research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of calcium dinickel(II) iron(III) tris­­(orthophosphate): CaNi2Fe(PO4)3

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: saidouaatta87@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 7 May 2017; accepted 19 May 2017; online 26 May 2017)

The title compound, CaNi2Fe(PO4)3, was synthesized by solid-state reactions. Its structure is closely related to that of α-CrPO4 in the space group Imma. Except for two O atoms in general positions, all atoms are located in special positions. The three-dimensional framework is built up from two types of sheets extending parallel to (100). The first sheet is made up from two edge-sharing [NiO6] octa­hedra, leading to the formation of [Ni2O10] double octa­hedra that are connected to two PO4 tetra­hedra through a common edge and corners. The second sheet results from rows of corner-sharing [FeO6] octa­hedra and PO4 tetra­hedra forming an infinite linear chain. These layers are linked together through common corners of PO4 tetra­hedra and [FeO6] octa­hedra, resulting in an open three-dimensional framework that delimits two types of channels parallel to [100] and [010] in which the eightfold-coordinated CaII cations are located.

1. Chemical context

Phosphates belonging to the alluaudite (Moore, 1971[Moore, P. B. (1971). Am. Mineral. 56, 1955-1975.]) or to the α-CrPO4 (Attfield et al., 1988[Attfield, J. P., Cheetham, A. K., Cox, D. E. & Sleight, A. W. (1988). J. Appl. Cryst. 21, 452-457.]) structure type exhibit inter­esting physical and chemical properties. Consequently, these compounds have many promising applications such as use as positive electrodes in lithium and sodium batteries (Kim et al., 2014[Kim, J., Kim, H., Park, K.-Y., Park, Y.-U., Lee, S., Kwon, H.-S., Yoo, H.-I. & Kang, K. (2014). J. Mater. Chem. A, 2, 8632-8636.]; Huang et al., 2015[Huang, W., Li, B., Saleem, M. F., Wu, X., Li, J., Lin, J., Xia, D., Chu, W. & Wu, Z. (2015). Chem. Eur. J. 21, 851-860.]) or as catalysts (Kacimi et al., 2005[Kacimi, M., Ziyad, M. & Hatert, F. (2005). Mater. Res. Bull. 40, 682-693.]). Over the last few years, phosphate-based compounds crystallizing in the α-CrPO4 or alluaudite structure types have been investigated by us. In this context, new phosphates adopting the alluaudite or α-CrPO4 structure type have been synthesized and structurally characterized. For example, the mixed-valence manganese phosphates PbMnII2MnIII(PO4)3 (Alhakmi et al., 2013[Alhakmi, G., Assani, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, i40.]) and PbMnII2MnIII(PO4)3 (Assani et al., 2013[Assani, A., Saadi, M., Alhakmi, G., Houmadi, E. & El Ammari, L. (2013). Acta Cryst. E69, i60.]), the magnesium phosphate NaMg3(PO4)(HPO4)2 (Ould Saleck et al., 2015[Ould Saleck, A., Assani, A., Saadi, M., Mercier, C., Follet, C. & El Ammari, L. (2015). Acta Cryst. E71, 813-815.]) and silver nickel phosphate Ag2Ni3(HPO4)(PO4)2 (Assani et al., 2011[Assani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011). Acta Cryst. E67, i40.]) were synthesized by hydro­thermal methods, while solid-state reactions were applied to synthesize SrNi2Fe(PO4)3 (Ouaatta et al., 2015[Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 1255-1258.]) and Na2Co2Fe(PO4)3 (Bouraima et al., 2015[Bouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558-560.]). In a continuation of the latter preparation route, we have investigated pseudo-quaternary systems MO–NiO–Fe2O3–P2O5 (M represents a divalent cation) and report here on the synthesis and crystal structure of the title compound, CaNi2Fe(PO4)3.

2. Structural commentary

CaNi2Fe(PO4)3 crystallizes in the α-CrPO4 structure type. The principal building units of the crystal structure are one [CaO8] polyhedron, [FeO6] and [NiO6] octa­hedra and PO4 tetra­hedra, as shown in Fig. 1[link].The octa­hedral coordination sphere of the iron(III) cation is more distorted than that of nickel(II), with Fe—O bond lengths in the range 1.9504 (7)–2.0822 (11) Å and Ni—O bond lengths in the range 2.0498 (8)–2.0841 (8) Å. In the title structure, all atoms are on special positions, except for the two oxygen atoms O1 and O2, which are on general positions. The structure can be described by the stacking of two types of sheets extending parallel to (100). The first sheet is formed by alternating [FeO6] octa­hedra and PO4 tetra­hedra sharing corners to build a linear infinite chain surrounding a zigzag chain of CaII+ cations (Fig. 2[link]). The second sheet is built up from two edge-sharing [NiO6] octa­hedra leading to the formation of [Ni2O10] double octa­hedra, which are connected to two PO4 tetra­hedra by a common edge and a common corner, as shown in Fig. 3[link]. The linkage of both layers, through vertices of PO4 tetra­hedra and [FeO6] octa­hedra, gives rise to the formation of an open three-dimensional framework that delimits two types of channels parallel to [100] and [010] in which the CaII cations are located with eight neighbouring O atoms, as shown in Fig. 4[link]. The title compound has a stoichiometric composition like that of the related strontium homologue SrNi2Fe(PO4)3.

[Figure 1]
Figure 1
The principal building units in the crystal structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) −x + 2, −y + [{3\over 2}], z + 1; (ii) x, y, z + 1; (iii) −x + 2, −y + [{3\over 2}], z; (iv) −x + [{3\over 2}], −y + 1, z + [{1\over 2}]; (v) x + [{1\over 2}], y + [{1\over 2}], z + [{1\over 2}]; (vi) −x + [{3\over 2}], y + [{1\over 2}], z + [{1\over 2}]; (vii) x + [{1\over 2}], −y + 1, z + [{1\over 2}]; (viii) −x + [{3\over 2}], −y + [{3\over 2}], −z + [{1\over 2}]; (ix) −x + [{3\over 2}], y, −z + [{1\over 2}]; (x) x, −y + 1, −z; (xi) −x + 1, y, z; (xii) x, −y + 1, −z + 1; (xiii) −x + 1, −y + 1, −z + 1; (xiv) x − [{1\over 2}], y, −z + [{1\over 2}].]
[Figure 2]
Figure 2
A chain formed by sharing corners of PO4 tetra­hedra and [FeO6] octa­hedra, alternating with a zigzag chain of calcium cations.
[Figure 3]
Figure 3
Edge-sharing [NiO6] octa­hedra linked by PO4 tetra­hedra, forming a sheet parallel to (100).
[Figure 4]
Figure 4
Polyhedral representation of CaNiO2Fe(PO4)3, showing channels running parallel to [100].

3. Synthesis and crystallization

CaNi2Fe(PO4)3 was prepared by solid-state reactions in air. Stoichiometric mixtures of calcium, nickel and iron precursors were dissolved in water to which 85%wt phospho­ric acid was added. The obtained mixture was stirred without heating for 24 h and was subsequently evaporated to dryness at 343 K. The resulting dry residue was ground in an agate mortar until homogeneity, progressively heated in a platinum crucible up to 873 K to remove the volatile decomposition products, and then melted at 1433 K. The molten product was cooled down slowly with a 5 K h−1 rate and then to room temperature. The crystals obtained after washing with water were orange with parallelepipedal forms.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The maximum and minimum remaining electron densities are 0.68 and 0.41 Å, respectively, away from the Ni1 site.

Table 1
Experimental details

Crystal data
Chemical formula CaNi2Fe(PO4)3
Mr 498.26
Crystal system, space group Orthorhombic, Imma
Temperature (K) 296
a, b, c (Å) 10.3126 (3), 13.1138 (3), 6.4405 (2)
V3) 871.00 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 7.14
Crystal size (mm) 0.30 × 0.27 × 0.21
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.596, 0.748
No. of measured, independent and observed [I > 2σ(I)] reflections 8446, 1171, 1153
Rint 0.020
(sin θ/λ)max−1) 0.840
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.044, 1.17
No. of reflections 1171
No. of parameters 54
Δρmax, Δρmin (e Å−3) 0.76, −0.63
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Calcium dinickel(II) iron(III) tris(orthophosphate) top
Crystal data top
CaNi2Fe(PO4)3Dx = 3.800 Mg m3
Mr = 498.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, ImmaCell parameters from 1171 reflections
a = 10.3126 (3) Åθ = 3.1–36.6°
b = 13.1138 (3) ŵ = 7.14 mm1
c = 6.4405 (2) ÅT = 296 K
V = 871.00 (4) Å3Parallelepiped, orange
Z = 40.30 × 0.27 × 0.21 mm
F(000) = 972
Data collection top
Bruker X8 APEX
diffractometer
1171 independent reflections
Radiation source: fine-focus sealed tube1153 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 36.6°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1617
Tmin = 0.596, Tmax = 0.748k = 2022
8446 measured reflectionsl = 1010
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0216P)2 + 1.467P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.017(Δ/σ)max = 0.001
wR(F2) = 0.044Δρmax = 0.76 e Å3
S = 1.17Δρmin = 0.63 e Å3
1171 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
54 parametersExtinction coefficient: 0.0033 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.75000.36655 (2)0.75000.00475 (5)
Fe10.50000.00000.50000.00372 (6)
Ca10.50000.25000.08981 (7)0.01187 (8)
P10.75000.57298 (3)0.75000.00385 (7)
P20.50000.25000.58291 (8)0.00327 (8)
O10.86146 (7)0.49415 (6)0.79418 (13)0.00590 (12)
O40.61754 (11)0.25000.73284 (17)0.00587 (16)
O30.50000.15625 (8)0.44256 (18)0.00672 (17)
O20.70724 (8)0.63786 (6)0.93385 (12)0.00762 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00486 (9)0.00326 (8)0.00613 (9)0.0000.00056 (5)0.000
Fe10.00264 (10)0.00397 (11)0.00455 (11)0.0000.0000.00016 (8)
Ca10.01508 (18)0.01319 (18)0.00735 (16)0.0000.0000.000
P10.00450 (14)0.00307 (14)0.00398 (14)0.0000.00041 (9)0.000
P20.00320 (17)0.00246 (17)0.00414 (18)0.0000.0000.000
O10.0045 (3)0.0054 (3)0.0079 (3)0.0006 (2)0.0021 (2)0.0004 (2)
O40.0049 (4)0.0057 (4)0.0070 (4)0.0000.0023 (3)0.000
O30.0082 (4)0.0045 (4)0.0075 (4)0.0000.0000.0024 (3)
O20.0102 (3)0.0069 (3)0.0057 (3)0.0018 (2)0.0001 (2)0.0020 (2)
Geometric parameters (Å, º) top
Ni1—O12.0498 (8)Ca1—O2xi2.5987 (8)
Ni1—O1i2.0499 (8)Ca1—O2xii2.5987 (8)
Ni1—O42.0529 (8)Ca1—O2xiii2.5987 (8)
Ni1—O4ii2.0529 (8)Ca1—O4xiv2.5990 (12)
Ni1—O2iii2.0841 (8)Ca1—O4xv2.5990 (12)
Ni1—O2iv2.0841 (8)Ca1—P23.1758 (7)
Fe1—O1ii1.9504 (7)Ca1—P2xv3.2647 (7)
Fe1—O1v1.9504 (7)P1—O2i1.5233 (8)
Fe1—O1vi1.9504 (7)P1—O21.5233 (8)
Fe1—O1vii1.9504 (7)P1—O1i1.5719 (8)
Fe1—O3viii2.0822 (11)P1—O11.5719 (8)
Fe1—O32.0822 (11)P2—O31.5259 (11)
Ca1—O32.5832 (12)P2—O3ix1.5259 (11)
Ca1—O3ix2.5832 (12)P2—O4ix1.5498 (11)
Ca1—O2x2.5987 (8)P2—O41.5498 (11)
O1—Ni1—O1i70.58 (4)O2x—Ca1—O2xi173.27 (4)
O1—Ni1—O4171.24 (3)O3—Ca1—O2xii77.42 (2)
O1i—Ni1—O4103.13 (3)O3ix—Ca1—O2xii108.72 (2)
O1—Ni1—O4ii103.13 (3)O2x—Ca1—O2xii110.65 (3)
O1i—Ni1—O4ii171.24 (3)O2xi—Ca1—O2xii68.92 (3)
O4—Ni1—O4ii83.76 (5)O3—Ca1—O2xiii108.72 (2)
O1—Ni1—O2iii90.33 (3)O3ix—Ca1—O2xiii77.42 (2)
O1i—Ni1—O2iii92.27 (3)O2x—Ca1—O2xiii68.92 (3)
O4—Ni1—O2iii83.75 (4)O2xi—Ca1—O2xiii110.65 (3)
O4ii—Ni1—O2iii93.87 (4)O2xii—Ca1—O2xiii173.27 (4)
O1—Ni1—O2iv92.27 (3)O3—Ca1—O4xiv141.08 (2)
O1i—Ni1—O2iv90.33 (3)O3ix—Ca1—O4xiv141.08 (2)
O4—Ni1—O2iv93.87 (4)O2x—Ca1—O4xiv64.19 (3)
O4ii—Ni1—O2iv83.75 (4)O2xi—Ca1—O4xiv109.37 (3)
O2iii—Ni1—O2iv176.81 (4)O2xii—Ca1—O4xiv109.37 (3)
O1ii—Fe1—O1v180.0O2xiii—Ca1—O4xiv64.19 (3)
O1ii—Fe1—O1vi85.81 (5)O3—Ca1—O4xv141.08 (2)
O1v—Fe1—O1vi94.19 (5)O3ix—Ca1—O4xv141.08 (2)
O1ii—Fe1—O1vii94.19 (5)O2x—Ca1—O4xv109.37 (3)
O1v—Fe1—O1vii85.81 (5)O2xi—Ca1—O4xv64.19 (3)
O1vi—Fe1—O1vii180.0O2xii—Ca1—O4xv64.19 (3)
O1ii—Fe1—O3viii85.29 (3)O2xiii—Ca1—O4xv109.37 (3)
O1v—Fe1—O3viii94.71 (3)O4xiv—Ca1—O4xv55.60 (5)
O1vi—Fe1—O3viii94.71 (3)O2i—P1—O2112.08 (6)
O1vii—Fe1—O3viii85.29 (3)O2i—P1—O1i116.00 (4)
O1ii—Fe1—O394.71 (3)O2—P1—O1i107.24 (4)
O1v—Fe1—O385.29 (3)O2i—P1—O1107.24 (4)
O1vi—Fe1—O385.29 (3)O2—P1—O1116.00 (4)
O1vii—Fe1—O394.71 (3)O1i—P1—O197.76 (6)
O3viii—Fe1—O3180.000 (10)O3—P2—O3ix107.35 (9)
O3—Ca1—O3ix56.84 (5)O3—P2—O4ix111.66 (3)
O3—Ca1—O2x77.42 (2)O3ix—P2—O4ix111.66 (3)
O3ix—Ca1—O2x108.72 (2)O3—P2—O4111.66 (3)
O3—Ca1—O2xi108.72 (2)O3ix—P2—O4111.66 (3)
O3ix—Ca1—O2xi77.42 (2)O4ix—P2—O4102.91 (9)
Symmetry codes: (i) x+3/2, y, z+3/2; (ii) x+3/2, y+1/2, z+3/2; (iii) x, y+1, z+2; (iv) x+3/2, y+1, z1/2; (v) x1/2, y1/2, z1/2; (vi) x+3/2, y1/2, z1/2; (vii) x1/2, y+1/2, z+3/2; (viii) x+1, y, z+1; (ix) x+1, y+1/2, z; (x) x+1, y1/2, z+1; (xi) x, y+1, z+1; (xii) x, y1/2, z+1; (xiii) x+1, y+1, z+1; (xiv) x+1, y+1/2, z1; (xv) x, y, z1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

Funding information

Funding for this research was provided by: Mohammed V University, Rabat, Morocco.

References

First citationAlhakmi, G., Assani, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, i40.  CrossRef IUCr Journals Google Scholar
First citationAssani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011). Acta Cryst. E67, i40.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAssani, A., Saadi, M., Alhakmi, G., Houmadi, E. & El Ammari, L. (2013). Acta Cryst. E69, i60.  CrossRef IUCr Journals Google Scholar
First citationAttfield, J. P., Cheetham, A. K., Cox, D. E. & Sleight, A. W. (1988). J. Appl. Cryst. 21, 452–457.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558–560.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHuang, W., Li, B., Saleem, M. F., Wu, X., Li, J., Lin, J., Xia, D., Chu, W. & Wu, Z. (2015). Chem. Eur. J. 21, 851–860.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKacimi, M., Ziyad, M. & Hatert, F. (2005). Mater. Res. Bull. 40, 682–693.  Web of Science CrossRef CAS Google Scholar
First citationKim, J., Kim, H., Park, K.-Y., Park, Y.-U., Lee, S., Kwon, H.-S., Yoo, H.-I. & Kang, K. (2014). J. Mater. Chem. A, 2, 8632–8636.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoore, P. B. (1971). Am. Mineral. 56, 1955–1975.  CAS Google Scholar
First citationOuaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 1255–1258.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOuld Saleck, A., Assani, A., Saadi, M., Mercier, C., Follet, C. & El Ammari, L. (2015). Acta Cryst. E71, 813–815.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds