research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new example of intra­molecular C—H⋯Ni anagostic inter­actions: synthesis, crystal structure and Hirshfeld analysis of cis-bis­­[4-methyl-2-(1,2,3,4-tetra­hydro­naphthalen-1-yl­­idene)hydrazinecarbo­thio­amidato-κ2N1,S]nickel(II) di­methyl­formamide monosolvate

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, 49100-000 São Cristóvão-SE, Brazil, and bInstitut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
*Correspondence e-mail: adriano@daad-alumni.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 4 May 2017; accepted 15 May 2017; online 19 May 2017)

The reaction of NiII acetate tetra­hydrate with 4-methyl-2-(1,2,3,4-tetra­hydro­naphthalen-1-yl­idene)hydrazinecarbo­thio­amide in a 2:1 molar ratio and recrystallization from di­methyl­formamide yielded the title compound, [Ni(C12H14N3S)2]·C3H7NO. The ligands act as monoanionic κ2N1,S-donors, forming five-membered metallarings. The NiII ion is fourfold coordinated in a distorted square-planar cis-configuration, which is rather uncommon for mono­thio­semicarbazone complexes. Intra­molecular H⋯Ni trans-inter­actions are observed [H⋯Ni distances are 2.50 and 2.57 Å] and thus anagostic inter­actions can be suggested. The Hirshfeld surface analysis indicates that the major contributions for the crystal packing are H⋯H (66.6%), H⋯S (12.3%) and H⋯C (10.9%) inter­actions. In the crystal, the complex mol­ecules are linked by di­methyl­formamide solvent mol­ecules through N—H⋯O inter­actions into one-dimensional hydrogen-bonded polymers along [010].

1. Chemical context

One of the first reports on thio­semicarbazone chemistry can be traced back to the beginning of the 20th century in Germany (Freund & Schander, 1902[Freund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602-2606.]). Initially, thio­semicarbazone derivatives were the products of the identification and characterization reactions of aldehydes and ketones, with thio­semicarbazide as reagent. In the 1940s it was reported that, in in vitro assays, thio­semicarbazones turned out to be very effective for the Mycobacterium tuberculosis growth inhibition (Domagk et al., 1946[Domagk, G., Behnisch, R., Mietzsch, F. & Schmidt, H. (1946). Naturwissenschaften, 33, 315.]) while the synthesis of thio­semicarbazone metal complexes had already been investigated by the early 1950s (Kuhn & Zilliken, 1952[Kuhn, R. & Zilliken, F. (1952). Deutsches Patentamt, Patentschrift No. 845938.]). As a result of the main fragment, R=N—N(H)—C(=S)—NR2, thio­semicarbazone derivatives have a wide range of coordination modes and applications in inorganic chemistry. The hydrazinic H atom can be easily removed and the negative charge is then delocalized over the C—N—N—C—S backbone, which enables chemical bonding with many different metal ions (Lobana et al., 2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.]). However, a cis configuration of the ligated mol­ecules is a rather uncommon coordination mode for mono-thio­semicarbazones and, as far as we know, there is only one NiII mono-thio­semicarbazone complex reported in the literature, with N-phenyl-2-(1,2,3,4-tetra­hydro­naphthalen-1-yl­idene)hydrazinecarbothi­amide as ligand (for the ligand crystal structure, see: de Oliveira et al., 2014a[Oliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014a). Acta Cryst. E70, o301-o302.]; for the crystal structure of the complex, see: de Oliveira et al., 2014b[Oliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014b). Acta Cryst. E70, 101-103.]). It can be suggested that the mol­ecular symmetry decreases from a trans to a cis configuration, possibly by loss of inversion symmetry at the central metal cation, which is compensated for by H⋯Ni intra­molecular inter­actions and hydrogen-bond formation with solvent mol­ecules. In general, H⋯metal ion inter­actions can show covalent or electrostatic character and are observed in some complexes with catalytic applications (Brookhart et al., 2007[Brookhart, M., Green, M. L. H. & Parkin, G. (2007). Proc. Natl Acad. Sci. USA, 104, 6908-6914.]). As part of our research on the synthesis and structural studies of thio­semicarbazone derivatives, we report herein a new solvated nickel homoleptic complex with the 4-methyl-2-(1,2,3,4-tetra­hydro­naphthalen-1-yl­idene)hydrazinecarbo­thio­amide ligand and di­methyl­formamide (DMF) as solvent.

[Scheme 1]

2. Structural commentary

One mol­ecule of the title complex and one di­methyl­formamide solvate comprise the asymmetric unit. The NiII ion is fourfold coordinated in a distorted square-planar environment by two chelating thio­semicarbazonate ligands (Fig. 1[link]). The maximum deviation from the Ni1/S1/S2/N1/N4 mean plane amounts to 0.1705 (16) Å for N1. The S1—Ni1—N4 and S2—Ni1—N1 bond angles are 169.42 (5) and 168.38 (5)°, respectively. The distortion along the trans-donor atoms confirms the deviation of the coordination sphere from ideal values. Both non-aromatic rings of the tetra­lone entities have an envelope conformation with maximum deviations from the mean plane of the non–H atoms of 0.3539 (15) Å for C3 and of 0.3685 (15) Å for C15. The two ligands are deprotonated with the negative charge delocalized over the C—N—N—C—S entity, as suggested by their inter­mediate bond lengths and supported by the sp2-hybridization for C1, C13, N1, C11, C23 and N4. The imine and thio­amide C—N distances indicate considerable double-bond character, while the C—S distance is consistent with mainly single-bond character. The change of the bond lengths is a key feature to distinguish free, i.e. non-coordinating, and coordinating thio­semicarbazones. For the title compound these distances (values given in Å) are C1—N1 = 1.306 (2), N1—N2 = 1.408 (2), N2—C11 = 1.307 (2) and C11—S1 = 1.752 (2) for one ligand and C13—N4 = 1.303 (2), N4—N5 = 1.409 (2), N5—C23 = 1.303 (2) and C23—S2 = 1.7573 (19) for the other one.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound and the di­methyl­formamide solvate, with labelling and displacement ellipsoids drawn at the 40% probability level.

The title complex shows two remarkable structural features, namely a cis coordination mode, which is rather uncommon for mono-thio­semicarbazone ligands, as well as two positioned trans H⋯Ni anagostic inter­actions (Fig. 2[link], Table 1[link]). The H7⋯Ni1 and H19⋯Ni1 distances are 2.50 and 2.57 Å, being shorter than the sum of the van der Waals radii for H and Ni (2.73 Å; Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]; Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]), in order that electrostactic inter­actions can be assigned. For an agostic inter­action, that involves a covalent or a three-center, two-electron bond, an H⋯metal distance of at least 2.3 Å is required. The C7—H7⋯Ni1 and C19—H19⋯Ni1 angles are 120.1 and 119.7°, being in agreement with literature data for another nickel complex with anagostic inter­actions (de Oliveira et al., 2014b[Oliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014b). Acta Cryst. E70, 101-103.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.88 2.18 2.979 (2) 151
N6—H6⋯O1 0.88 2.14 2.875 (2) 140
C7—H7⋯Ni1 0.95 2.50 3.0831 (19) 120
C19—H19⋯Ni1 0.95 2.57 3.1480 (19) 120
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Graphical representation of the metal ion coordination environment, showing the H7⋯Ni1 and H19⋯Ni1 anagostic inter­actions as dashed lines. The figure is simplified for clarity.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, the coordination entities are linked by DMF solvate mol­ecules through N—H⋯O inter­actions. The DMF-oxygen atoms are hydrogen-bond acceptors, forming a bridg­ing structure between two N—H⋯O arrangements: N6—H6⋯O1 and N3—H3⋯O1i [symmetry code: (i) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]]. The mol­ecules are linked into one-dimensional hydrogen-bonded polymers along [010] (Fig. 3[link], Table 1[link]). Additional C—H⋯O inter­actions are also present (Table 1[link]).

[Figure 3]
Figure 3
Section of the crystal structure of the title compound viewed along [001], with hydrogen bonds shown as dashed lines (for details, see: Table 1[link]). The figure is simplified for clarity.

Hirshfeld (1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]) analysis of the crystal structure suggests that the inter­molecular H⋯H inter­actions contribute 66.6% to the crystal packing, the H⋯S inter­actions 12.3% and the H⋯C inter­actions 10.9%. Other important inter­molecular contacts for the cohesion of the mol­ecules are H⋯N = 4.5% and H⋯O = 4.0%. The weak H⋯Ni inter­actions contribute by 0.20% to the crystal structure. All contributions to the crystal cohesion are shown as two-dimensional Hirshfeld surface fingerprint plots with cyan dots (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia, Perth, Australia.]). The de (y axis) and di (x axis) values are the closest external and inter­nal distances (values in Å) from given points on the Hirshfeld surface contacts (Fig. 4[link]).

[Figure 4]
Figure 4
Graphical representation of the two-dimensional Hirshfeld surface fingerprint plots for the inter­actions in the crystal structure of the title compound. The contacts are drawn in detail (cyan dots) and the contributions to the crystal packing amount to: (a) H⋯H = 66.6%, (b) H⋯S = 12.3%, (c) H⋯C = 10.9%, (d) H⋯N = 4.5%, (e) H⋯O = 4.0% and (f) H⋯Ni = 0.2%. The de (y axis) and di (x axis) values are the closest external and inter­nal distances (values in Å) from given points on the Hirshfeld surface contacts.

4. Comparison with a related structure

For comparison with the title compound, a literature search revealed only one crystal structure of an NiII–mono­thio­semicarbazone complex with cis configuration, viz. bis­{cis-(2-(1,2,3,4-tetra­hydro­naphthalen-1-yl­idene)-4-phenyl-hydrazine­carbo­thio­amidate-κ2N1,S)}nickel(II) monohydrate bis­(tetra­hydro­furane) solvate (de Oliveira et al. 2014b[Oliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014b). Acta Cryst. E70, 101-103.]). The graphical representation of the Hirshfeld surface was performed for the two complexes and suggests, represented in magenta colour, the locations of the strongest inter­molecular contacts (Fig. 5[link]). Both structures have the same main fragment for the ligand, the α-tetra­lone-thio­semicarbazone, anagostic H⋯Ni intra­molecular inter­actions and hydrogen bonding with the solvate mol­ecules, suggesting the stabilization of the crystal packing, since the cis configuration implies a symmetry decrease with loss of the inversion center and appears to be energetically unfavourable.

[Figure 5]
Figure 5
The Hirshfeld surface graphical representation (dnorm) for: (a) the asymmetric unit of the title compound and (b) the asymmetric unit of the comparison compound, bis­{cis-(2-(1,2,3,4-tetra­hydro­naphthalen-1-yl­idene)-4-phenyl-hydrazinecarbo­thio­amidate-κ2N1,S)}nickel(II) monohydrate bis­(tetra­hydro­furane) solvate (de Oliveira et al. 2014b[Oliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014b). Acta Cryst. E70, 101-103.]). The surface regions with the strongest inter­molecular inter­actions are drawn in magenta. The figure is simplified for clarity. [Symmetry code: (i) −x + 1, y − [{1\over 2}], −z + [{1\over 2}].]

5. Synthesis and crystallization

Starting materials were commercially available and were used without further purification. The synthesis of the ligand was adapted from a procedure reported previously (Freund & Schander, 1902[Freund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602-2606.]) with 1-tetra­lone and 4-methyl­thio­semicarbazide. 2-(1,2,3,4-Tetra­hydro­naphthalen-1-yl­idene)-4-methyl-hydrazinecarbo­thio­amide was dissolved in tetra­hydro­furan (THF; 2 mmol / 40 ml) with stirring maintained for 30 min until the solution turned yellow. At the same time, a green solution of nickel acetate tetra­hydrate in THF (1 mmol/40 ml) was prepared under continuous stirring. A dark coloured mixture of both solutions was maintained with stirring at room temperature for 6 h. A crude dark red material was obtained by evaporation of the solvent. Dark red crystals of the complex, suitable for X-ray analysis, were obtained by recrystallization of the solid from a di­methyl­formamide solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in difference maps but were positioned with idealized geometry and were refined using a riding model with Uiso(H) = 1.2Ueq(C and N) for the sp2–hybridized DMF C atom, the aromatic and the secondary C atoms, and for all N atoms, and with Uiso(H) = 1.5Ueq(C) for the methyl C atoms. The bond lengths (values given in Å) are: C—H = 0.99 for –CH2– fragments, C—H = 0.98 for CH3– fragments, C—H = 0.95 for aromatic groups and the sp2-hybridized DMF C atom; N—H = 0.88 for all N atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C12H14N3S)2]·C3H7NO
Mr 596.45
Crystal system, space group Monoclinic, P21/c
Temperature (K) 123
a, b, c (Å) 12.5864 (3), 11.6273 (3), 19.1271 (5)
β (°) 90.529 (1)
V3) 2799.05 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.88
Crystal size (mm) 0.33 × 0.14 × 0.02
 
Data collection
Diffractometer Nonius Kappa CCD area detector
Absorption correction Multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])
Tmin, Tmax 0.761, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 46078, 6368, 4870
Rint 0.057
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.081, 1.03
No. of reflections 6368
No. of parameters 347
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.35
Computer programs: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press, United States.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Crystal Explorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia, Perth, Australia.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015) and WinGX (Farrugia, 2012); molecular graphics: DIAMOND (Brandenburg, 2006) and Crystal Explorer (Wolff et al., 2012); software used to prepare material for publication: publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

cis-Bis[4-methyl-2-(1,2,3,4-tetrahydronaphthalen-1-ylidene)hydrazinecarbothioamidato-κ2N1,S]nickel(II) dimethylformamide monosolvate top
Crystal data top
[Ni(C12H14N3S)2]·C3H7NOF(000) = 1256
Mr = 596.45Dx = 1.415 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.5864 (3) ÅCell parameters from 105836 reflections
b = 11.6273 (3) Åθ = 2.9–27.5°
c = 19.1271 (5) ŵ = 0.88 mm1
β = 90.529 (1)°T = 123 K
V = 2799.05 (12) Å3Plate, dark red
Z = 40.33 × 0.14 × 0.02 mm
Data collection top
Nonius Kappa CCD area detector
diffractometer
6368 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enraf–Nonius FR5904870 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.057
CCD area detector scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1616
Tmin = 0.761, Tmax = 0.981k = 1515
46078 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0352P)2 + 1.1854P]
where P = (Fo2 + 2Fc2)/3
6368 reflections(Δ/σ)max = 0.001
347 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.08922 (15)0.22945 (15)0.16633 (10)0.0211 (4)
C20.00261 (15)0.22610 (17)0.11111 (11)0.0263 (4)
H2A0.0129320.1448310.0994390.032*
H2B0.0289990.2638370.0682470.032*
C30.10022 (16)0.28467 (17)0.13303 (11)0.0276 (5)
H3A0.1453090.2992140.0912780.033*
H3B0.1398870.2336400.1649700.033*
C40.07562 (16)0.39797 (17)0.16967 (11)0.0286 (5)
H4A0.0349650.4488470.1381860.034*
H4B0.1425640.4374230.1820520.034*
C50.01161 (15)0.37338 (16)0.23472 (11)0.0246 (4)
C60.06834 (15)0.28808 (15)0.23276 (10)0.0214 (4)
C70.11941 (15)0.25627 (16)0.29524 (10)0.0238 (4)
H70.1699210.1955660.2949640.029*
C80.09729 (16)0.31204 (17)0.35734 (11)0.0280 (4)
H80.1337790.2909330.3991060.034*
C90.02163 (16)0.39893 (18)0.35845 (12)0.0308 (5)
H90.0074120.4385150.4007930.037*
C100.03313 (16)0.42788 (17)0.29776 (12)0.0293 (5)
H100.0862310.4858720.2992360.035*
C110.25278 (15)0.02857 (16)0.10116 (10)0.0233 (4)
C120.18174 (17)0.0606 (2)0.00542 (12)0.0352 (5)
H12A0.1119950.0800670.0136310.053*
H12B0.2035600.1204040.0384340.053*
H12C0.1774750.0135010.0296600.053*
C130.28111 (14)0.44637 (15)0.19613 (10)0.0196 (4)
C140.27262 (16)0.56078 (16)0.23328 (10)0.0252 (4)
H14A0.3425720.5800510.2542630.030*
H14B0.2210890.5533880.2718140.030*
C150.23767 (17)0.65918 (16)0.18558 (11)0.0284 (5)
H15A0.2165820.7262280.2141760.034*
H15B0.2975150.6826960.1555460.034*
C160.14426 (17)0.62064 (17)0.14013 (12)0.0315 (5)
H16A0.0848320.5955380.1700530.038*
H16B0.1191870.6854790.1107660.038*
C170.17939 (15)0.52246 (16)0.09428 (11)0.0244 (4)
C180.25161 (14)0.44030 (15)0.12149 (10)0.0219 (4)
C190.29536 (15)0.35877 (16)0.07606 (10)0.0233 (4)
H190.3476670.3067460.0931710.028*
C200.26353 (16)0.35283 (17)0.00660 (11)0.0281 (5)
H200.2932560.2965840.0234760.034*
C210.18816 (17)0.42932 (18)0.01872 (11)0.0313 (5)
H210.1641340.4239310.0658370.038*
C220.14775 (16)0.51388 (17)0.02480 (11)0.0288 (5)
H220.0973020.5670640.0066100.035*
C230.40915 (15)0.30161 (16)0.32372 (10)0.0223 (4)
C240.42580 (18)0.41030 (18)0.43256 (11)0.0325 (5)
H24A0.4612840.4774660.4124550.049*
H24B0.4530030.3969540.4800460.049*
H24C0.3490700.4242270.4341540.049*
N10.18025 (12)0.17918 (12)0.15512 (8)0.0203 (3)
N20.18018 (12)0.10848 (13)0.09533 (8)0.0225 (3)
N30.25886 (13)0.05314 (14)0.05102 (9)0.0283 (4)
H30.3112310.1032220.0527680.034*
N40.31278 (12)0.35542 (13)0.23026 (8)0.0208 (3)
N50.34549 (12)0.38054 (13)0.29923 (8)0.0224 (3)
N60.44659 (13)0.31004 (14)0.38969 (9)0.0258 (4)
H60.4846350.2532900.4072410.031*
Ni10.31331 (2)0.19296 (2)0.20574 (2)0.01982 (8)
S10.34284 (4)0.01916 (4)0.17128 (3)0.02631 (12)
S20.44889 (4)0.18089 (4)0.27525 (3)0.02496 (12)
C250.61277 (16)0.14667 (18)0.51104 (11)0.0279 (5)
H250.6112050.0706340.4928740.034*
C260.5851 (2)0.0599 (2)0.62485 (14)0.0474 (6)
H26A0.5865040.0108120.5970400.071*
H26B0.5161790.0667920.6479310.071*
H26C0.6418140.0574350.6602620.071*
C270.60202 (19)0.2724 (2)0.61103 (13)0.0431 (6)
H27A0.6157400.3304740.5751090.065*
H27B0.6579530.2758130.6469520.065*
H27C0.5329770.2873970.6324760.065*
N70.60110 (14)0.15880 (15)0.57921 (9)0.0304 (4)
O10.62554 (12)0.22590 (12)0.46895 (8)0.0328 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0211 (10)0.0162 (8)0.0260 (11)0.0018 (7)0.0004 (8)0.0019 (8)
C20.0247 (10)0.0255 (10)0.0285 (12)0.0013 (8)0.0029 (9)0.0011 (8)
C30.0223 (10)0.0293 (11)0.0312 (12)0.0011 (8)0.0033 (9)0.0016 (9)
C40.0235 (10)0.0248 (10)0.0374 (13)0.0051 (8)0.0025 (9)0.0029 (9)
C50.0209 (10)0.0195 (9)0.0333 (12)0.0013 (8)0.0021 (8)0.0005 (8)
C60.0194 (9)0.0178 (9)0.0271 (11)0.0031 (7)0.0016 (8)0.0004 (8)
C70.0201 (10)0.0228 (9)0.0287 (11)0.0009 (8)0.0024 (8)0.0009 (8)
C80.0306 (11)0.0283 (10)0.0250 (11)0.0052 (9)0.0010 (9)0.0006 (9)
C90.0315 (11)0.0296 (11)0.0314 (12)0.0041 (9)0.0080 (9)0.0088 (9)
C100.0242 (10)0.0236 (10)0.0403 (13)0.0004 (8)0.0065 (9)0.0034 (9)
C110.0236 (10)0.0209 (9)0.0256 (11)0.0023 (8)0.0027 (8)0.0001 (8)
C120.0311 (11)0.0421 (12)0.0322 (13)0.0016 (10)0.0005 (9)0.0130 (10)
C130.0177 (9)0.0191 (9)0.0219 (10)0.0024 (7)0.0034 (7)0.0003 (7)
C140.0288 (10)0.0208 (9)0.0259 (11)0.0011 (8)0.0033 (8)0.0017 (8)
C150.0349 (12)0.0202 (9)0.0300 (12)0.0023 (8)0.0048 (9)0.0010 (8)
C160.0313 (11)0.0266 (10)0.0365 (13)0.0077 (9)0.0020 (9)0.0040 (9)
C170.0206 (10)0.0221 (9)0.0305 (12)0.0016 (8)0.0008 (8)0.0030 (8)
C180.0202 (9)0.0191 (9)0.0265 (11)0.0029 (7)0.0002 (8)0.0034 (8)
C190.0249 (10)0.0195 (9)0.0254 (11)0.0013 (8)0.0008 (8)0.0023 (8)
C200.0341 (11)0.0226 (10)0.0278 (12)0.0018 (9)0.0004 (9)0.0004 (8)
C210.0374 (12)0.0297 (11)0.0266 (12)0.0047 (9)0.0077 (9)0.0037 (9)
C220.0280 (11)0.0264 (10)0.0319 (12)0.0003 (8)0.0066 (9)0.0072 (9)
C230.0216 (9)0.0228 (9)0.0225 (10)0.0040 (8)0.0030 (8)0.0009 (8)
C240.0387 (12)0.0327 (11)0.0261 (12)0.0000 (10)0.0045 (9)0.0062 (9)
N10.0207 (8)0.0175 (7)0.0226 (9)0.0006 (6)0.0012 (7)0.0013 (6)
N20.0243 (8)0.0207 (8)0.0225 (9)0.0013 (7)0.0000 (7)0.0036 (7)
N30.0294 (9)0.0260 (9)0.0296 (10)0.0039 (7)0.0008 (8)0.0077 (7)
N40.0195 (8)0.0218 (8)0.0210 (9)0.0020 (6)0.0001 (6)0.0007 (7)
N50.0238 (8)0.0221 (8)0.0211 (9)0.0000 (7)0.0022 (7)0.0006 (6)
N60.0308 (9)0.0244 (8)0.0220 (9)0.0015 (7)0.0042 (7)0.0007 (7)
Ni10.01978 (13)0.01747 (12)0.02217 (14)0.00112 (9)0.00106 (10)0.00098 (10)
S10.0284 (3)0.0210 (2)0.0294 (3)0.0053 (2)0.0037 (2)0.0036 (2)
S20.0247 (3)0.0250 (2)0.0250 (3)0.0051 (2)0.0034 (2)0.0018 (2)
C250.0265 (11)0.0236 (10)0.0336 (12)0.0020 (8)0.0022 (9)0.0000 (9)
C260.0446 (14)0.0546 (15)0.0431 (15)0.0054 (12)0.0074 (12)0.0223 (12)
C270.0392 (13)0.0516 (14)0.0385 (14)0.0030 (11)0.0065 (11)0.0151 (11)
N70.0290 (9)0.0337 (9)0.0285 (10)0.0015 (8)0.0031 (8)0.0028 (8)
O10.0356 (8)0.0314 (8)0.0314 (9)0.0029 (6)0.0007 (7)0.0081 (7)
Geometric parameters (Å, º) top
C1—N11.306 (2)C16—H16A0.9900
C1—C61.468 (3)C16—H16B0.9900
C1—C21.511 (3)C17—C221.387 (3)
C2—C31.525 (3)C17—C181.415 (3)
C2—H2A0.9900C18—C191.402 (3)
C2—H2B0.9900C19—C201.386 (3)
C3—C41.523 (3)C19—H190.9500
C3—H3A0.9900C20—C211.385 (3)
C3—H3B0.9900C20—H200.9500
C4—C51.503 (3)C21—C221.388 (3)
C4—H4A0.9900C21—H210.9500
C4—H4B0.9900C22—H220.9500
C5—C101.391 (3)C23—N51.303 (2)
C5—C61.414 (3)C23—N61.347 (3)
C6—C71.401 (3)C23—S21.7573 (19)
C7—C81.384 (3)C24—N61.450 (3)
C7—H70.9500C24—H24A0.9800
C8—C91.389 (3)C24—H24B0.9800
C8—H80.9500C24—H24C0.9800
C9—C101.386 (3)N1—N21.408 (2)
C9—H90.9500N1—Ni11.9334 (16)
C10—H100.9500N3—H30.8800
C11—N21.307 (2)N4—N51.409 (2)
C11—N31.352 (2)N4—Ni11.9463 (16)
C11—S11.752 (2)N6—H60.8800
C12—N31.448 (3)Ni1—S22.1581 (5)
C12—H12A0.9800Ni1—S12.1589 (5)
C12—H12B0.9800C25—O11.235 (2)
C12—H12C0.9800C25—N71.321 (3)
C13—N41.303 (2)C25—H250.9500
C13—C181.474 (3)C26—N71.458 (3)
C13—C141.512 (3)C26—H26A0.9800
C14—C151.526 (3)C26—H26B0.9800
C14—H14A0.9900C26—H26C0.9800
C14—H14B0.9900C27—N71.454 (3)
C15—C161.523 (3)C27—H27A0.9800
C15—H15A0.9900C27—H27B0.9800
C15—H15B0.9900C27—H27C0.9800
C16—C171.508 (3)
N1—C1—C6120.96 (17)H16A—C16—H16B108.3
N1—C1—C2120.13 (17)C22—C17—C18118.80 (18)
C6—C1—C2118.90 (16)C22—C17—C16121.89 (18)
C1—C2—C3113.89 (17)C18—C17—C16119.21 (18)
C1—C2—H2A108.8C19—C18—C17118.90 (18)
C3—C2—H2A108.8C19—C18—C13122.41 (17)
C1—C2—H2B108.8C17—C18—C13118.65 (17)
C3—C2—H2B108.8C20—C19—C18121.08 (18)
H2A—C2—H2B107.7C20—C19—H19119.5
C4—C3—C2110.09 (16)C18—C19—H19119.5
C4—C3—H3A109.6C21—C20—C19119.63 (19)
C2—C3—H3A109.6C21—C20—H20120.2
C4—C3—H3B109.6C19—C20—H20120.2
C2—C3—H3B109.6C20—C21—C22119.9 (2)
H3A—C3—H3B108.2C20—C21—H21120.0
C5—C4—C3108.75 (16)C22—C21—H21120.0
C5—C4—H4A109.9C17—C22—C21121.46 (19)
C3—C4—H4A109.9C17—C22—H22119.3
C5—C4—H4B109.9C21—C22—H22119.3
C3—C4—H4B109.9N5—C23—N6119.63 (17)
H4A—C4—H4B108.3N5—C23—S2123.38 (15)
C10—C5—C6119.14 (19)N6—C23—S2116.98 (14)
C10—C5—C4121.57 (18)N6—C24—H24A109.5
C6—C5—C4119.19 (18)N6—C24—H24B109.5
C7—C6—C5118.92 (18)H24A—C24—H24B109.5
C7—C6—C1122.10 (17)N6—C24—H24C109.5
C5—C6—C1118.81 (18)H24A—C24—H24C109.5
C8—C7—C6120.93 (18)H24B—C24—H24C109.5
C8—C7—H7119.5C1—N1—N2113.62 (16)
C6—C7—H7119.5C1—N1—Ni1129.64 (13)
C7—C8—C9119.8 (2)N2—N1—Ni1116.69 (11)
C7—C8—H8120.1C11—N2—N1110.51 (16)
C9—C8—H8120.1C11—N3—C12121.94 (17)
C10—C9—C8119.98 (19)C11—N3—H3119.0
C10—C9—H9120.0C12—N3—H3119.0
C8—C9—H9120.0C13—N4—N5112.71 (15)
C9—C10—C5121.07 (19)C13—N4—Ni1131.95 (13)
C9—C10—H10119.5N5—N4—Ni1115.17 (11)
C5—C10—H10119.5C23—N5—N4111.34 (15)
N2—C11—N3118.87 (18)C23—N6—C24121.66 (17)
N2—C11—S1123.82 (15)C23—N6—H6119.2
N3—C11—S1117.30 (14)C24—N6—H6119.2
N3—C12—H12A109.5N1—Ni1—N4101.32 (6)
N3—C12—H12B109.5N1—Ni1—S2168.38 (5)
H12A—C12—H12B109.5N4—Ni1—S285.36 (5)
N3—C12—H12C109.5N1—Ni1—S185.43 (5)
H12A—C12—H12C109.5N4—Ni1—S1169.42 (5)
H12B—C12—H12C109.5S2—Ni1—S189.42 (2)
N4—C13—C18121.30 (16)C11—S1—Ni193.63 (6)
N4—C13—C14120.07 (17)C23—S2—Ni192.62 (7)
C18—C13—C14118.62 (16)O1—C25—N7125.5 (2)
C13—C14—C15113.58 (17)O1—C25—H25117.3
C13—C14—H14A108.9N7—C25—H25117.3
C15—C14—H14A108.9N7—C26—H26A109.5
C13—C14—H14B108.9N7—C26—H26B109.5
C15—C14—H14B108.9H26A—C26—H26B109.5
H14A—C14—H14B107.7N7—C26—H26C109.5
C16—C15—C14109.72 (16)H26A—C26—H26C109.5
C16—C15—H15A109.7H26B—C26—H26C109.5
C14—C15—H15A109.7N7—C27—H27A109.5
C16—C15—H15B109.7N7—C27—H27B109.5
C14—C15—H15B109.7H27A—C27—H27B109.5
H15A—C15—H15B108.2N7—C27—H27C109.5
C17—C16—C15109.00 (16)H27A—C27—H27C109.5
C17—C16—H16A109.9H27B—C27—H27C109.5
C15—C16—H16A109.9C25—N7—C27120.63 (19)
C17—C16—H16B109.9C25—N7—C26121.6 (2)
C15—C16—H16B109.9C27—N7—C26117.8 (2)
N1—C1—C2—C3177.81 (17)C14—C13—C18—C1724.9 (2)
C6—C1—C2—C31.1 (2)C17—C18—C19—C204.4 (3)
C1—C2—C3—C443.3 (2)C13—C18—C19—C20177.93 (17)
C2—C3—C4—C562.0 (2)C18—C19—C20—C210.7 (3)
C3—C4—C5—C10136.41 (19)C19—C20—C21—C222.3 (3)
C3—C4—C5—C639.9 (2)C18—C17—C22—C212.3 (3)
C10—C5—C6—C73.6 (3)C16—C17—C22—C21173.96 (19)
C4—C5—C6—C7172.80 (17)C20—C21—C22—C171.5 (3)
C10—C5—C6—C1178.87 (17)C6—C1—N1—N2168.21 (15)
C4—C5—C6—C12.5 (3)C2—C1—N1—N210.7 (2)
N1—C1—C6—C726.9 (3)C6—C1—N1—Ni114.6 (3)
C2—C1—C6—C7151.95 (17)C2—C1—N1—Ni1166.55 (13)
N1—C1—C6—C5157.95 (17)N3—C11—N2—N1174.85 (16)
C2—C1—C6—C523.2 (2)S1—C11—N2—N14.2 (2)
C5—C6—C7—C84.1 (3)C1—N1—N2—C11154.97 (16)
C1—C6—C7—C8179.19 (17)Ni1—N1—N2—C1127.43 (18)
C6—C7—C8—C91.6 (3)N2—C11—N3—C125.6 (3)
C7—C8—C9—C101.4 (3)S1—C11—N3—C12173.59 (15)
C8—C9—C10—C51.8 (3)C18—C13—N4—N5175.14 (15)
C6—C5—C10—C90.7 (3)C14—C13—N4—N55.7 (2)
C4—C5—C10—C9175.61 (18)C18—C13—N4—Ni19.9 (3)
N4—C13—C14—C15178.27 (17)C14—C13—N4—Ni1169.25 (13)
C18—C13—C14—C152.5 (2)N6—C23—N5—N4178.50 (16)
C13—C14—C15—C1645.5 (2)S2—C23—N5—N40.6 (2)
C14—C15—C16—C1762.3 (2)C13—N4—N5—C23157.81 (16)
C15—C16—C17—C22139.35 (19)Ni1—N4—N5—C2326.35 (18)
C15—C16—C17—C1836.9 (2)N5—C23—N6—C245.7 (3)
C22—C17—C18—C195.1 (3)S2—C23—N6—C24175.10 (15)
C16—C17—C18—C19171.21 (17)N2—C11—S1—Ni116.07 (16)
C22—C17—C18—C13177.13 (17)N3—C11—S1—Ni1164.83 (14)
C16—C17—C18—C136.5 (3)N5—C23—S2—Ni122.12 (16)
N4—C13—C18—C1928.0 (3)N6—C23—S2—Ni1157.04 (14)
C14—C13—C18—C19152.78 (18)O1—C25—N7—C270.3 (3)
N4—C13—C18—C17154.31 (17)O1—C25—N7—C26179.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.882.182.979 (2)151
N6—H6···O10.882.142.875 (2)140
C7—H7···Ni10.952.503.0831 (19)120
C19—H19···Ni10.952.573.1480 (19)120
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

We gratefully acknowledge the financial support by the State of North Rhine–Westphalia, Germany and by the German Research Foundation (DFG) through the Collaborative Research Center SFB 813, Chemistry at Spin Centers. ABO is an associate researcher in the project `Di­nitrosyl complexes containing thiol and/or thio­semicarbazone: synthesis, characterization and treatment against cancer', founded by FAPESP, Proc. 2015/12098–0. He also acknowledges Professor José C. M. Pereira (UNESP, Brazil) for his support, and thanks Professor Vanessa C. Gervini for the invitation to be a visiting professor at the Federal University of Rio Grande, Brazil. SEBSM thanks the Federal University of Sergipe for the PIBITIVOL undergraduate programme.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrookhart, M., Green, M. L. H. & Parkin, G. (2007). Proc. Natl Acad. Sci. USA, 104, 6908–6914.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDomagk, G., Behnisch, R., Mietzsch, F. & Schmidt, H. (1946). Naturwissenschaften, 33, 315.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFreund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602–2606.  CrossRef CAS Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationKuhn, R. & Zilliken, F. (1952). Deutsches Patentamt, Patentschrift No. 845938.  Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014a). Acta Cryst. E70, o301–o302.  CSD CrossRef IUCr Journals Google Scholar
First citationOliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014b). Acta Cryst. E70, 101–103.  CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press, United States.  Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia, Perth, Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds