research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a heterometallic coordination polymer: poly[di­aqua­bis­­(μ7-benzene-1,3,5-tri­carboxyl­ato)dicalcium(II)copper(II)]

CROSSMARK_Color_square_no_text.svg

aKey Laboratory of Catalysis and Materials Sciences of the State Ethnic Affairs Commission & Ministry of Education, College of Chemistry and Material Science, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
*Correspondence e-mail: zhangbg68@yahoo.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 13 March 2017; accepted 3 May 2017; online 12 May 2017)

In the title complex, [Ca2Cu(C9H3O6)2(H2O)2]n, the CaII and CuII cations are bridged by the benzene-1,3,5-tri­carboxyl­ate anions (BTC3−) to form the coordination polymer, in which each BTC3− anion bridges two CuII and five CaII cations with a μ7 coordination mode. The CuII cation, located at an inversion centre, is in a nearly square-planar geometry defined by four O atoms from four bridging BTC3− anions, while the CaII cation is in a distorted octa­hedral geometry defined by five O atoms from bridging BTC3− anions and one water mol­ecule. O—H⋯O hydrogen bonds between coordinating water mol­ecules and carboxyl groups further stabilize the structure; ππ stacking is also observed between parallel benzene rings, the centroid-to-centroid distance being 3.357 (2) Å.

1. Chemical context

In recent years, the rational design and synthesis of heterometallic coordination compounds have attracted much attention due to their potential applications in magnetism, luminescence, adsorption, chemical sensing and catalysis, as well as their aesthetically beautiful architectures and topologies (Cui et al., 2012[Cui, Y.-J., Yue, Y.-F., Qian, G.-D. & Chen, B.-L. (2012). Chem. Rev. 112, 1126-1162.]; Huang et al., 2013[Huang, S.-L., Zhang, L., Lin, Y.-J. & Jin, G.-X. (2013). CrystEngComm, 15, 78-85.]; Ma et al., 2014[Ma, Y.-Z., Zhang, L.-M., Peng, G., Zhao, C.-J., Dong, R.-T., Yang, C.-F. & Deng, H. (2014). CrystEngComm, 16, 667-683.]; Wimberg et al., 2012[Wimberg, J., Meyer, S., Dechert, S. & Meyer, F. (2012). Organometallics, 31, 5025-5033.]). However, hererometallic organic frame­works are investigated less frequently than single-metal organic frameworks in crystal engineering, mainly because of the competitive complexation of different metal ions in the self-assembly progress. Recently, alkaline-earth metal ions have attracted more and more research inter­est owing to their unpredictable coordination number and pH-dependent self-assembly in the construction of novel topological coordination compounds (Borah et al., 2011[Borah, B. M., Dey, S. K. & Das, G. (2011). Cryst. Growth Des. 11, 2773-2779.]; Chen et al., 2011[Chen, Y., Zheng, L., She, S., Chen, Z., Hu, B. & Li, Y. (2011). Dalton Trans. 40, 4970-4975.]). However, the larger atomic radii and high enthalpy of hydration make it relatively difficult to design the coordination polymers of alkaline-earth metal ions as well as to synthesize them from aqueous solution (Reger et al., 2013[Reger, D. L., Leitner, A., Smith, M. D., Tran, T. T. & Halasyamani, P. S. (2013). Inorg. Chem. 52, 10041-10051.]). As alkaline-earth metals and transition metals coordinate to the same ligand, it often gives rise to homometallic coordination compounds rather than heterometallic ones. In this regard, one of the effective synthetic strategies in building the alkaline-earth-metal-containing compounds is to employ appropriate bridging ligands. As a multifunctional hybrid ligand, H3BTC (benzene-1,3,5-tricarboxylic acid) in its partly or fully deprotonated form exhibits versatile coordination modes and can bind to the metal ions by making full use of the carboxyl­ate oxygen atoms. In addition, heterometallic compounds incorporating only the H3BTC ligand are few in number (Chen et al., 2004[Chen, J.-X., Liu, S.-X. & Gao, E.-Q. (2004). Polyhedron, 23, 1877-1888.]; Li et al., 2010[Li, L., Jin, J., Shi, Z., Zhao, L., Liu, J., Xing, Y. & Niu, S. (2010). Inorg. Chim. Acta, 363, 748-754.]; Sun et al., 2014[Sun, Q.-Z., Yin, Y.-B., Chai, L.-Y., Liu, H., Hao, P.-F., Yan, X.-P. & Guo, Y.-Q. (2014). J. Mol. Struct. 1070, 75-79.], 2016[Sun, Q.-Z., Yin, Y.-B., Pan, J.-Q., Chai, L.-Y., Su, N., Liu, H., Zhao, Y.-L. & Liu, X.-T. (2016). J. Mol. Struct. 1106, 64-69.]; Xu et al., 2014[Xu, B., Cai, Y., Li, L., Zhang, Z. & Li, C. (2014). J. Mol. Struct. 1059, 320-324.]). As part of our ongoing studies on these compounds, we describe here synthesis and crystal structure of the title compound, [Ca2Cu(BTC)2(H2O)2]n, (1).

[Scheme 1]

2. Structural commentary

The asymmetric unit of (1) contains one copper(II) cation (located at an inversion centre), one calcium(II) cation, one BTC3− anion and one coordinating water mol­ecule (Fig. 1[link]). The Cu—O bond lengths are in the range 1.9435 (19)–1.9800 (19) Å and the Ca—O bond lengths are in the range of 2.280 (2)–2.466 (2) Å (Table 1[link]). All data are comparable to those reported for other related CuII–BTC and CaII–BTC complexes (Chui et al., 1999[Chui, S. S. Y., Siu, A. & Williams, I. D. (1999). Acta Cryst. C55, 194-196.]; Yang et al., 2004[Yang, Y.-Y., Huang, Z.-Q., Szeto, L. & Wong, W.-T. (2004). Appl. Organomet. Chem. 18, 97-98.]) . Each CuII cation is four-coordinated by four oxygen atoms from four different BTC3− anions, forming a nearly square-planar geometry. Each CaII cation is six-coordinated by five carboxyl­ate oxygen atoms from five different BTC3− anions and one terminal water mol­ecule, displaying a distorted octa­hedron (Fig. 1[link]). The mean deviation of the equatorial plane constructed by atoms O1, O4, O6 and OW1 is 0.06 Å. The H3BTC molecule is fully deprotonated and bridges two CuII ions and five CaII ions in a μ7 coordination mode.

Table 1
Selected bond lengths (Å)

Ca1—O1 2.338 (2) Ca1—O6iv 2.357 (2)
Ca1—O3i 2.280 (2) Ca1—OW1 2.390 (2)
Ca1—O4ii 2.333 (2) Cu1—O2 1.9435 (19)
Ca1—O5iii 2.466 (2) Cu1—O5v 1.9800 (19)
Symmetry codes: (i) x, y, z-1; (ii) -x, -y+1, -z+2; (iii) x, y+1, z; (iv) -x, -y+1, -z+1; (v) -x+1, -y+1, -z+2.
[Figure 1]
Figure 1
The coordination mode and atom-numbering scheme for (1). Displacement ellipsoids for non H-atoms are drawn at the 50% probability level, with H atoms shown as spheres of arbitrary radius. [Symmetry codes: (A) x, y, z + 1; (B) −x, −y + 1, −z + 2; (C) x, y − 1, z; (D) −x, −y + 1, −z + 1; (E) −x + 1, −y + 2, −z + 2; (F) x, y + 1, z; (G) −x + 1, −y + 1, −z + 2; (H) x, y, z − 1.]

3. Supra­molecular features

Each CuO4 quadrilateral shares a vertex (O5) with two CaO6 polyhedra to form a trinuclear unit {CuCa2O14} with Ca–O–Cu–O–Ca connectivity (Fig. 2[link]). Such units are cross-linked by the μ7-BTC3− anions to create a three-dimensional framework (Fig. 3[link]). In addition, the terminal water mol­ecule is hydrogen bonded to the carboxyl­ate O atoms (Table 2[link]), forming a two-dimensional network parallel to (100). π-π stacking inter­actions between (C1–C6) benzene rings [CgCg(−x, 1 − y, 2 − z) = 3.357 (2) Å] further stabilize the crystal structure.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OW1—HW1A⋯O4v 0.84 (1) 1.95 (1) 2.793 (3) 173 (3)
OW1—HW1B⋯O2vi 0.84 (1) 2.31 (2) 3.020 (3) 143 (3)
Symmetry codes: (v) -x+1, -y+1, -z+2; (vi) -x+1, -y+2, -z+2.
[Figure 2]
Figure 2
The trinuclear unit constructed from a [CaO6] octa­hedron and a [CuO4] quadrilateral.
[Figure 3]
Figure 3
Polyhedral view of the three-dimensional heterometallic coordination framework of (1). All H atoms have been omitted for clarity.

4. Synthesis and crystallization

The title compound was synthesized using a similar procedure to that for the synthesis of the analogous compound [CuSr2(BTC)2]·10H2O (Sun et al., 2016[Sun, Q.-Z., Yin, Y.-B., Pan, J.-Q., Chai, L.-Y., Su, N., Liu, H., Zhao, Y.-L. & Liu, X.-T. (2016). J. Mol. Struct. 1106, 64-69.]). A mixture of H3BTC (210 mg, 1 mmol), CuCl2·6H2O (121 mg, 0.5 mmol) and CaCl2 (110 mg, 1 mmol) in 15 mL of distilled water was stirred for 10 min in air; 0.5 M NaOH was then added dropwise, and then the mixture was turned into a Parr Teflon-lined stainless steel vessel and heated to 443 K for 3 d. Blue block-shaped crystals suitable for X-ray diffraction were obtained in 60% yield (based on benzene-1,3,5-tri­carb­oxy­lic acid).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atoms of the coordinating water mol­ecule were located from a difference-Fourier map, but refined using a riding model with isotropic displacement parameters Uiso(H) = 1.2Ueq(O). Hydrogen atoms attached to carbon atoms were positioned geometrically (C—H = 0.93 Å) and refined with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Ca2Cu(C9H3O6)2(H2O)2]
Mr 593.96
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 6.664 (3), 8.754 (4), 8.925 (4)
α, β, γ (°) 103.065 (4), 110.140 (4), 92.776 (5)
V3) 471.6 (4)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.79
Crystal size (mm) 0.18 × 0.15 × 0.14
 
Data collection
Diffractometer Bruker SMART CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.721, 0.766
No. of measured, independent and observed [I > 2σ(I)] reflections 2442, 1635, 1588
Rint 0.012
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.084, 1.04
No. of reflections 1635
No. of parameters 166
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.68
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL97 (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Poly[diaquabis(µ7-benzene-1,3,5-tricarboxylato)dicalcium(II)copper(II)] top
Crystal data top
[Ca2Cu(C9H3O6)2(H2O)2]Z = 1
Mr = 593.96F(000) = 299
Triclinic, P1Dx = 2.091 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.664 (3) ÅCell parameters from 1990 reflections
b = 8.754 (4) Åθ = 2.4–27.5°
c = 8.925 (4) ŵ = 1.79 mm1
α = 103.065 (4)°T = 296 K
β = 110.140 (4)°Block, blue
γ = 92.776 (5)°0.18 × 0.15 × 0.14 mm
V = 471.6 (4) Å3
Data collection top
Bruker SMART CCD
diffractometer
1635 independent reflections
Radiation source: fine-focus sealed tube1588 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
φ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 77
Tmin = 0.721, Tmax = 0.766k = 104
2442 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.6456P]
where P = (Fo2 + 2Fc2)/3
1635 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.35 e Å3
3 restraintsΔρmin = 0.68 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.13337 (8)0.79200 (6)0.58531 (6)0.01430 (16)
Cu10.50001.00001.00000.01590 (16)
O10.2949 (3)0.6981 (2)0.8180 (2)0.0206 (4)
O20.3877 (3)0.8375 (2)1.0782 (2)0.0192 (4)
O30.2155 (4)0.5598 (2)1.4590 (2)0.0273 (5)
O40.1993 (3)0.2977 (2)1.4102 (2)0.0190 (4)
O50.2085 (3)0.0033 (2)0.8405 (2)0.0186 (4)
O60.0233 (4)0.1170 (2)0.6527 (2)0.0283 (5)
C10.2707 (4)0.5610 (3)1.0114 (3)0.0126 (5)
C20.2808 (4)0.5623 (3)1.1690 (3)0.0145 (5)
H2A0.31660.65771.24990.017*
C30.2377 (4)0.4211 (3)1.2074 (3)0.0136 (5)
C40.1929 (4)0.2786 (3)1.0883 (3)0.0142 (5)
H4A0.17030.18411.11480.017*
C50.1815 (4)0.2765 (3)0.9288 (3)0.0142 (5)
C60.2163 (4)0.4182 (3)0.8895 (3)0.0136 (5)
H6A0.20340.41760.78220.016*
C70.3178 (4)0.7085 (3)0.9639 (3)0.0139 (5)
C80.2195 (4)0.4278 (3)1.3728 (3)0.0154 (5)
C90.1339 (4)0.1255 (3)0.7989 (3)0.0142 (5)
OW10.4854 (3)0.8960 (3)0.6111 (3)0.0315 (5)
HW1A0.587 (4)0.844 (3)0.604 (4)0.038*
HW1B0.544 (5)0.9871 (18)0.669 (4)0.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0188 (3)0.0142 (3)0.0099 (3)0.0011 (2)0.0048 (2)0.0040 (2)
Cu10.0204 (3)0.0110 (2)0.0147 (3)0.00010 (17)0.00383 (19)0.00479 (18)
O10.0344 (11)0.0158 (9)0.0143 (9)0.0058 (8)0.0090 (8)0.0084 (7)
O20.0282 (10)0.0125 (9)0.0145 (9)0.0024 (7)0.0056 (8)0.0035 (7)
O30.0480 (13)0.0191 (10)0.0181 (10)0.0061 (9)0.0181 (10)0.0016 (8)
O40.0236 (10)0.0189 (10)0.0181 (9)0.0014 (7)0.0094 (8)0.0092 (8)
O50.0228 (10)0.0107 (9)0.0180 (9)0.0032 (7)0.0027 (8)0.0030 (7)
O60.0452 (13)0.0206 (10)0.0118 (10)0.0027 (9)0.0010 (9)0.0051 (8)
C10.0118 (12)0.0128 (12)0.0131 (12)0.0020 (9)0.0033 (10)0.0049 (10)
C20.0160 (12)0.0128 (12)0.0141 (12)0.0015 (9)0.0051 (10)0.0032 (10)
C30.0148 (12)0.0140 (12)0.0124 (12)0.0025 (9)0.0049 (10)0.0043 (10)
C40.0169 (12)0.0119 (12)0.0155 (12)0.0035 (9)0.0057 (10)0.0065 (10)
C50.0143 (12)0.0135 (12)0.0131 (12)0.0032 (10)0.0030 (10)0.0033 (10)
C60.0159 (12)0.0130 (12)0.0125 (12)0.0044 (10)0.0040 (10)0.0057 (10)
C70.0145 (12)0.0135 (12)0.0167 (13)0.0051 (9)0.0063 (10)0.0078 (10)
C80.0154 (12)0.0174 (13)0.0130 (12)0.0024 (10)0.0047 (10)0.0036 (10)
C90.0177 (12)0.0129 (12)0.0129 (13)0.0017 (10)0.0056 (10)0.0050 (10)
OW10.0262 (11)0.0264 (11)0.0459 (14)0.0047 (9)0.0166 (10)0.0116 (10)
Geometric parameters (Å, º) top
Ca1—O12.338 (2)O5—Ca1viii2.466 (2)
Ca1—O3i2.280 (2)O6—C91.241 (3)
Ca1—O4ii2.333 (2)O6—Ca1iv2.357 (2)
Ca1—O5iii2.466 (2)O6—Ca1viii2.954 (2)
Ca1—O6iv2.357 (2)C1—C21.382 (4)
Ca1—OW12.390 (2)C1—C61.395 (4)
Ca1—Cu13.6439 (13)C1—C71.499 (3)
Cu1—O2v1.9435 (19)C2—C31.398 (4)
Cu1—O21.9435 (19)C2—H2A0.9300
Cu1—O5vi1.9800 (19)C3—C41.386 (4)
Cu1—O5iii1.9800 (19)C3—C81.511 (3)
Cu1—Ca1v3.6439 (13)C4—C51.395 (4)
O1—C71.239 (3)C4—H4A0.9300
O2—C71.278 (3)C5—C61.393 (4)
O3—C81.242 (3)C5—C91.485 (3)
O3—Ca1vii2.280 (2)C6—H6A0.9300
O4—C81.271 (3)C8—Ca1ii3.141 (3)
O4—Ca1ii2.333 (2)C9—Ca1viii3.104 (3)
O5—C91.278 (3)OW1—HW1A0.844 (10)
O5—Cu1viii1.9800 (19)OW1—HW1B0.836 (10)
O3i—Ca1—O4ii99.86 (8)C7—O2—Cu1110.48 (16)
O3i—Ca1—O181.17 (8)C8—O3—Ca1vii168.1 (2)
O4ii—Ca1—O187.46 (7)C8—O4—Ca1ii118.28 (16)
O3i—Ca1—O6iv97.47 (8)C9—O5—Cu1viii125.84 (16)
O4ii—Ca1—O6iv93.57 (8)C9—O5—Ca1viii107.73 (15)
O1—Ca1—O6iv178.43 (7)Cu1viii—O5—Ca1viii109.61 (8)
O3i—Ca1—OW183.82 (8)C9—O6—Ca1iv157.26 (18)
O4ii—Ca1—OW1173.99 (8)C9—O6—Ca1viii85.06 (15)
O1—Ca1—OW188.42 (8)Ca1iv—O6—Ca1viii114.30 (8)
O6iv—Ca1—OW190.64 (8)C2—C1—C6120.0 (2)
O3i—Ca1—O5iii148.03 (7)C2—C1—C7122.6 (2)
O4ii—Ca1—O5iii91.33 (7)C6—C1—C7117.4 (2)
O1—Ca1—O5iii69.43 (7)C1—C2—C3120.3 (2)
O6iv—Ca1—O5iii111.71 (7)C1—C2—H2A119.8
OW1—Ca1—O5iii83.12 (7)C3—C2—H2A119.8
O3i—Ca1—Cu1118.21 (6)C4—C3—C2119.6 (2)
O4ii—Ca1—Cu1110.50 (5)C4—C3—C8120.9 (2)
O1—Ca1—Cu149.46 (5)C2—C3—C8119.2 (2)
O6iv—Ca1—Cu1131.04 (6)C3—C4—C5120.3 (2)
OW1—Ca1—Cu163.49 (6)C3—C4—H4A119.9
O5iii—Ca1—Cu130.79 (4)C5—C4—H4A119.9
O6iii—Ca1—Cu173.03 (4)C6—C5—C4119.8 (2)
C9iii—Ca1—Cu150.47 (5)C6—C5—C9118.8 (2)
C8ii—Ca1—Cu1106.72 (6)C4—C5—C9121.4 (2)
O2v—Cu1—O2180.000 (1)C5—C6—C1119.9 (2)
O2v—Cu1—O5vi91.13 (8)C5—C6—H6A120.1
O2—Cu1—O5vi88.87 (8)C1—C6—H6A120.1
O2v—Cu1—O5iii88.87 (8)O1—C7—O2123.6 (2)
O2—Cu1—O5iii91.13 (8)O1—C7—C1118.5 (2)
O5vi—Cu1—O5iii180.000 (1)O2—C7—C1117.8 (2)
O2v—Cu1—Ca1v87.31 (6)O3—C8—O4124.8 (2)
O2—Cu1—Ca1v92.69 (6)O3—C8—C3117.4 (2)
O5vi—Cu1—Ca1v39.61 (5)O4—C8—C3117.7 (2)
O5iii—Cu1—Ca1v140.39 (5)O6—C9—O5120.3 (2)
O2v—Cu1—Ca192.69 (6)O6—C9—C5121.0 (2)
O2—Cu1—Ca187.31 (6)O5—C9—C5118.7 (2)
O5vi—Cu1—Ca1140.39 (5)Ca1—OW1—HW1A127 (2)
O5iii—Cu1—Ca139.61 (5)Ca1—OW1—HW1B122 (2)
Ca1v—Cu1—Ca1180.0HW1A—OW1—HW1B105.9 (16)
C7—O1—Ca1146.05 (17)
Symmetry codes: (i) x, y, z1; (ii) x, y+1, z+2; (iii) x, y+1, z; (iv) x, y+1, z+1; (v) x+1, y+2, z+2; (vi) x+1, y+1, z+2; (vii) x, y, z+1; (viii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—HW1A···O4vi0.84 (1)1.95 (1)2.793 (3)173 (3)
OW1—HW1B···O2v0.84 (1)2.31 (2)3.020 (3)143 (3)
Symmetry codes: (v) x+1, y+2, z+2; (vi) x+1, y+1, z+2.
 

Funding information

Funding for this research was provided by: National Natural Science Foundation of China (award No. 21271189).

References

First citationBorah, B. M., Dey, S. K. & Das, G. (2011). Cryst. Growth Des. 11, 2773–2779.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, J.-X., Liu, S.-X. & Gao, E.-Q. (2004). Polyhedron, 23, 1877–1888.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, Y., Zheng, L., She, S., Chen, Z., Hu, B. & Li, Y. (2011). Dalton Trans. 40, 4970–4975.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChui, S. S. Y., Siu, A. & Williams, I. D. (1999). Acta Cryst. C55, 194–196.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCui, Y.-J., Yue, Y.-F., Qian, G.-D. & Chen, B.-L. (2012). Chem. Rev. 112, 1126–1162.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHuang, S.-L., Zhang, L., Lin, Y.-J. & Jin, G.-X. (2013). CrystEngComm, 15, 78–85.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, L., Jin, J., Shi, Z., Zhao, L., Liu, J., Xing, Y. & Niu, S. (2010). Inorg. Chim. Acta, 363, 748–754.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Y.-Z., Zhang, L.-M., Peng, G., Zhao, C.-J., Dong, R.-T., Yang, C.-F. & Deng, H. (2014). CrystEngComm, 16, 667–683.  Web of Science CSD CrossRef CAS Google Scholar
First citationReger, D. L., Leitner, A., Smith, M. D., Tran, T. T. & Halasyamani, P. S. (2013). Inorg. Chem. 52, 10041–10051.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, Q.-Z., Yin, Y.-B., Chai, L.-Y., Liu, H., Hao, P.-F., Yan, X.-P. & Guo, Y.-Q. (2014). J. Mol. Struct. 1070, 75–79.  Web of Science CSD CrossRef CAS Google Scholar
First citationSun, Q.-Z., Yin, Y.-B., Pan, J.-Q., Chai, L.-Y., Su, N., Liu, H., Zhao, Y.-L. & Liu, X.-T. (2016). J. Mol. Struct. 1106, 64–69.  Web of Science CSD CrossRef CAS Google Scholar
First citationWimberg, J., Meyer, S., Dechert, S. & Meyer, F. (2012). Organometallics, 31, 5025–5033.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, B., Cai, Y., Li, L., Zhang, Z. & Li, C. (2014). J. Mol. Struct. 1059, 320–324.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, Y.-Y., Huang, Z.-Q., Szeto, L. & Wong, W.-T. (2004). Appl. Organomet. Chem. 18, 97–98.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds