research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(4-Chloro­phen­yl)selan­yl]-3,4-di­hydro-2H-benzo[h]chromene-5,6-dione: crystal structure and Hirshfeld analysis

CROSSMARK_Color_square_no_text.svg

aDepartmento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bDepartamento de Engenharia Química, Centro Universitário da FEI, 09850-901, São Bernardo do Campo, São Paulo, Brazil, cDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India, and dCentre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: julio@power.ufscar.br

Edited by M. Weil, Vienna University of Technology, Austria (Received 12 May 2017; accepted 22 May 2017; online 31 May 2017)

The title organoselenium compound, C19H13ClO3Se {systematic name: 2-[(4-chloro­phen­yl)selan­yl]-2H,3H,4H,5H,6H-naphtho­[1,2-b]pyran-5,6-dione}, has the substituted 2-pyranyl ring in a half-chair conformation with the methyl­ene-C atom bound to the methine-C atom being the flap atom. The dihedral angle between the two aromatic regions of the mol­ecule is 9.96 (9)° and indicates a step-like conformation. An intra­molecular Se⋯O inter­action of 2.8122 (13) Å is noted. In the crystal, ππ contacts between naphthyl rings [inter-centroid distance = 3.7213 (12) Å] and between naphthyl and chloro­benzene rings [inter-centroid distance = 3.7715 (13) Å], along with C—Cl⋯π(chloro­benzene) contacts, lead to supra­molecular layers parallel to the ab plane, which are connected into a three-dimensional architecture via methyl­ene-C—H⋯O(carbon­yl) inter­actions. The contributions of these and other weak contacts to the Hirshfeld surface is described.

1. Chemical context

The natural product, β-lapachone (see Scheme) can be isolated from the bark of the lapacho tree found in Central and South American countries (see: https://www.beta-lapachone.com/). It exhibits biological activities in the context of cancer (Park et al. 2014[Park, E. J., Min, K.-J., Lee, T.-J., Yoo, Y. H., Kim, Y.-S. & Kwon, T. K. (2014). Cell Death Dis. 5, e1230.]), being known to induce apoptotic cell-death pathways in a number of cancer cell lines, including breast cancer (Schaffner-Sabba et al., 1984[Schaffner-Sabba, K., Schmidt-Ruppin, K. H., Wehrli, W., Schuerch, A. R. & Wasley, J. W. (1984). J. Med. Chem. 27, 990-994.]), leukaemia (Chau et al., 1998[Chau, Y. P., Shiah, S. G., Don, M. J. & Kuo, M. L. (1998). Free Radic. Biol. Med. 24, 660-670.]) and prostate cancer (Li et al., 1995[Li, C. J., Wang, C. & Pardee, A. B. (1995). Cancer Res. 55, 3712-3715.]). In an allied application, β-lapachone can be used as a sensitizer in radiotherapy on prostrate (Suzuki et al., 2006[Suzuki, M., Amano, M., Choi, J., Park, H. J., Williams, B. W., Ono, K. & Song, C. W. (2006). Radiat. Res. 165, 525-531.]) and colon (Kim et al., 2005[Kim, E. J., Ji, I. M., Ahn, K. J., Choi, E. K., Park, H. J., Lim, B. U., Song, S. W. & Park, H. J. (2005). Cancer Res. Treat, 37, 183-190.]) cancer cells.

Compounds of the bio-essential element selenium, found in amino acids such as seleno­cysteine and seleno­methio­nine, are known to hold potential as pharmaceutical agents (Tiekink, 2012[Tiekink, E. R. T. (2012). Dalton Trans. 41, 6390-6395.]), including in the realm of anti-cancer drugs (Seng & Tiekink, 2012[Seng, H.-L. & Tiekink, E. R. T. (2012). Appl. Organomet. Chem. 26, 655-662.]). A key aspect of developing metal-based drugs is to incorporate a heavy element into the structure of a biologically active organic mol­ecule and with this in mind, it was thought of inter­est to attempt to incorporate selenium into the structure of β-lapachone. This was attempted by reacting lawsone, paraformaldehyde and (4-chloro­phen­yl)(ethen­yl)selane, as detailed in Synthesis and crystallization. Two major products were isolated, i.e. derivatives of α-lapa­chone and β-lapachone. The latter, hereafter (I)[link], could be crystallized and was subjected to an X-ray structure determ­ination along with an analysis of its Hirshfeld surface in order to obtain more information on the mol­ecular packing. The results of this study are reported herein.

[Scheme 1]

2. Structural commentary

The substituted 2-pyranyl ring in (I)[link] (Fig. 1[link]) adopts a half-chair conformation with the C13 atom lying 0.620 (3) Å above the plane through the remaining five atoms (r.m.s. deviation = 0.0510 Å). The 12 atoms comprising the naphthalene-1,2-dione ring system are almost coplanar, with an r.m.s. deviation of 0.0152 Å. This plane forms a dihedral angle of 9.96 (9)° with the chloro­benzene ring bound to the selanyl atom, indicating a near parallel disposition and a step-like arrangement between the aromatic substituents about the 2-pyranyl ring. An intra­molecular Se⋯O inter­action of 2.8122 (13) Å is noted; this observation is discussed further in the Database survey.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

3. Supra­molecular features

In the mol­ecular packing of (I)[link], both rings of the naphthyl residues of centrosymmetrically related mol­ecules form close ππ contacts, i.e. Cg(C2–C4/C9–C11)⋯Cg(C3–C8)i = 3.7213 (12) Å for an angle of inclination = 0.72 (9)° and symmetry operation (i) −x, −y, −z. Two types of inter­actions connect centrosymmetric aggregates into a supra­molecular layer parallel to the ab plane (Fig. 2[link]a). Thus, ππ inter­actions between naphthyl and chloro­benzene rings are formed, [Cg(C3–C8)⋯Cg(C14–C19)ii = 3.7715 (13) Å with an angle of inclination = 9.95 (10)° and symmetry operation (ii) −1 + x, y, z] along with C—Cl⋯π(chloro­benzene) contacts between centrosymmetrically related rings (Table 1[link]). Connections between layers are of the type methyl­ene-C—H⋯O(carbon­yl) (Table 1[link]) to consolidate the three-dimensional packing (Fig. 2[link]b).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H6⋯O3i 0.97 2.59 3.239 (2) 125
C17—Cl1⋯Cg1ii 1.74 (1) 3.72 (1) 4.000 (2) 86 (1)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z.
[Figure 2]
Figure 2
The mol­ecular packing in (I)[link], showing (a) a view of the supra­molecular layer sustained by ππ and C—Cl⋯π inter­actions and (b) a view of the unit-cell contents in projection down the a axis. The ππ, C—Cl⋯π and C—H⋯O inter­actions are shown as purple, blue and orange dashed lines, respectively.

4. Hirshfeld surface analysis

The Hirshfeld surfaces calculated on the structure of (I)[link] also provide insight into the inter­molecular inter­actions; the calculation was performed as in a recent publication (Jotani et al., 2016[Jotani, M. M., Zukerman-Schpector, J., Madureira, L. S., Poplaukhin, P., Arman, H. D., Miller, T. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 415-425.]). The presence of bright-red spots appearing near the naphthyl-C7 and phenyl-C18 atoms on the Hirshfeld surface mapped over dnorm in Fig. 3[link] are due to a short inter­atomic C⋯C contact (see Table 2[link]), significant in the crystal of (I)[link]. The absence of characteristic red spots near other atoms on the dnorm-mapped Hirshfeld surface confirms the absence of conventional hydrogen bonds in the structure except for a weak C—H⋯O inter­action as given in Table 1[link]. The blue and red regions corresponding to positive and negative electrostatic potentials on the Hirshfeld surface mapped over electrostatic potential, in Fig. 4[link] are the result of polarization of charges localized near the atoms. The immediate environments about a reference mol­ecule within shape-index-mapped Hirshfeld surfaces highlighting inter­molecular C—H⋯O inter­actions, short inter­atomic O⋯H/H⋯O contacts, ππ stacking inter­actions and C—Cl⋯π contacts are illustrated in Fig. 5[link].

Table 2
Summary of short inter­atomic contacts (Å) in (I)

Contact distance symmetry operation
H5⋯H11 2.27 x, [{1\over 2}] − y, [{1\over 2}] + z
O2⋯H5 2.70 -x, −[{1\over 2}] + y, [{1\over 2}] − z
O3⋯H9 2.70 -x, −[{1\over 2}] + y, [{1\over 2}] − z
C7⋯C18 3.346 (3) −1 + x, y, z
[Figure 3]
Figure 3
Two views of the Hirshfeld surface for (I)[link] plotted over dnorm in the range −0.032 to 1.401 au.
[Figure 4]
Figure 4
A view of Hirshfeld surface for (I)[link] mapped over the calculated electrostatic potential in the range −0.067 to + 0.039 au. The red and blue regions represent negative and positive electrostatic potentials, respectively.
[Figure 5]
Figure 5
Views of Hirshfeld surfaces mapped over the shape-index about a reference mol­ecule, showing (a) C—H⋯O and short inter­atomic O⋯H/H⋯O contacts by black and red dashed lines, respectively, (b) ππ stacking inter­actions between naphthyl residues and between chloro­benzene and naphthyl rings by blue and yellow dotted lines, respectively and (c) C—Cl⋯π/π⋯Cl—C stacking contacts between chloro­benzene rings with black and blue dotted lines.

The overall two-dimensional fingerprint plot (Fig. 6[link]a) and those delineated into H⋯H, O⋯H/H⋯O, Cl⋯H/H⋯Cl, C⋯C, C⋯H/H⋯C, C⋯Cl/Cl⋯C and Cl⋯O/O⋯Cl contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 6[link]bh, respectively; the relative contributions from the various contacts to the Hirshfeld surfaces are summarized in Table 3[link]. The relatively low, i.e. 35.9%, contribution from H⋯H contacts to the Hirshfeld surface of (I)[link] is due to the low content of hydrogen atoms in the mol­ecule and the involvement of some hydrogen atoms in short inter­atomic O⋯H/H⋯O contacts (Tables 1[link] and 2[link]). The single peak at de + di ∼2.3 Å in Fig. 6[link]b is the result of a short inter­atomic H⋯H contact (Table 2[link]). The inter­molecular C—H⋯O inter­action in the crystal is recognized as the pair of peaks at de + di ∼2.6 Å in the O⋯H/H⋯O delineated fingerprint plot (Fig. 6[link]c); the points arising from the short inter­atomic O⋯H contacts are merged in the plot.

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surfaces for (I)

Contact percentage contribution
H⋯H 35.9
O⋯H/H⋯O 18.2
Cl⋯H/H⋯Cl 10.6
C⋯H/H⋯C 9.0
C⋯C 9.9
Se⋯H/H⋯Se 4.2
Se⋯C/C⋯Se 3.0
C⋯Cl/Cl⋯C 3.0
C⋯O/O⋯C 2.6
Cl⋯O/O⋯Cl 2.5
Se⋯Cl/Cl⋯Se 0.6
Se⋯O/O⋯Se 0.5
[Figure 6]
Figure 6
(a) The full two-dimensional fingerprint plot for (I)[link] and fingerprint plots delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) Cl⋯H/H⋯Cl, (e) C⋯C, (f) C⋯H/H⋯C, (g) C⋯Cl/Cl⋯C and (h) Cl⋯O/O⋯Cl contacts.

The fingerprint plot delineated into C⋯C contacts, Fig. 6[link]e, characterizes the two ππ stacking inter­actions, one between inversion-related naphthyl rings, and the other between the chloro­benzene and (C2–C4/C9–C11) rings as the two overlapping triangular regions at around de = di ∼1.8 and 1.9 Å, respectively, having green points in the overlapping portion. The presence of these two ππ stacking inter­actions is also seen in the flat regions around the participating rings labelled with 1, 2 and 3 in the Hirshfeld surface mapped over curvedness in Fig. 7[link].

[Figure 7]
Figure 7
View of the Hirshfeld surface mapped over curvedness highlighting the flat regions corresponding to the C2–C4/C9–C11, C3–C8 and C14–C19 rings, labelled as 1, 2 and 3, respectively, involved in ππ stacking inter­actions.

The chlorine atom on the benzene (C14–C19) ring makes a useful contribution to the mol­ecular packing. The small, i.e. 3.0%, contribution from C⋯Cl/Cl⋯C contacts (Fig. 6[link]g) to the Hirshfeld surface is the result of its involvement in a C—Cl⋯π contact formed between symmetry-related chloro­benzene atoms (Fig. 5[link]c). Its presence is also clear from the fingerprint plot delineated into Cl⋯H/H⋯Cl (Fig. 6[link]d), and Cl⋯O/O⋯Cl contacts (Fig. 6[link]h). The contribution from C⋯H/H⋯C contacts (Fig. 6[link]f) and other contacts (Table 3[link]), including the selenium atom, have negligible influence on the packing as the inter­atomic separations are greater than sum of their respective van der Waals radii.

[Scheme 2]

5. Database survey

There are three structures in the crystallographic literature (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) having a similar 2-(organylselan­yl)oxane framework as in (I)[link]. The chemical diagrams for these, i.e. (II) (Traar et al., 2004[Traar, P., Belaj, F. & Francesconi, K. A. (2004). Aust. J. Chem. 57, 1051-1053.]), (III) (Woodward et al., 2010[Woodward, H., Smith, N. & Gallagher, T. (2010). Synlett, pp. 869-872.]) and (IV) (McDonagh et al., 2016[McDonagh, A. W., Mahon, M. F. & Murphy, P. V. (2016). Org. Lett. 18, 552-555.]) are shown in the Scheme above. Each of the structures features an intra­molecular Se⋯O inter­action as in (I)[link]. From the data collated in Table 4[link], there is no correlation between the Se⋯O distance and the C—Se—C angle, consistent with the weak nature of these inter­actions.

Table 4
Summary of Se⋯O distances (Å) and C—Se—C bond angles (°) in (I)–(IV)

Compound Se⋯O C—Se—C Ref.
(I) 2.8122 (13) 95.62 (8) this work
(II) 2.7429 (18) 98.43 (12) Traar et al. (2004[Traar, P., Belaj, F. & Francesconi, K. A. (2004). Aust. J. Chem. 57, 1051-1053.])
(III) 2.8760 (12) 98.16 (8) Woodward et al. (2010[Woodward, H., Smith, N. & Gallagher, T. (2010). Synlett, pp. 869-872.])
(IV) 2.8606 (19) 97.41 (12) McDonagh et al. (2016[McDonagh, A. W., Mahon, M. F. & Murphy, P. V. (2016). Org. Lett. 18, 552-555.])

6. Synthesis and crystallization

Referring to the reaction scheme, in a double-necked flask equipped with a magnetic bar and reflux condenser, under a nitro­gen atmosphere, lawsone (1 mmol, 174 mg), paraformaldehyde (8 mmol, 240 mg), the vinyl selenide (1.5 mmol, 326 mg) and the ionic liquid 1-butyl-3-methyl­imidazolium chloride, [Bmim]Cl (1 mmol, 175 mg) were added over 1,4-dioxane (2 ml). The reaction mixture was heated at 383 K and stirred over 2 h. The reaction mixture was cooled and diluted with di­chloro­methane (100 ml) and then washed with water (3 × 50 ml). The organic phase was dried over Na2SO4, filtered and concentrated under vacuum. The crude product was purified in a silica gel-packed chromatography column, using ethyl acetate and hexane (2:8) as eluent to afford α-lapachone and β-lapachone (I)[link] derivatives in 80% yield. Crystals of (I)[link] were obtained by slow evaporation of a solvent mixture of hexane and ethyl acetate (8:2).

[Scheme 3]

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2Ueq(C).

Table 5
Experimental details

Crystal data
Chemical formula C19H13ClO3Se
Mr 403.70
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 7.3757 (3), 13.7306 (5), 16.4473 (6)
β (°) 100.002 (1)
V3) 1640.35 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.47
Crystal size (mm) 0.40 × 0.33 × 0.27
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.484, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 38518, 3367, 2984
Rint 0.031
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.068, 1.03
No. of reflections 3367
No. of parameters 217
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.39
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

2-[(4-Chlorophenyl)selanyl]-3,4-dihydro-2H-benzo[h]chromene-5,6-dione top
Crystal data top
C19H13ClO3SeF(000) = 808
Mr = 403.70Dx = 1.635 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.3757 (3) ÅCell parameters from 9049 reflections
b = 13.7306 (5) Åθ = 2.5–26.3°
c = 16.4473 (6) ŵ = 2.47 mm1
β = 100.002 (1)°T = 293 K
V = 1640.35 (11) Å3Irregular, colourless
Z = 40.40 × 0.33 × 0.27 mm
Data collection top
Bruker APEXII CCD
diffractometer
2984 reflections with I > 2σ(I)
φ and ω scansRint = 0.031
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 26.4°, θmin = 1.9°
Tmin = 0.484, Tmax = 0.745h = 99
38518 measured reflectionsk = 1717
3367 independent reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0329P)2 + 0.739P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3367 reflectionsΔρmax = 0.36 e Å3
217 parametersΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.50950 (3)0.20340 (2)0.19075 (2)0.05076 (8)
Cl10.74491 (12)0.48216 (7)0.08524 (6)0.0988 (3)
O10.14227 (17)0.24860 (9)0.12331 (8)0.0427 (3)
O20.2776 (2)0.07713 (12)0.09235 (12)0.0741 (5)
O30.0776 (2)0.03054 (10)0.24246 (10)0.0628 (4)
C10.2739 (3)0.26958 (13)0.19618 (12)0.0429 (4)
H90.29670.33990.19750.051*
C20.0406 (2)0.16654 (12)0.12272 (11)0.0362 (4)
C30.0687 (2)0.14639 (13)0.04065 (11)0.0389 (4)
C40.1805 (2)0.06325 (14)0.02911 (12)0.0432 (4)
C50.2841 (3)0.04307 (17)0.04809 (13)0.0563 (5)
H40.35670.01270.05580.068*
C60.2792 (3)0.1060 (2)0.11328 (13)0.0644 (6)
H30.34990.09300.16470.077*
C70.1698 (3)0.18762 (19)0.10224 (13)0.0601 (6)
H20.16750.22970.14640.072*
C80.0625 (3)0.20824 (16)0.02611 (12)0.0491 (5)
H10.01290.26300.01970.059*
C90.1868 (2)0.00345 (14)0.09908 (13)0.0468 (4)
C100.0715 (3)0.02303 (13)0.18356 (12)0.0431 (4)
C110.0400 (2)0.10986 (13)0.19024 (11)0.0387 (4)
C120.1505 (3)0.13595 (14)0.27303 (11)0.0479 (4)
H70.26110.09650.28380.057*
H80.07870.12320.31600.057*
C130.2018 (3)0.24304 (14)0.27349 (12)0.0502 (5)
H60.09450.28240.27740.060*
H50.29520.25680.32140.060*
C140.5784 (2)0.28761 (13)0.10819 (12)0.0433 (4)
C150.7139 (3)0.35717 (15)0.13040 (13)0.0508 (5)
H130.77090.36290.18530.061*
C160.7646 (3)0.41802 (17)0.07156 (16)0.0599 (6)
H120.85670.46420.08620.072*
C170.6774 (3)0.40953 (17)0.00896 (15)0.0587 (5)
C180.5413 (3)0.3415 (2)0.03203 (14)0.0617 (6)
H110.48240.33740.08670.074*
C190.4930 (3)0.27935 (17)0.02638 (13)0.0527 (5)
H100.40340.23200.01100.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.04595 (13)0.04744 (13)0.05540 (14)0.00547 (8)0.00095 (9)0.00375 (9)
Cl10.0924 (5)0.1005 (6)0.1134 (6)0.0119 (4)0.0452 (5)0.0443 (5)
O10.0412 (6)0.0388 (7)0.0471 (7)0.0011 (5)0.0046 (5)0.0103 (6)
O20.0652 (10)0.0486 (9)0.0975 (13)0.0140 (8)0.0167 (9)0.0100 (9)
O30.0868 (11)0.0421 (8)0.0603 (9)0.0118 (7)0.0148 (8)0.0101 (7)
C10.0477 (10)0.0305 (8)0.0495 (10)0.0001 (7)0.0056 (8)0.0003 (7)
C20.0341 (8)0.0329 (8)0.0423 (9)0.0067 (7)0.0089 (7)0.0021 (7)
C30.0326 (8)0.0434 (10)0.0416 (9)0.0118 (7)0.0088 (7)0.0006 (7)
C40.0345 (9)0.0446 (10)0.0495 (10)0.0117 (7)0.0048 (7)0.0050 (8)
C50.0427 (10)0.0635 (13)0.0594 (13)0.0102 (9)0.0000 (9)0.0145 (11)
C60.0501 (12)0.0963 (19)0.0437 (11)0.0186 (13)0.0001 (9)0.0120 (12)
C70.0515 (12)0.0891 (17)0.0410 (11)0.0183 (12)0.0114 (9)0.0091 (11)
C80.0411 (10)0.0638 (13)0.0441 (10)0.0113 (9)0.0120 (8)0.0081 (9)
C90.0374 (9)0.0356 (9)0.0653 (12)0.0056 (8)0.0027 (8)0.0003 (9)
C100.0470 (10)0.0315 (9)0.0522 (11)0.0048 (7)0.0124 (8)0.0033 (8)
C110.0433 (9)0.0320 (9)0.0412 (9)0.0048 (7)0.0085 (7)0.0017 (7)
C120.0645 (12)0.0391 (10)0.0395 (10)0.0009 (9)0.0076 (9)0.0026 (8)
C130.0664 (13)0.0386 (10)0.0458 (10)0.0005 (9)0.0105 (9)0.0047 (8)
C140.0349 (9)0.0438 (10)0.0498 (10)0.0029 (7)0.0030 (8)0.0071 (8)
C150.0432 (10)0.0541 (12)0.0536 (11)0.0039 (9)0.0042 (9)0.0153 (9)
C160.0515 (12)0.0505 (12)0.0804 (16)0.0078 (10)0.0189 (11)0.0138 (11)
C170.0529 (12)0.0560 (13)0.0719 (14)0.0120 (10)0.0240 (11)0.0099 (11)
C180.0489 (12)0.0858 (17)0.0489 (12)0.0057 (11)0.0041 (9)0.0033 (11)
C190.0401 (10)0.0636 (13)0.0514 (11)0.0060 (9)0.0006 (9)0.0093 (10)
Geometric parameters (Å, º) top
Se1—C141.918 (2)C7—H20.9300
Se1—C11.9769 (19)C8—H10.9300
Cl1—C171.742 (2)C9—C101.541 (3)
O1—C21.353 (2)C10—C111.442 (3)
O1—C11.434 (2)C11—C121.504 (3)
O2—C91.208 (2)C12—C131.518 (3)
O3—C101.223 (2)C12—H70.9700
C1—C131.505 (3)C12—H80.9700
C1—H90.9800C13—H60.9700
C2—C111.357 (2)C13—H50.9700
C2—C31.473 (2)C14—C151.385 (3)
C3—C81.395 (3)C14—C191.388 (3)
C3—C41.401 (3)C15—C161.379 (3)
C4—C51.392 (3)C15—H130.9300
C4—C91.478 (3)C16—C171.373 (3)
C5—C61.382 (3)C16—H120.9300
C5—H40.9300C17—C181.376 (3)
C6—C71.375 (4)C18—C191.377 (3)
C6—H30.9300C18—H110.9300
C7—C81.389 (3)C19—H100.9300
C14—Se1—C195.62 (8)C11—C10—C9118.81 (16)
C2—O1—C1117.85 (13)C2—C11—C10119.65 (17)
O1—C1—C13111.73 (16)C2—C11—C12121.77 (17)
O1—C1—Se1110.03 (12)C10—C11—C12118.57 (16)
C13—C1—Se1111.65 (13)C11—C12—C13109.32 (15)
O1—C1—H9107.7C11—C12—H7109.8
C13—C1—H9107.7C13—C12—H7109.8
Se1—C1—H9107.7C11—C12—H8109.8
O1—C2—C11123.53 (16)C13—C12—H8109.8
O1—C2—C3112.17 (14)H7—C12—H8108.3
C11—C2—C3124.29 (16)C1—C13—C12110.77 (16)
C8—C3—C4119.21 (18)C1—C13—H6109.5
C8—C3—C2121.29 (17)C12—C13—H6109.5
C4—C3—C2119.49 (16)C1—C13—H5109.5
C5—C4—C3120.19 (19)C12—C13—H5109.5
C5—C4—C9120.03 (19)H6—C13—H5108.1
C3—C4—C9119.78 (17)C15—C14—C19119.8 (2)
C6—C5—C4119.9 (2)C15—C14—Se1119.79 (15)
C6—C5—H4120.0C19—C14—Se1120.39 (15)
C4—C5—H4120.0C16—C15—C14120.3 (2)
C7—C6—C5120.1 (2)C16—C15—H13119.9
C7—C6—H3120.0C14—C15—H13119.9
C5—C6—H3120.0C17—C16—C15119.1 (2)
C6—C7—C8121.0 (2)C17—C16—H12120.4
C6—C7—H2119.5C15—C16—H12120.4
C8—C7—H2119.5C16—C17—C18121.4 (2)
C7—C8—C3119.6 (2)C16—C17—Cl1120.10 (19)
C7—C8—H1120.2C18—C17—Cl1118.46 (19)
C3—C8—H1120.2C17—C18—C19119.6 (2)
O2—C9—C4122.67 (19)C17—C18—H11120.2
O2—C9—C10119.38 (19)C19—C18—H11120.2
C4—C9—C10117.95 (16)C18—C19—C14119.8 (2)
O3—C10—C11122.40 (18)C18—C19—H10120.1
O3—C10—C9118.79 (17)C14—C19—H10120.1
C2—O1—C1—C1338.2 (2)O2—C9—C10—C11178.44 (18)
C2—O1—C1—Se186.38 (16)C4—C9—C10—C111.4 (2)
C1—O1—C2—C118.4 (2)O1—C2—C11—C10179.37 (15)
C1—O1—C2—C3171.67 (14)C3—C2—C11—C100.7 (3)
O1—C2—C3—C80.4 (2)O1—C2—C11—C121.8 (3)
C11—C2—C3—C8179.55 (17)C3—C2—C11—C12178.14 (16)
O1—C2—C3—C4179.30 (14)O3—C10—C11—C2179.78 (18)
C11—C2—C3—C40.8 (2)C9—C10—C11—C20.4 (3)
C8—C3—C4—C50.1 (3)O3—C10—C11—C120.9 (3)
C2—C3—C4—C5179.83 (16)C9—C10—C11—C12179.28 (16)
C8—C3—C4—C9179.35 (16)C2—C11—C12—C1318.3 (3)
C2—C3—C4—C90.3 (2)C10—C11—C12—C13160.59 (17)
C3—C4—C5—C61.0 (3)O1—C1—C13—C1257.9 (2)
C9—C4—C5—C6179.49 (18)Se1—C1—C13—C1265.84 (19)
C4—C5—C6—C71.0 (3)C11—C12—C13—C146.3 (2)
C5—C6—C7—C80.2 (3)C19—C14—C15—C160.2 (3)
C6—C7—C8—C31.4 (3)Se1—C14—C15—C16179.92 (16)
C4—C3—C8—C71.3 (3)C14—C15—C16—C170.9 (3)
C2—C3—C8—C7178.99 (17)C15—C16—C17—C180.3 (3)
C5—C4—C9—O21.0 (3)C15—C16—C17—Cl1177.47 (16)
C3—C4—C9—O2178.48 (19)C16—C17—C18—C191.0 (3)
C5—C4—C9—C10179.15 (16)Cl1—C17—C18—C19176.26 (17)
C3—C4—C9—C101.4 (2)C17—C18—C19—C141.6 (3)
O2—C9—C10—O31.4 (3)C15—C14—C19—C181.1 (3)
C4—C9—C10—O3178.77 (17)Se1—C14—C19—C18178.81 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C13—H6···O3i0.972.593.239 (2)125
C17—Cl1···Cg1ii1.74 (1)3.72 (1)4.000 (2)86 (1)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z.
Summary of short interatomic contacts (Å) in (I) top
Contactdistancesymmetry operation
H5···H112.27x, 1/2 - y, 1/2 + z
O2···H52.70-x, -1/2 + y, 1/2 - z
O3···H92.70-x, -1/2 + y, 1/2 - z
C7···C183.346 (3)-1 + x, y, z
Percentage contributions of interatomic contacts to the Hirshfeld surfaces for (I) top
Contactpercentage contribution
H···H35.9
O···H/H···O18.2
Cl···H/H···Cl10.6
C···H/H···C9.0
C···C9.9
Se···H/H···Se4.2
Se···C/C···Se3.0
C···Cl/Cl···C3.0
C···O/O···C2.6
Cl···O/O···Cl2.5
Se···Cl/Cl···Se0.6
Se···O/O···Se0.5
Summary of Se···O distances (Å) and C—Se—C bond angles (°) in (I)–(IV) top
CompoundSe···OC—Se—CRef.
(I)2.8122 (13)95.62 (8)this work
(II)2.7429 (18)98.43 (12)Traar et al. (2004)
(III)2.8760 (12)98.16 (8)Woodward et al. (2010)
(IV)2.8606 (19)97.41 (12)McDonagh et al. (2016)
 

Acknowledgements

The Brazilian agency National Council for Scientific and Technological Development, CNPq, is gratefully acknowledged for a scholarship to JZ-S (305626/2013–2).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChau, Y. P., Shiah, S. G., Don, M. J. & Kuo, M. L. (1998). Free Radic. Biol. Med. 24, 660–670.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJotani, M. M., Zukerman-Schpector, J., Madureira, L. S., Poplaukhin, P., Arman, H. D., Miller, T. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 415–425.  CAS Google Scholar
First citationKim, E. J., Ji, I. M., Ahn, K. J., Choi, E. K., Park, H. J., Lim, B. U., Song, S. W. & Park, H. J. (2005). Cancer Res. Treat, 37, 183–190.  CrossRef PubMed Google Scholar
First citationLi, C. J., Wang, C. & Pardee, A. B. (1995). Cancer Res. 55, 3712–3715.  CAS PubMed Google Scholar
First citationMcDonagh, A. W., Mahon, M. F. & Murphy, P. V. (2016). Org. Lett. 18, 552–555.  CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationPark, E. J., Min, K.-J., Lee, T.-J., Yoo, Y. H., Kim, Y.-S. & Kwon, T. K. (2014). Cell Death Dis. 5, e1230.  CrossRef PubMed Google Scholar
First citationSchaffner-Sabba, K., Schmidt-Ruppin, K. H., Wehrli, W., Schuerch, A. R. & Wasley, J. W. (1984). J. Med. Chem. 27, 990–994.  CAS PubMed Google Scholar
First citationSeng, H.-L. & Tiekink, E. R. T. (2012). Appl. Organomet. Chem. 26, 655–662.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuzuki, M., Amano, M., Choi, J., Park, H. J., Williams, B. W., Ono, K. & Song, C. W. (2006). Radiat. Res. 165, 525–531.  CrossRef PubMed CAS Google Scholar
First citationTiekink, E. R. T. (2012). Dalton Trans. 41, 6390–6395.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTraar, P., Belaj, F. & Francesconi, K. A. (2004). Aust. J. Chem. 57, 1051–1053.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWoodward, H., Smith, N. & Gallagher, T. (2010). Synlett, pp. 869–872.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds