe1—C2468.50 (7)C22—C23—C24108.23 (15)
C25—Fe1—C2440.42 (6)C22—C23—Fe169.16 (9)
C12—Fe1—C24163.10 (7)C24—C23—Fe169.52 (9)
C14—Fe1—C24120.53 (7)C22—C23—H23125.5 (12)
C21—Fe1—C13125.48 (7)C24—C23—H23126.2 (12)
C15—Fe1—C1368.49 (7)Fe1—C23—H23124.0 (12)
C11—Fe1—C1368.63 (7)C25—C24—C23108.49 (15)
C22—Fe1—C13107.28 (7)C25—C24—Fe169.55 (9)
C25—Fe1—C13163.08 (7)C23—C24—Fe169.92 (10)
C12—Fe1—C1340.42 (7)C25—C24—H24126.2 (11)
C14—Fe1—C1340.40 (8)C23—C24—H24125.1 (11)
C24—Fe1—C13155.15 (7)Fe1—C24—H24122.7 (11)
C21—Fe1—C2368.47 (6)C24—C25—C21107.56 (14)
C15—Fe1—C23125.14 (7)C24—C25—Fe170.04 (9)
C11—Fe1—C23162.78 (7)C21—C25—Fe168.79 (9)
C22—Fe1—C2340.52 (7)C24—C25—H25125.2 (11)
C25—Fe1—C2368.35 (7)C21—C25—H25127.0 (11)
C12—Fe1—C23154.95 (7)Fe1—C25—H25122.4 (11)
C14—Fe1—C23107.61 (7)O22—C26—O21123.69 (15)
C24—Fe1—C2340.57 (7)O22—C26—C21123.47 (15)
C13—Fe1—C23120.33 (7)O21—C26—C21112.83 (14)
C26—O21—H21107.7 (17)C2—N1—H10117.7 (18)
C12—C11—C15107.33 (15)C2—N1—H11119.6 (15)
C12—C11—C16126.40 (15)H10—N1—H11117 (2)
C15—C11—C16126.26 (15)C1—N2—C5122.83 (17)
C12—C11—Fe169.91 (9)C1—N2—H2118.5 (14)
C15—C11—Fe169.29 (9)C5—N2—H2118.7 (14)
C16—C11—Fe1125.12 (11)N2—C1—C2120.94 (16)
C13—C12—C11108.29 (16)N2—C1—H1115.5 (11)
C13—C12—Fe170.01 (10)C2—C1—H1123.6 (11)
C11—C12—Fe169.15 (9)N1—C2—C1120.30 (17)
C13—C12—H12127.9 (12)N1—C2—C3122.88 (18)
C11—C12—H12123.8 (12)C1—C2—C3116.76 (17)
Fe1—C12—H12125.8 (12)C4—C3—C2120.22 (18)
C12—C13—C14108.35 (16)C4—C3—H3120.3 (13)
C12—C13—Fe169.57 (10)C2—C3—H3119.4 (13)
C14—C13—Fe169.72 (10)C5—C4—C3120.33 (17)
C12—C13—H13124.4 (13)C5—C4—H4119.4 (14)
C14—C13—H13127.2 (13)C3—C4—H4120.3 (14)
Fe1—C13—H13124.1 (13)N2—C5—C4118.91 (18)
C13—C14—C15108.20 (16)N2—C5—H5116.4 (13)
C13—C14—Fe169.88 (10)C4—C5—H5124.7 (13)
C15—C14—Fe169.04 (10)
C21—Fe1—C11—C1282.37 (11)C14—Fe1—C21—C25161.7 (2)
C15—Fe1—C11—C12118.52 (14)C24—Fe1—C21—C2537.55 (10)
C22—Fe1—C11—C1247.8 (2)C13—Fe1—C21—C25166.01 (10)
C25—Fe1—C11—C12125.35 (10)C23—Fe1—C21—C2581.32 (10)
C14—Fe1—C11—C1280.70 (11)C15—Fe1—C21—C22166.56 (15)
C24—Fe1—C11—C12166.16 (10)C11—Fe1—C21—C22158.87 (10)
C13—Fe1—C11—C1237.20 (11)C25—Fe1—C21—C22119.10 (14)
C23—Fe1—C11—C12161.9 (2)C12—Fe1—C21—C22115.91 (10)
C21—Fe1—C11—C15159.11 (10)C14—Fe1—C21—C2242.6 (3)
C22—Fe1—C11—C15166.30 (15)C24—Fe1—C21—C2281.55 (10)
C25—Fe1—C11—C15116.13 (10)C13—Fe1—C21—C2274.89 (12)
C12—Fe1—C11—C15118.52 (14)C23—Fe1—C21—C2237.79 (10)
C14—Fe1—C11—C1537.82 (10)C15—Fe1—C21—C2674.4 (2)
C24—Fe1—C11—C1575.32 (12)C11—Fe1—C21—C2639.84 (15)
C13—Fe1—C11—C1581.31 (11)C22—Fe1—C21—C26119.03 (17)
C23—Fe1—C11—C1543.4 (3)C25—Fe1—C21—C26121.87 (17)
C21—Fe1—C11—C1638.63 (16)C12—Fe1—C21—C263.12 (14)
C15—Fe1—C11—C16120.48 (18)C14—Fe1—C21—C2676.5 (3)
C22—Fe1—C11—C1673.2 (2)C24—Fe1—C21—C26159.42 (15)
C25—Fe1—C11—C164.35 (15)C13—Fe1—C21—C2644.14 (16)
C12—Fe1—C11—C16121.01 (18)C23—Fe1—C21—C26156.82 (15)
C14—Fe1—C11—C16158.29 (16)C25—C21—C22—C230.07 (18)
C24—Fe1—C11—C1645.16 (17)C26—C21—C22—C23174.85 (14)
C13—Fe1—C11—C16158.21 (16)Fe1—C21—C22—C2360.00 (11)
C23—Fe1—C11—C1677.1 (3)C25—C21—C22—Fe159.92 (11)
C15—C11—C12—C130.16 (19)C26—C21—C22—Fe1114.85 (15)
C16—C11—C12—C13178.69 (15)C21—Fe1—C22—C23118.68 (14)
Fe1—C11—C12—C1359.27 (12)C15—Fe1—C22—C2343.2 (3)
C15—C11—C12—Fe159.42 (11)C11—Fe1—C22—C23166.96 (14)
C16—C11—C12—Fe1119.42 (16)C25—Fe1—C22—C2380.76 (10)
C21—Fe1—C12—C13124.47 (11)C12—Fe1—C22—C23158.90 (10)
C15—Fe1—C12—C1381.27 (12)C14—Fe1—C22—C2375.76 (12)
C11—Fe1—C12—C13119.72 (15)C24—Fe1—C22—C2337.27 (10)
C22—Fe1—C12—C1381.25 (13)C13—Fe1—C22—C23116.74 (11)
C25—Fe1—C12—C13166.16 (11)C15—Fe1—C22—C21161.9 (2)
C14—Fe1—C12—C1337.32 (11)C11—Fe1—C22—C2148.28 (19)
C24—Fe1—C12—C13161.8 (2)C25—Fe1—C22—C2137.92 (9)
C23—Fe1—C12—C1347.7 (2)C12—Fe1—C22—C2182.42 (11)
C21—Fe1—C12—C11115.81 (10)C14—Fe1—C22—C21165.56 (10)
C15—Fe1—C12—C1138.45 (10)C24—Fe1—C22—C2181.42 (10)
C22—Fe1—C12—C11159.02 (10)C13—Fe1—C22—C21124.58 (10)
C25—Fe1—C12—C1174.12 (12)C23—Fe1—C22—C21118.68 (14)
C14—Fe1—C12—C1182.40 (11)C21—C22—C23—C240.38 (18)
C24—Fe1—C12—C1142.0 (3)Fe1—C22—C23—C2458.70 (12)
C13—Fe1—C12—C11119.72 (15)C21—C22—C23—Fe159.08 (11)
C23—Fe1—C12—C11167.44 (14)C21—Fe1—C23—C2238.38 (10)
C11—C12—C13—C140.4 (2)C15—Fe1—C23—C22164.92 (10)
Fe1—C12—C13—C1459.12 (12)C11—Fe1—C23—C22161.4 (2)
C11—C12—C13—Fe158.73 (12)C25—Fe1—C23—C2282.70 (10)
C21—Fe1—C13—C1274.75 (13)C12—Fe1—C23—C2247.3 (2)
C15—Fe1—C13—C1282.19 (11)C14—Fe1—C23—C22123.37 (10)
C11—Fe1—C13—C1237.67 (10)C24—Fe1—C23—C22119.96 (14)
C22—Fe1—C13—C12116.48 (11)C13—Fe1—C23—C2281.10 (12)
C25—Fe1—C13—C1241.7 (3)C21—Fe1—C23—C2481.58 (10)
C14—Fe1—C13—C12119.72 (15)C15—Fe1—C23—C2475.12 (12)
C24—Fe1—C13—C12167.49 (15)C11—Fe1—C23—C2441.5 (3)
C23—Fe1—C13—C12158.72 (10)C22—Fe1—C23—C24119.96 (14)
C21—Fe1—C13—C14165.53 (10)C25—Fe1—C23—C2437.26 (9)
C15—Fe1—C13—C1437.53 (10)C12—Fe1—C23—C24167.30 (15)
C11—Fe1—C13—C1482.05 (11)C14—Fe1—C23—C24116.67 (11)
C22—Fe1—C13—C14123.80 (11)C13—Fe1—C23—C24158.94 (10)
C25—Fe1—C13—C14161.4 (2)C22—C23—C24—C250.55 (19)
C12—Fe1—C13—C14119.72 (15)Fe1—C23—C24—C2559.03 (11)
C24—Fe1—C13—C1447.8 (2)C22—C23—C24—Fe158.48 (11)
C23—Fe1—C13—C1481.56 (12)C21—Fe1—C24—C2538.14 (10)
C12—C13—C14—C150.5 (2)C15—Fe1—C24—C25116.18 (10)
Fe1—C13—C14—C1558.56 (12)C11—Fe1—C24—C2574.16 (12)
C12—C13—C14—Fe159.03 (12)C22—Fe1—C24—C2582.56 (10)
C21—Fe1—C14—C1342.2 (3)C12—Fe1—C24—C2541.5 (3)
C15—Fe1—C14—C13119.78 (15)C14—Fe1—C24—C25158.78 (10)
C11—Fe1—C14—C1381.48 (11)C13—Fe1—C24—C25167.36 (15)
C22—Fe1—C14—C1375.05 (13)C23—Fe1—C24—C25119.78 (14)
C25—Fe1—C14—C13167.24 (15)C21—Fe1—C24—C2381.64 (10)
C12—Fe1—C14—C1337.33 (11)C15—Fe1—C24—C23124.04 (10)
C24—Fe1—C14—C13158.82 (10)C11—Fe1—C24—C23166.06 (10)
C23—Fe1—C14—C13116.40 (11)C22—Fe1—C24—C2337.23 (10)
C21—Fe1—C14—C15162.0 (2)C25—Fe1—C24—C23119.78 (14)
C11—Fe1—C14—C1538.30 (10)C12—Fe1—C24—C23161.3 (2)
C22—Fe1—C14—C15165.18 (10)C14—Fe1—C24—C2381.43 (12)
C25—Fe1—C14—C1547.5 (2)C13—Fe1—C24—C2347.6 (2)
C12—Fe1—C14—C1582.44 (11)C23—C24—C25—C210.50 (18)
C24—Fe1—C14—C1581.40 (12)Fe1—C24—C25—C2158.76 (11)
C13—Fe1—C14—C15119.78 (15)C23—C24—C25—Fe159.26 (11)
C23—Fe1—C14—C15123.83 (11)C22—C21—C25—C240.27 (18)
C13—C14—C15—C110.36 (19)C26—C21—C25—C24174.35 (15)
Fe1—C14—C15—C1159.45 (11)Fe1—C21—C25—C2459.54 (11)
C13—C14—C15—Fe159.09 (12)C22—C21—C25—Fe159.81 (11)
C12—C11—C15—C140.13 (18)C26—C21—C25—Fe1114.81 (16)
C16—C11—C15—C14178.98 (15)C21—Fe1—C25—C24119.03 (14)
Fe1—C11—C15—C1459.94 (11)C15—Fe1—C25—C2481.66 (11)
C12—C11—C15—Fe159.82 (11)C11—Fe1—C25—C24124.90 (10)
C16—C11—C15—Fe1119.03 (16)C22—Fe1—C25—C2481.02 (11)
C21—Fe1—C15—C14166.96 (14)C12—Fe1—C25—C24166.22 (10)
C11—Fe1—C15—C14118.87 (15)C14—Fe1—C25—C2447.9 (2)
C22—Fe1—C15—C1442.6 (3)C13—Fe1—C25—C24161.6 (2)
C25—Fe1—C15—C14159.02 (10)C23—Fe1—C25—C2437.39 (10)
C12—Fe1—C15—C1480.74 (11)C15—Fe1—C25—C21159.31 (9)
C24—Fe1—C15—C14116.75 (11)C11—Fe1—C25—C21116.08 (10)
C13—Fe1—C15—C1437.21 (11)C22—Fe1—C25—C2138.01 (10)
C23—Fe1—C15—C1475.53 (13)C12—Fe1—C25—C2174.75 (11)
C21—Fe1—C15—C1148.1 (2)C14—Fe1—C25—C21166.90 (15)
C22—Fe1—C15—C11161.4 (2)C24—Fe1—C25—C21119.03 (14)
C25—Fe1—C15—C1182.11 (11)C13—Fe1—C25—C2142.6 (3)
C12—Fe1—C15—C1138.13 (10)C23—Fe1—C25—C2181.64 (10)
C14—Fe1—C15—C11118.87 (15)C25—C21—C26—O22170.69 (15)
C24—Fe1—C15—C11124.38 (10)C22—C21—C26—O223.1 (2)
C13—Fe1—C15—C1181.66 (11)Fe1—C21—C26—O2283.00 (18)
C23—Fe1—C15—C11165.60 (9)C25—C21—C26—O2110.2 (2)
C12—C11—C16—O1114.1 (2)C22—C21—C26—O21176.01 (15)
C15—C11—C16—O11167.29 (15)Fe1—C21—C26—O2197.89 (14)
Fe1—C11—C16—O11103.88 (16)C5—N2—C1—C21.0 (3)
C12—C11—C16—O12167.90 (15)N2—C1—C2—N1176.66 (18)
C15—C11—C16—O1210.7 (2)N2—C1—C2—C30.5 (3)
Fe1—C11—C16—O1278.10 (18)N1—C2—C3—C4177.35 (19)
C15—Fe1—C21—C2547.46 (19)C1—C2—C3—C40.3 (3)
C11—Fe1—C21—C2582.02 (11)C2—C3—C4—C50.6 (3)
C22—Fe1—C21—C25119.10 (14)C1—N2—C5—C40.7 (3)
C12—Fe1—C21—C25124.98 (10)C3—C4—C5—N20.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O120.87 (3)2.08 (3)2.918 (2)161 (2)
N1—H10···O11i0.84 (3)2.07 (3)2.906 (2)171 (3)
N2—H2···O11ii0.89 (2)1.79 (2)2.675 (2)177 (2)
O21—H21···O12iii0.81 (2)1.77 (2)2.5621 (16)164 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

X-ray diffraction studies were performed at the Centre of Shared Equipment of IGIC RAS.

Funding information

Funding for this research was provided by: RFBR-GFEN International Grant (award No. 14-03-91160); NSFC-RFBR International Grant (award No. 2161101223).

References

First citationAmer, W. A., Yu, H., Wang, L., Vatsadze, S. & Tong, R. (2013). J. Inorg. Organomet. Polym. 23, 1431–1444.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, B., Yang, B., Li, T. & Zhang, B. (2009). Synth. Commun. 39, 2973–2981.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, R., Wang, L., Yu, H., Zain-ul-Abdin Chen, Y., Khalid, H., Abbasi, N., Akram, M., Vatsadze, S. Z. & Lemenovskii, D. A. (2016). J. Inorg. Organomet. Polym. 26, 545–554.  Web of Science CrossRef CAS Google Scholar
First citationZakaria, C. M., Ferguson, G., Lough, A. J. & Glidewell, C. (2002). Acta Cryst. B58, 786–802.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZheng, D., Haojie, Y., Li, W., Xiaoting, Z., Yongsheng, C. & Vatsadze, S. Z. (2016). J. Organomet. Chem. 821, 48–53.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds