research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structures of three new benzotriazolylpropanamides

CROSSMARK_Color_square_no_text.svg

aChemistry Department, James Madison University, Harrisonburg, VA 22807, USA, and bChemisches Institut der Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
*Correspondence e-mail: giljejw@jmu.edu, frank.edelmann@ovgu.de

Edited by M. Zeller, Purdue University, USA (Received 16 May 2017; accepted 20 May 2017; online 26 May 2017)

The base-catalyzed Michael addition of 2-methyl­acryl­amide to benzotriazole afforded 3-(1H-benzotriazol-1-yl)-2-methyl­propanamide, C10H12N4O (1), in 32% yield in addition to small amounts of isomeric 3-(2H-benzotriazol-2-yl)-2-methyl­propanamide, C10H12N4O (2). In a similar manner, 3-(1H-benzotriazol-1-yl)-N,N-di­methyl­propanamide, C11H14N4O (3), was prepared from benzotriazole and N,N-di­methyl­acryl­amide. All three products have been structurally characterized by single-crystal X-ray diffraction. The crystal structures of 1 and 2 comprise infinite arrays formed by N—H⋯O and N—H⋯N bridges, as well as ππ inter­actions, while the mol­ecules of 3 are aggregated to simple π-dimers in the crystal.

1. Chemical context

Di- and tridentate pyrazolyl-based ligands play an important role in the design of supra­molecular assemblies of metal complexes. Particularly notable among the large variety of such ligands are Trofimenko's famous poly(pyrazol­yl)borates (`scorpionates') (Trofimenko, 1993[Trofimenko, S. (1993). Chem. Rev. 93, 943-980.], 2004[Trofimenko, S. (2004). Polyhedron, 23, 197-203.]; Marques et al., 2002[Marques, N., Sella, A. & Takats, J. (2002). Chem. Rev. 102, 2137-2160.]; Paulo et al., 2004[Paulo, A., Correia, J. D. G., Campello, M. P. C. & Santos, I. A. (2004). Polyhedron, 23, 331-360.]; Smith, 2008[Smith, J. M. (2008). Comments Inorg. Chem. 29, 189-233.]) and the poly(pyrazol­yl)methane ligands (Bassanetti et al., 2016[Bassanetti, I., Atzeri, C., Tinonin, D. A. & Marchiò, L. (2016). Cryst. Growth Des. 16, 3543-3552.]; Bigmore et al., 2005[Bigmore, H. R., Lawrence, S. C., Mountford, P. & Tredget, C. S. (2005). Dalton Trans. pp. 635-651.]; Krieck et al., 2016[Krieck, S., Koch, A., Hinze, K., Müller, C., Lange, J., Görls, H. & Westerhausen, M. (2016). Eur. J. Inorg. Chem. pp. 2332-2348.]; Otero et al., 2013[Otero, A., Fernández-Baeza, J., Lara-Sánchez, A. & Sánchez-Barba, L. F. (2013). Coord. Chem. Rev. 257, 1806-1868.]; Semeniuc & Reger, 2016[Semeniuc, R. F. & Reger, D. L. (2016). Eur. J. Inorg. Chem. pp. 2253-2271.]). In a series of previous studies, we reported the synthesis and supra­molecular coordination chemistry of the simple, functionalized pyrazolyl-based ligand 3-(pyrazol-1-yl)prop­an­a­mide. This ligand is readily available in one step via base-catalyzed Michael addition of pyrazole to acryl­amide (Girma et al., 2008[Girma, K. B., Lorenz, V., Blaurock, S. & Edelmann, F. T. (2008). Z. Anorg. Allg. Chem. 634, 267-273.]). In combination with various first- and second-row transition metals (e.g. Mn, Fe, Ru, Co, Ni), 3-(1H-pyrazol-1-yl)propanamide allows the design of a variety of hydrogen-bonded supra­molecular assemblies, including different chains, sheets, and three-dimensional arrays (D'Amico et al., 2015[D'Amico, D. J., McDougal, M. A., Amenta, D. S., Gilje, J. W., Wang, S., Hrib, C. G. & Edelmann, F. T. (2015). Polyhedron, 88, 19-28.]). As an additional advantage, the pyrazolylpropanamide ligand system can be easily modified either by attachment of substituents to the propanamide backbone (D'Amico et al., 2015[D'Amico, D. J., McDougal, M. A., Amenta, D. S., Gilje, J. W., Wang, S., Hrib, C. G. & Edelmann, F. T. (2015). Polyhedron, 88, 19-28.]) or by replacing the pyrazole ring by other N-heterocycles such as triazole (D'Amico et al., 2015[D'Amico, D. J., McDougal, M. A., Amenta, D. S., Gilje, J. W., Wang, S., Hrib, C. G. & Edelmann, F. T. (2015). Polyhedron, 88, 19-28.]; Wagner et al., 2012[Wagner, T., Hrib, C. G., Lorenz, V., Edelmann, F. T., Zhang, J. & Li, Q. (2012). Z. Anorg. Allg. Chem. 638, 2185-2188.]). In our most recent study, we investigated the structural influence of benzotriazolyl as a hydro­phobic functional group, which imparts amphiphilic character to the ligand and forms the basis of novel supra­molecular assemblies. In the course of this work, the solid-state structures of 3-(1H-benzotriazol-1-yl)-propane­amide (= `BTPA') and of several first-row transition metal complexes (Mn, Co, Cu) derived thereof have been described (Wang et al., 2017[Wang, S., Liebing, P., Oehler, F., Gilje, J. W., Hrib, C. G. & Edelmann, F. T. (2017). Cryst. Growth Des. 17 doi: 10.1021/acs.cgd.7b00361.]). We report here the synthesis and structural characterization of three new potentially useful benzotriazolylpropanamide ligands.

The title compounds were prepared by base-catalyzed Michael addition of benzotriazole to methyl-substituted acryl­amides, namely 2-methyl­acryl­amide and N,N-di­methyl­acryl­amide. As shown in the reaction scheme (Fig. 1[link]), benzotriazole exists in two tautomeric forms A and B. Spectroscopic data (UV, IR and 1H NMR) (Negri & Caminati, 1996[Negri, F. & Caminati, W. (1996). Chem. Phys. Lett. 260, 119-124.]; Nesmeyanov et al., 1969[Nesmeyanov, A. N., Babin, V. N., Fedorov, L. A., Rybinskaya, M. I. & Fedin, E. I. (1969). Tetrahedron, 25, 4667-4670.]; Poznański et al., 2007[Poznański, J., Najda, A., Bretner, M. & Shugar, D. (2007). J. Phys. Chem. A, 111, 6501-6509.]) and dipole moment measurements (Mauret et al., 1974[Mauret, P., Fayet, J. P., Fabre, M., Elguero, J. & De Mendoza, J. (1974). J. Chim. Phys. Chim. Biol. 71, 115-116.]) revealed that the 1H-tautomer A is the predominant species at room temperature.

[Figure 1]
Figure 1
Formation of the 1H- and 2H-benzotriazolylpropanamides 14 from benzotriazole.

The thermal reaction of benzotriazole with 2-methyl­acryl­amide was carried out in the usual manner (D'Amico et al., 2015[D'Amico, D. J., McDougal, M. A., Amenta, D. S., Gilje, J. W., Wang, S., Hrib, C. G. & Edelmann, F. T. (2015). Polyhedron, 88, 19-28.]; Wagner et al., 2012[Wagner, T., Hrib, C. G., Lorenz, V., Edelmann, F. T., Zhang, J. & Li, Q. (2012). Z. Anorg. Allg. Chem. 638, 2185-2188.]; Wang et al., 2017[Wang, S., Liebing, P., Oehler, F., Gilje, J. W., Hrib, C. G. & Edelmann, F. T. (2017). Cryst. Growth Des. 17 doi: 10.1021/acs.cgd.7b00361.]) in the presence of Triton B (= benzyl­tri­methyl­ammonium hydroxide) as basic catalyst. Repeated recrystallization of the crude product from ethanol afforded 3-(1H-benzotriazol-1-yl)-2-methyl­prop­an­amide (1) in 32% isolated yield. The compound was characterized through elemental analysis as well as IR and NMR (1H, 13C) spectroscopy. In the 13C NMR spectrum, the amide carbonyl C atom gives a characteristic resonance at 175.2 ppm. The formation of 1 as the main reaction product corresponds to the predominant presence of tautomer A in the starting benzotriazole. From the mother liquor of the recrystallization of 1, a small amount of colorless crystals could be isolated, which were found to be the isomer 3-(2H-benzotriazol-2-yl)-2-methyl­propanamide (2) resulting from the reaction of the 2H-tautomer B with 2-methyl­acryl­amide. Compound 2 could also be fully characterized by elemental analysis as well as IR and NMR data.

[Scheme 1]

In a similar manner, a reaction of benzotriazole with neat N,N-di­methyl­acryl­amide in the presence of Triton B afforded a yellow oil which was shown to be an approximate 2:1 mixture of 3 and 4. Once again, the main component was the Michael addition product resulting from the 1H-tautomer A of benzotriazole. Thus far, only isomer 3 could be isolated in pure form by recrystallization of the oily crude product from ethanol. The identity of 3-(1H-benzotriazol-1-yl)-N,N-di­methyl­propanamide 3 was confirmed by elemental analysis and spectroscopic data (IR, 1H and 13C NMR). In the 13C NMR spectrum, the NMe2 group gives rise to two resonances at δ 33.2 and 35.5 ppm, whereas the signal of the amide carbonyl C atom is found at δ 169.5 ppm.

2. Structural commentary

Compounds 13 exist as well-defined monomeric mol­ecules in the crystal, without any solvent of crystallization (Figs. 2[link]–4[link][link]). The C=O separations are in a narrow range around 1.24 Å and are therefore virtually equal with those observed in related functionalized propanamides (Girma et al. 2008[Girma, K. B., Lorenz, V., Blaurock, S. & Edelmann, F. T. (2008). Z. Anorg. Allg. Chem. 634, 267-273.]; Wagner et al. 2012[Wagner, T., Hrib, C. G., Lorenz, V., Edelmann, F. T., Zhang, J. & Li, Q. (2012). Z. Anorg. Allg. Chem. 638, 2185-2188.]; D'Amico et al. 2015[D'Amico, D. J., McDougal, M. A., Amenta, D. S., Gilje, J. W., Wang, S., Hrib, C. G. & Edelmann, F. T. (2015). Polyhedron, 88, 19-28.]; Wang et al. 2017[Wang, S., Liebing, P., Oehler, F., Gilje, J. W., Hrib, C. G. & Edelmann, F. T. (2017). Cryst. Growth Des. 17 doi: 10.1021/acs.cgd.7b00361.]). Thus, the C=O distance is not markedly influenced by hydrogen bonding, as there are N—H⋯O bridges in 1 and 2, but not in 3 (see Supra­molecular features section). The same applies to the amide C—N separation, which is around 1.33 Å in all compounds. The torsion angle C1—C2—C3—N between the amide group and the 1H-benzotriazol-1-yl residue is 71.0 (1)° (1) and −72.2 (2)° (3), respectively, which is close to the value observed in the unsubstituted BTPA (71.3 (1)°; Wang et al., 2017[Wang, S., Liebing, P., Oehler, F., Gilje, J. W., Hrib, C. G. & Edelmann, F. T. (2017). Cryst. Growth Des. 17 doi: 10.1021/acs.cgd.7b00361.]). By contrast, the same torsion angle in the 2H-benzotriazole-derived compound 2 is considerably smaller at 59.7 (1)°.

[Figure 2]
Figure 2
The mol­ecular structure of 1 in the crystal. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of 2 in the crystal. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4]
Figure 4
The mol­ecular structure of 3 in the crystal. Displacement ellipsoids are drawn at the 50% probability level. The methyl group C11 shows rotational disorder over two orientations (only one orientation of the H atoms is shown).

3. Supra­molecular features

In 1 and 2, the mol­ecules are inter­connected to dimeric subunits by R22(8)-type N—H⋯O bridges, which is a very typical motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). These amide dimers are again inter­connected by N—H⋯N bridges (Tables 1[link] and 2[link]) between the remaining amide N—H moiety and the benzotriazolyl group, resulting in an infinite chain of rings in both cases. In 1, the dimeric subunits are linked by a R22(16) bridge to N4 (Fig. 5[link]), while a C(7) bridge involving N2 is realized in compound 2 (Fig. 7[link]). The latter leads to an R44(18) motif at the binary level. The hydrogen-bridge pattern in 1 and 2 is therefore entirely different than in the unbridged BTPA, where supra­molecular layers are formed exclusively by N—H⋯O bridges (Wang et al., 2017[Wang, S., Liebing, P., Oehler, F., Gilje, J. W., Hrib, C. G. & Edelmann, F. T. (2017). Cryst. Growth Des. 17 doi: 10.1021/acs.cgd.7b00361.]). As has been discussed for BTPA and its metal complexes, the N—H⋯N bonds are significantly weaker than the N—H⋯O bonds. Both the N⋯O separation [1: N1⋯O 2.897 (1) Å; 2: N1⋯O 2.875 (2) Å] and the N⋯N separations [1: N1⋯N4 3.002 (1) Å; 2: N1⋯N2 3.085 (2) Å] are in the typical range. In the crystal structure of 3, no hydrogen bonds are present as the amide H atoms are replaced by methyl groups.

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2⋯Oi 0.88 2.02 2.8970 (12) 175
N1—H1⋯N4ii 0.88 2.16 3.0017 (14) 161
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x, -y+2, -z+1.

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Oi 0.88 2.00 2.8745 (18) 170
N1—H2⋯N2ii 0.88 2.24 3.0850 (18) 161
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x-1, y, z.
[Figure 5]
Figure 5
Supra­molecular chain of rings in 1, formed by N—H⋯O and N—H⋯N bridging.
[Figure 7]
Figure 7
Supra­molecular chain of rings in 2, formed by N—H⋯O and N—H⋯N bridging, extending along the crystallographic a axis.

In both 1 and 2, the supra­molecular chains are further aggregated by ππ inter­actions between the benzotriazolyl rings. In 1, a three-dimensional framework is present (Fig. 6[link]), where two different types of π inter­actions can be distinguished. First, the C6 rings of each two adjoining benzotriazolyl groups are stacked in a typical parallel-displaced fashion (cf. Fig. 10[link]a). The shortest C⋯C contact is 3.364 (2) Å between C7 and C9 and the distance between the C6 ring centroids is 3.655 (2) Å, which is in the range of strong π inter­actions (McGaughey et al., 1998[McGaughey, G. B., Gagné, M. & Rappé, A. K. (1998). J. Biol. Chem. 273, 15458-15463.]). The so-formed π dimers are inter­connected by another π inter­action to an infinite chain, where an attractive inter­action seems to exist between the whole bicyclic C6N3 system rather than between the C6 rings only (cf. Fig. 10[link]c). The closest inter­molecular separations are 3.308 (2) Å (C9⋯N2) and 3.403 (2) Å (C5⋯C10), and therefore in the same range as in the former mentioned inter­action. In the case of 2, a layer structure parallel to (001) is formed (Fig. 8[link]). The geometry of the inter­action between the C6 rings is similar as in 1, but the closest C⋯C contact exists between C5 and C9 with 3.521 (2) Å, and the corresponding separation between the C6 centroids is considerably larger at 3.933 (2) Å (cf. Fig. 10[link]b). In 3, only two mol­ecules are stacked together to a simple π dimer (Fig. 9[link]), with participation of the whole C6N3 bicycle similar as described above for 1 (cf. Fig. 10[link]c). Here, the closest inter­molecular contacts are 3.468 (2) Å (C8⋯N2) and 3.509 (2) Å (C4⋯C9), which is significantly larger than in 1. Comparable π inter­actions as in 13 have not been observed in the unbridged BTPA, but in its metal complexes [MCl2(BTPA)2] (M = Mn, Co, Cu; min. C⋯C 3.45 Å; Wang et al., 2017[Wang, S., Liebing, P., Oehler, F., Gilje, J. W., Hrib, C. G. & Edelmann, F. T. (2017). Cryst. Growth Des. 17 doi: 10.1021/acs.cgd.7b00361.]). The arrangement of the benzotriazolyl groups in the latter compounds is similar to that in 3 (cf. Fig. 10[link]c).

[Figure 6]
Figure 6
The unit cell of 1, illustrating the aggregation of the chains shown in Fig. 5[link] by ππ stacking into a three-dimensional framework, viewed in a projection on (010).
[Figure 10]
Figure 10
Comparison of the arrangement of the benzotriazolyl rings in the crystal structures of 3-benzotriazolyl­propan­amides: stacking of C6 rings in 1 (a) and in 2 (b), stacking of C6N3 bicycles in 1, 3 and in [MCl2(BTPA)2] (M = Mn, Co, Cu) (c), each viewed in a projection on the C6N3 plane.
[Figure 8]
Figure 8
The unit cell of 2, illustrating the aggregation of the chains shown in Fig. 6[link] by ππ stacking, to a two-dimensional array extending parallel to (001), viewed in a projection on (100).
[Figure 9]
Figure 9
Supra­molecular dimer of 3, formed by ππ stacking.

4. Database survey

For reviews on di- and tridentate pyrazolyl-based ligands, see Bassanetti et al. (2016[Bassanetti, I., Atzeri, C., Tinonin, D. A. & Marchiò, L. (2016). Cryst. Growth Des. 16, 3543-3552.]), Bigmore et al. (2005[Bigmore, H. R., Lawrence, S. C., Mountford, P. & Tredget, C. S. (2005). Dalton Trans. pp. 635-651.]), Krieck et al. (2016[Krieck, S., Koch, A., Hinze, K., Müller, C., Lange, J., Görls, H. & Westerhausen, M. (2016). Eur. J. Inorg. Chem. pp. 2332-2348.]), Marques et al. (2002[Marques, N., Sella, A. & Takats, J. (2002). Chem. Rev. 102, 2137-2160.]), Otero et al. (2013[Otero, A., Fernández-Baeza, J., Lara-Sánchez, A. & Sánchez-Barba, L. F. (2013). Coord. Chem. Rev. 257, 1806-1868.]), Paulo et al. (2004[Paulo, A., Correia, J. D. G., Campello, M. P. C. & Santos, I. A. (2004). Polyhedron, 23, 331-360.]), Semeniuc & Reger (2016[Semeniuc, R. F. & Reger, D. L. (2016). Eur. J. Inorg. Chem. pp. 2253-2271.]), Smith (2008[Smith, J. M. (2008). Comments Inorg. Chem. 29, 189-233.]), Trofimenko (1993[Trofimenko, S. (1993). Chem. Rev. 93, 943-980.], 2004[Trofimenko, S. (2004). Polyhedron, 23, 197-203.]).

For the tautomerism of benzotriazole, see Mauret et al. (1974[Mauret, P., Fayet, J. P., Fabre, M., Elguero, J. & De Mendoza, J. (1974). J. Chim. Phys. Chim. Biol. 71, 115-116.]), Negri & Caminati (1996[Negri, F. & Caminati, W. (1996). Chem. Phys. Lett. 260, 119-124.]); Nesmeyanov et al. (1969[Nesmeyanov, A. N., Babin, V. N., Fedorov, L. A., Rybinskaya, M. I. & Fedin, E. I. (1969). Tetrahedron, 25, 4667-4670.]), Poznański et al. (2007[Poznański, J., Najda, A., Bretner, M. & Shugar, D. (2007). J. Phys. Chem. A, 111, 6501-6509.]).

For other structurally characterized 3-pyrazolylpropanamide-derived ligands, see D'Amico et al. (2015[D'Amico, D. J., McDougal, M. A., Amenta, D. S., Gilje, J. W., Wang, S., Hrib, C. G. & Edelmann, F. T. (2015). Polyhedron, 88, 19-28.]), Girma et al. (2008[Girma, K. B., Lorenz, V., Blaurock, S. & Edelmann, F. T. (2008). Z. Anorg. Allg. Chem. 634, 267-273.]), Wagner et al. (2012[Wagner, T., Hrib, C. G., Lorenz, V., Edelmann, F. T., Zhang, J. & Li, Q. (2012). Z. Anorg. Allg. Chem. 638, 2185-2188.]), Wang et al. (2017[Wang, S., Liebing, P., Oehler, F., Gilje, J. W., Hrib, C. G. & Edelmann, F. T. (2017). Cryst. Growth Des. 17 doi: 10.1021/acs.cgd.7b00361.]).

5. Synthesis and crystallization

All manipulations were performed under inert nitro­gen or argon atmospheres using standard Schlenk techniques or in a Vacuum Atmospheres Glove Box. The starting materials were obtained from commercial sources and used as received. Solvents were dried using an Innovative Technology, Inc, solvent purification system. Microanalysis was performed by Galbraith Laboratories, Inc, Knoxville, TN, USA. NMR spectra were obtained using Bruker Avance 300 MHz and 400 MHz NMR Spectrometers. IR spectra were recorded using KBr pellets with a ThermoNicolet Avatar 370 FT–IR between 4000 cm−1 and 400 cm−1.

Preparation of 2-methyl-3-(1H-benzotriazol-1-yl)propan­amide (1) and 2-methyl-3-(2H-benzotriazol-2-yl)propanamide (2):

In a 150 mL three-neck flask, a mixture of benzotriazole (5.032 g, 42.24 mmol), 2-methyl acryl­amide (3.731 g, 43.84 mmol) and 2 mL of Triton B was heated for 6.5 h in a boiling water bath. The mixture solidified upon cooling. The crude product was slurried with 95% ethanol and the remaining solid recrystallized three times from 95% ethanol to yield 2.841g (13.91 mmol, 32%) of spectroscopically pure 1. Single crystals suitable for X-ray diffraction were obtained from these recrystallizations. M.p. 476–479 K. Analysis calculated for C10H12N4O, M = 204.20 g mol−1: C 58.82; H 5.92; N 27.44. Found: C 58.73; H 5.96; N 27.72. IR (KBr, cm−1): 3307 vs, 3208 s, 3155 vs, 2968 m, 2930 w, 1685 vs, 1442 m, 1315 m, 1226 s, 780 m, 742 vs. 1H NMR (400 MHz, DMSO-d6): 1.07 (d, J2-4 = 7 Hz, 3H; CH3), 3.06 (sext, J2-4 = 7 Hz, J2-3 = 7 Hz, 1H; 2-CH), 4.61 (dd, J2-3 = 7 Hz, J2-2′ = 14 Hz, 1H; CH2), 4.86 (dd, J2-3 = 7 Hz, J2-2′ = 14 Hz, 1H; CH2), 6.88 (s br, 1H; NH), 7.39 (m, 1H; 8-CH or 9-CH), 7.42 (s br, 1H; NH) 7.54 (m, 1H; 8-CH or 9-CH), 7.87 (m, 1H; 7-CH or 10-CH), 8.02 (m, 1H; 7-CH or 10-CH) ppm. The resonances for positions 7–10 appear as multiplets that can be inter­preted if the coupling constants between adjacent protons are 7–8 Hz, with longer range couplings of about 1 Hz. 13C{1H} NMR (100 MHz, DMSO-d6): 16.2 (CH3), 40.6 (2-CH), 50.6 (CH2), 111.5 (10-CH), 119.4 (7-CH), 124.3 (8-CH), 127.5 (9-CH), 133.5 (5-C), 145.4 (6-C), 175.3 (CO) (for numbering scheme cf. Fig. 2[link]).

The mother liquor remaining after the isolation of 1 was concentrated, and two additional crops of crystals were obtained. The second crop was several milligrams of nearly pure 2 and contained crystals suitable for X-ray diffraction. M.p. 476–479 K. Analysis calculated for C10H12N4O, M = 204.20 g mol−1: C 58.82; H 5.92; N 27.44. Found: C 58.92; H 6.20; N 27.50. IR (KBr, cm−1): 3307 vs, 3208 s, 3155 vs, 2968 m, 2930 w, 1685 vs, 1442 m, 1315 m, 1226 s, 780 m, 742 vs. 1H NMR (400 MHz, DMSO-d6): 1.06 (d, J2-4 = 7.0 Hz, 3H; CH3), 3.06 (sext, J2-4 = 7.0 Hz, J2-3 = 7.0 Hz, J2-3′ = 7.7 Hz, 1H; 2-CH), 4.64 (dd, J2-3 = 7.0 Hz, J3-3′ = 13.3 Hz, 1H; CH2), 4.93 (dd, J2-3 = 7.7 Hz, J3-3′ = 13.3 Hz, 1H; CH2), 6.91 (s br, 1H; NH), 7.43 (m, 2H; 6,9-CH), 7.48 (s br; NH), 7.91 (m, 2H; 7,8-CH). The resonances for 6-CH, 7-CH, 8-CH and 9-CH appear as an AA'BB' pattern. While there is no unique solution for AABB′ spectra, the 1H spectrum of the aromatic region of 2 can be duplicated using reasonable values of the coupling constants: J7-8 = 6.8 Hz, J6-7 = J8-9 = 8.6 Hz, J6-8 = J7-9 = 1.0 Hz, and J6-9 = 1.0 Hz. 13C{1H} NMR (100 MHz, DMSO-d6): 16.2 (CH3), 40.5 (2-CH), 58.5 (CH2), 118.3 (6,9-CH), 126.8 (7,8-CH), 144.1 (5,10-C), 175.0 (CO) (for numbering scheme cf. Fig. 3[link]).

Preparation of N,N-dimethyl-3-(1H-benzotriazol-1-yl)propanamide (3):

In a 150 mL three-neck flask, a mixture of benzotriazole (5.99 g, 50.0 mmol), N,N-di­methyl­acryl­amide (4.78 g, 48.8 mmol) and 2 mL of Triton B was heated for 6.5 h in a boiling water bath under nitro­gen. Upon cooling to 278 K, a yellow oil was obtained. This mixture was an approximate 2:1 mixture of 3 and 4. After recrystallization from ethanol, samples of pure 3 could be obtained. Single crystals suitable for X-ray diffraction were obtained from recrystallization from a CHCl3/hexa­nes mixture. M.p. 338–339 K. Analysis calculated for C10H12N4O, M = 218.26 g mol−1: C 60.53; H 6.47; N 25.60. Found: C 60.48; H 6.27; N 25.87. IR (KBr, cm−1): 3082 w, 3050 w, 3015 w, 2967 m, 2939 m, 2911 m, 1644 vs, 1496 s, 1452 s, 1414 s, 1396 s, 1338 m, 1298 m, 1216 s, 1151 s, 1092 s, 942 m, 761 s, 743 vs. 1H NMR (300 MHz, CDCl3): 2.92 (s, 3H; NCH3), 2.94 (s; NCH3), 3.14 (t, J2-3 = 7 Hz, 2H; 2-CH2), 4.98 (t, J2-3 = 7 Hz, 2H; 3-CH2), 7.38 (m, 2H; 7-CH or 8-CH), 7.51 (m, 2H; 7-CH or 8-CH), 7.20 (m, 2H; 6-CH or 9-CH), 8.05 (m, 2H; 6-CH or 9-CH). The resonances for positions 6–9 appear as multiplets that can be inter­preted if the coupling constants between adjacent protons are 7–8 Hz, with longer range couplings of about 1 Hz. 13C{1H} NMR (100 MHz, CDCl3): 33.2 (NCH3), 35.5 (NCH3), 37.0 (2-CH2), 43.9 (3-CH2), 110.0 (9-CH), 119.7 (6-CH), 123.9 (7-CH), 127.4 (8-CH), 133.3 (4-C), 145.8 (5-C), 169.5 (CO) (for numbering scheme cf. Fig. 4[link]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were fixed geom­etrically using a riding model with Uiso(H) = 1.2 Ueq(X) (X = C, N). The CH3 groups were allowed to rotate freely around the C—X vector (X = C, N) (AFIX 137 in SHELXL), and the amide NH2 groups in 1 and 2 were constrained to be planar (AFIX 93 in SHELXL). C—H distances in CH3 groups were constrained to 0.98 Å, those in CH2 groups to 0.99 Å and those in CH groups to 1.00 Å. N—H distances in 1 and 2 were constrained to 0.88 Å. For compound 2, reflection ([\overline{5}]62) strongly disagreed with the structural model and was therefore omitted from the refinement. In the case of compound 3, one N-bonded methyl group (C11) was refined as rotationally disordered over two positions. Site occupancy factors were refined freely to 0.59 (2) for H12A, H13A and H14A, and to 0.41 (2) for H12B, H13B and H14B.

Table 3
Experimental details

  1 2 3
Crystal data
Chemical formula C10H12N4O C10H12N4O C11H14N4O
Mr 204.24 204.24 218.26
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 100 133 153
a, b, c (Å) 7.3885 (9), 8.072 (1), 9.2976 (13) 5.5961 (11), 9.3462 (19), 10.472 (2) 7.1732 (6), 7.9945 (6), 9.5912 (7)
α, β, γ (°) 69.039 (12), 89.498 (10), 75.915 (10) 109.83 (3), 90.93 (3), 97.14 (3) 83.910 (6), 86.247 (6), 81.528 (6)
V3) 500.37 (12) 510.2 (2) 540.25 (7)
Z 2 2 2
Radiation type Cu Kα Mo Kα Mo Kα
μ (mm−1) 0.76 0.09 0.09
Crystal size (mm) 0.15 × 0.10 × 0.08 0.48 × 0.33 × 0.25 0.34 × 0.32 × 0.28
 
Data collection
Diffractometer Agilent Xcalibur, Atlas, Nova Stoe IPDS 2T Stoe IPDS 2T
Absorption correction Multi-scan (CrysAlis PRO, Agilent, 2003[Agilent (2003). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.919, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 28193, 2053, 2012 3731, 1774, 1653 4194, 1904, 1596
Rint 0.026 0.056 0.062
(sin θ/λ)max−1) 0.626 0.595 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.081, 1.11 0.037, 0.087, 1.09 0.047, 0.131, 1.03
No. of reflections 2053 1774 1904
No. of parameters 138 138 149
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.21 0.25, −0.18 0.22, −0.20
Computer programs: CrysAlis PRO (Agilent, 2003[Agilent (2003). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2003) for (1); X-AREA (Stoe & Cie, 2002) for (2), (3). Cell refinement: CrysAlis PRO (Agilent, 2003) for (1); X-AREA (Stoe & Cie, 2002) for (2), (3). Data reduction: CrysAlis PRO (Agilent, 2003) for (1); X-AREA and X-RED (Stoe & Cie, 2002) for (2), (3). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for (1), (2); SIR97 (Altomare et al., 1999) for (3). For all compounds, program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015).

(1) 3-(1H-Benzotriazol-1-yl)-2-methylpropanamide top
Crystal data top
C10H12N4OZ = 2
Mr = 204.24F(000) = 216
Triclinic, P1Dx = 1.356 Mg m3
a = 7.3885 (9) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.072 (1) ÅCell parameters from 21215 reflections
c = 9.2976 (13) Åθ = 5.1–76.1°
α = 69.039 (12)°µ = 0.76 mm1
β = 89.498 (10)°T = 100 K
γ = 75.915 (10)°Prism, colorless
V = 500.37 (12) Å30.15 × 0.10 × 0.08 mm
Data collection top
Agilent Xcalibur, Atlas, Nova
diffractometer
2053 independent reflections
Radiation source: fine-focus sealed tube2012 reflections with I > 2σ(I)
Detector resolution: 10.3543 pixels mm-1Rint = 0.026
ω scansθmax = 75.0°, θmin = 5.1°
Absorption correction: multi-scan
(CrysAlis PRO, Agilent, 2003)
h = 99
Tmin = 0.919, Tmax = 1.000k = 1010
28193 measured reflectionsl = 911
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0349P)2 + 0.1806P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2053 reflectionsΔρmax = 0.33 e Å3
138 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0117 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15133 (14)0.68751 (14)0.89673 (11)0.0176 (2)
C20.25594 (14)0.83380 (13)0.82012 (11)0.0179 (2)
H30.1650060.9493150.7523420.022*
C30.40506 (14)0.76911 (14)0.72364 (11)0.0184 (2)
H40.4880910.8533200.6943990.022*
H50.4825640.6453260.7870980.022*
C40.35221 (17)0.87131 (16)0.94623 (13)0.0262 (3)
H80.2581680.9110251.0102230.031*
H60.4163720.9679880.8981440.031*
H70.4436770.7589071.0110030.031*
C50.29153 (13)0.61763 (14)0.55521 (12)0.0167 (2)
C60.21574 (14)0.69407 (14)0.40143 (12)0.0181 (2)
C70.16602 (14)0.58415 (15)0.32859 (12)0.0213 (2)
H90.1134260.6347720.2244000.026*
C80.19688 (14)0.40025 (15)0.41480 (13)0.0220 (2)
H100.1651460.3218020.3691430.026*
C90.27490 (14)0.32485 (14)0.57016 (13)0.0214 (2)
H110.2948730.1967040.6253940.026*
C100.32283 (14)0.43018 (14)0.64405 (12)0.0191 (2)
H120.3739100.3791760.7486800.023*
N10.03436 (12)0.74707 (12)0.89024 (10)0.0209 (2)
H20.1014530.6696470.9360620.025*
H10.0898610.8638170.8401370.025*
N20.32450 (12)0.76231 (11)0.58395 (10)0.0173 (2)
N30.27302 (13)0.91737 (12)0.45699 (10)0.0209 (2)
N40.20701 (13)0.87851 (12)0.34604 (10)0.0213 (2)
O0.23854 (10)0.52560 (10)0.96498 (9)0.02255 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0225 (5)0.0179 (5)0.0130 (4)0.0063 (4)0.0019 (4)0.0056 (4)
C20.0214 (5)0.0164 (5)0.0158 (5)0.0061 (4)0.0012 (4)0.0049 (4)
C30.0195 (5)0.0197 (5)0.0171 (5)0.0071 (4)0.0007 (4)0.0065 (4)
C40.0344 (6)0.0286 (6)0.0207 (5)0.0144 (5)0.0023 (4)0.0110 (4)
C50.0152 (4)0.0180 (5)0.0173 (5)0.0046 (4)0.0030 (4)0.0068 (4)
C60.0171 (5)0.0187 (5)0.0163 (5)0.0030 (4)0.0026 (4)0.0048 (4)
C70.0190 (5)0.0278 (6)0.0182 (5)0.0050 (4)0.0021 (4)0.0103 (4)
C80.0200 (5)0.0259 (5)0.0258 (6)0.0083 (4)0.0055 (4)0.0148 (4)
C90.0209 (5)0.0178 (5)0.0256 (5)0.0063 (4)0.0053 (4)0.0071 (4)
C100.0187 (5)0.0182 (5)0.0178 (5)0.0049 (4)0.0021 (4)0.0035 (4)
N10.0207 (4)0.0165 (4)0.0213 (4)0.0050 (3)0.0022 (3)0.0018 (3)
N20.0206 (4)0.0152 (4)0.0148 (4)0.0053 (3)0.0018 (3)0.0037 (3)
N30.0255 (5)0.0170 (4)0.0170 (4)0.0046 (3)0.0022 (3)0.0032 (3)
N40.0247 (5)0.0195 (4)0.0170 (4)0.0037 (4)0.0007 (3)0.0050 (3)
O0.0222 (4)0.0172 (4)0.0234 (4)0.0045 (3)0.0025 (3)0.0020 (3)
Geometric parameters (Å, º) top
C1—O1.2369 (13)C5—C101.4014 (14)
C1—N11.3329 (14)C6—N41.3752 (13)
C1—C21.5271 (14)C6—C71.4049 (15)
C2—C31.5261 (14)C7—C81.3730 (15)
C2—C41.5316 (14)C7—H90.9500
C2—H31.0000C8—C91.4157 (16)
C3—N21.4576 (13)C8—H100.9500
C3—H40.9900C9—C101.3744 (15)
C3—H50.9900C9—H110.9500
C4—H80.9800C10—H120.9500
C4—H60.9800N1—H20.8800
C4—H70.9800N1—H10.8800
C5—N21.3628 (13)N2—N31.3505 (12)
C5—C61.3977 (14)N3—N41.3096 (13)
O—C1—N1123.48 (9)N4—C6—C5108.40 (9)
O—C1—C2120.43 (9)N4—C6—C7130.82 (10)
N1—C1—C2116.03 (9)C5—C6—C7120.77 (10)
C3—C2—C1110.96 (8)C8—C7—C6116.99 (10)
C3—C2—C4108.61 (9)C8—C7—H9121.5
C1—C2—C4108.83 (8)C6—C7—H9121.5
C3—C2—H3109.5C7—C8—C9121.51 (10)
C1—C2—H3109.5C7—C8—H10119.2
C4—C2—H3109.5C9—C8—H10119.2
N2—C3—C2112.50 (8)C10—C9—C8122.44 (10)
N2—C3—H4109.1C10—C9—H11118.8
C2—C3—H4109.1C8—C9—H11118.8
N2—C3—H5109.1C9—C10—C5115.74 (10)
C2—C3—H5109.1C9—C10—H12122.1
H4—C3—H5107.8C5—C10—H12122.1
C2—C4—H8109.5C1—N1—H2120.0
C2—C4—H6109.5C1—N1—H1120.0
H8—C4—H6109.5H2—N1—H1120.0
C2—C4—H7109.5N3—N2—C5110.44 (8)
H8—C4—H7109.5N3—N2—C3119.41 (8)
H6—C4—H7109.5C5—N2—C3130.14 (8)
N2—C5—C6104.07 (9)N4—N3—N2108.81 (8)
N2—C5—C10133.36 (9)N3—N4—C6108.28 (8)
C6—C5—C10122.55 (10)
O—C1—C2—C347.10 (12)C8—C9—C10—C50.69 (15)
N1—C1—C2—C3135.56 (9)N2—C5—C10—C9177.82 (10)
O—C1—C2—C472.35 (12)C6—C5—C10—C90.27 (15)
N1—C1—C2—C4104.99 (10)C6—C5—N2—N30.07 (11)
C1—C2—C3—N270.99 (10)C10—C5—N2—N3178.28 (11)
C4—C2—C3—N2169.42 (8)C6—C5—N2—C3179.08 (9)
N2—C5—C6—N40.01 (11)C10—C5—N2—C30.74 (18)
C10—C5—C6—N4178.56 (9)C2—C3—N2—N382.84 (11)
N2—C5—C6—C7178.91 (9)C2—C3—N2—C598.22 (12)
C10—C5—C6—C70.34 (15)C5—N2—N3—N40.11 (11)
N4—C6—C7—C8178.10 (10)C3—N2—N3—N4179.24 (8)
C5—C6—C7—C80.53 (15)N2—N3—N4—C60.10 (11)
C6—C7—C8—C90.13 (15)C5—C6—N4—N30.06 (11)
C7—C8—C9—C100.51 (16)C7—C6—N4—N3178.70 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···Oi0.882.022.8970 (12)175
N1—H1···N4ii0.882.163.0017 (14)161
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+2, z+1.
(2) 3-(2H-Benzotriazol-2-yl)-2-methylpropanamide top
Crystal data top
C10H12N4OZ = 2
Mr = 204.24F(000) = 216
Triclinic, P1Dx = 1.329 Mg m3
a = 5.5961 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3462 (19) ÅCell parameters from 5587 reflections
c = 10.472 (2) Åθ = 2.1–29.2°
α = 109.83 (3)°µ = 0.09 mm1
β = 90.93 (3)°T = 133 K
γ = 97.14 (3)°Prism, colorless
V = 510.2 (2) Å30.48 × 0.33 × 0.25 mm
Data collection top
Stoe IPDS 2T
diffractometer
1653 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Detector resolution: 6.67 pixels mm-1θmax = 25.0°, θmin = 2.1°
area detector scansh = 66
3731 measured reflectionsk = 1111
1774 independent reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.028P)2 + 0.190P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1774 reflectionsΔρmax = 0.25 e Å3
138 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.11 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0227 (2)0.64543 (13)0.69653 (13)0.0214 (3)
C20.0204 (2)0.74112 (14)0.84610 (13)0.0225 (3)
H30.0989230.8151900.8579030.027*
C30.2682 (3)0.82849 (15)0.90085 (13)0.0252 (3)
H50.2622520.8883030.9986660.030*
H40.3838370.7542500.8924960.030*
C40.0516 (3)0.63442 (17)0.92572 (15)0.0341 (4)
H60.2158050.5817490.8952550.041*
H80.0455680.6946361.0229690.041*
H70.0604410.5583410.9100780.041*
C50.5730 (2)1.03192 (15)0.71230 (13)0.0223 (3)
C60.3863 (2)1.11949 (15)0.75999 (13)0.0232 (3)
C70.3662 (3)1.25214 (16)0.72735 (15)0.0298 (3)
H90.2396831.3119620.7586540.036*
C80.5363 (3)1.29041 (17)0.64894 (15)0.0325 (4)
H100.5280501.3793450.6253520.039*
C90.7253 (3)1.20216 (18)0.60133 (15)0.0347 (4)
H110.8400161.2338700.5470200.042*
C100.7479 (3)1.07309 (17)0.63095 (15)0.0311 (4)
H120.8747231.0140030.5984790.037*
N10.1609 (2)0.64790 (12)0.61694 (11)0.0250 (3)
H10.1708030.5919490.5299440.030*
H20.2734770.7054940.6508630.030*
N20.5490 (2)0.91227 (12)0.75780 (11)0.0239 (3)
N30.3548 (2)0.93272 (12)0.82946 (11)0.0220 (3)
N40.2480 (2)1.05296 (13)0.83583 (12)0.0258 (3)
O0.18732 (19)0.56749 (11)0.65622 (10)0.0320 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0270 (7)0.0161 (6)0.0212 (7)0.0033 (5)0.0079 (5)0.0062 (5)
C20.0281 (7)0.0205 (6)0.0194 (7)0.0058 (5)0.0064 (5)0.0065 (5)
C30.0304 (7)0.0262 (7)0.0195 (6)0.0050 (6)0.0012 (5)0.0084 (5)
C40.0497 (10)0.0282 (7)0.0268 (7)0.0063 (7)0.0146 (7)0.0116 (6)
C50.0203 (7)0.0247 (6)0.0197 (6)0.0020 (5)0.0010 (5)0.0053 (5)
C60.0207 (7)0.0240 (6)0.0221 (7)0.0005 (5)0.0007 (5)0.0050 (5)
C70.0279 (8)0.0265 (7)0.0351 (8)0.0044 (6)0.0017 (6)0.0104 (6)
C80.0330 (8)0.0294 (7)0.0361 (8)0.0040 (6)0.0060 (6)0.0157 (6)
C90.0273 (8)0.0466 (9)0.0323 (8)0.0058 (7)0.0017 (6)0.0198 (7)
C100.0230 (7)0.0412 (8)0.0296 (7)0.0047 (6)0.0062 (6)0.0124 (6)
N10.0286 (6)0.0252 (6)0.0203 (6)0.0096 (5)0.0050 (5)0.0042 (4)
N20.0226 (6)0.0267 (6)0.0210 (6)0.0050 (5)0.0029 (4)0.0057 (4)
N30.0230 (6)0.0212 (5)0.0203 (6)0.0029 (4)0.0010 (4)0.0051 (4)
N40.0250 (6)0.0246 (6)0.0276 (6)0.0045 (5)0.0050 (5)0.0080 (5)
O0.0331 (6)0.0341 (6)0.0240 (5)0.0136 (5)0.0027 (4)0.0008 (4)
Geometric parameters (Å, º) top
C1—O1.2364 (16)C5—C101.410 (2)
C1—N11.3199 (18)C6—N41.3607 (18)
C1—C21.5187 (18)C6—C71.4098 (19)
C2—C31.514 (2)C7—C81.360 (2)
C2—C41.5255 (18)C7—H90.9500
C2—H31.0000C8—C91.415 (2)
C3—N31.4598 (17)C8—H100.9500
C3—H50.9900C9—C101.363 (2)
C3—H40.9900C9—H110.9500
C4—H60.9800C10—H120.9500
C4—H80.9800N1—H10.8800
C4—H70.9800N1—H20.8800
C5—N21.3498 (18)N2—N31.3276 (16)
C5—C61.4013 (19)N3—N41.3198 (16)
O—C1—N1123.67 (12)N4—C6—C5108.31 (12)
O—C1—C2119.91 (12)N4—C6—C7130.81 (13)
N1—C1—C2116.40 (11)C5—C6—C7120.88 (13)
C3—C2—C1110.76 (11)C8—C7—C6116.86 (13)
C3—C2—C4108.52 (12)C8—C7—H9121.6
C1—C2—C4108.88 (11)C6—C7—H9121.6
C3—C2—H3109.6C7—C8—C9122.17 (13)
C1—C2—H3109.6C7—C8—H10118.9
C4—C2—H3109.6C9—C8—H10118.9
N3—C3—C2112.65 (11)C10—C9—C8122.07 (14)
N3—C3—H5109.1C10—C9—H11119.0
C2—C3—H5109.1C8—C9—H11119.0
N3—C3—H4109.1C9—C10—C5116.47 (14)
C2—C3—H4109.1C9—C10—H12121.8
H5—C3—H4107.8C5—C10—H12121.8
C2—C4—H6109.5C1—N1—H1120.0
C2—C4—H8109.5C1—N1—H2120.0
H6—C4—H8109.5H1—N1—H2120.0
C2—C4—H7109.5N3—N2—C5103.09 (11)
H6—C4—H7109.5N4—N3—N2117.11 (11)
H8—C4—H7109.5N4—N3—C3121.80 (11)
N2—C5—C6108.57 (12)N2—N3—C3121.07 (11)
N2—C5—C10129.88 (13)N3—N4—C6102.93 (11)
C6—C5—C10121.56 (13)
O—C1—C2—C345.53 (16)C8—C9—C10—C50.2 (2)
N1—C1—C2—C3136.47 (12)N2—C5—C10—C9179.87 (13)
O—C1—C2—C473.73 (16)C6—C5—C10—C90.0 (2)
N1—C1—C2—C4104.27 (14)C6—C5—N2—N30.24 (13)
C1—C2—C3—N359.74 (14)C10—C5—N2—N3179.62 (14)
C4—C2—C3—N3179.22 (10)C5—N2—N3—N40.10 (14)
N2—C5—C6—N40.30 (14)C5—N2—N3—C3178.27 (11)
C10—C5—C6—N4179.57 (12)C2—C3—N3—N465.73 (15)
N2—C5—C6—C7179.77 (12)C2—C3—N3—N2115.97 (13)
C10—C5—C6—C70.4 (2)N2—N3—N4—C60.08 (15)
N4—C6—C7—C8179.50 (14)C3—N3—N4—C6178.44 (11)
C5—C6—C7—C80.41 (19)C5—C6—N4—N30.23 (14)
C6—C7—C8—C90.2 (2)C7—C6—N4—N3179.86 (13)
C7—C8—C9—C100.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Oi0.882.002.8745 (18)170
N1—H2···N2ii0.882.243.0850 (18)161
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z.
(3) 3-(1H-Benzotriazol-1-yl)-N,N-dimethylpropanamide top
Crystal data top
C11H14N4OZ = 2
Mr = 218.26F(000) = 232
Triclinic, P1Dx = 1.342 Mg m3
a = 7.1732 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.9945 (6) ÅCell parameters from 6240 reflections
c = 9.5912 (7) Åθ = 2.1–29.2°
α = 83.910 (6)°µ = 0.09 mm1
β = 86.247 (6)°T = 153 K
γ = 81.528 (6)°Block, colorless
V = 540.25 (7) Å30.34 × 0.32 × 0.28 mm
Data collection top
Stoe IPDS 2T
diffractometer
1596 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.062
Detector resolution: 6.67 pixels mm-1θmax = 25.0°, θmin = 2.1°
area detector scansh = 88
4194 measured reflectionsk = 99
1904 independent reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0794P)2 + 0.073P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
1904 reflectionsΔρmax = 0.22 e Å3
149 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.062 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2374 (2)0.1609 (2)0.89843 (17)0.0317 (4)
C20.2225 (3)0.3473 (2)0.91977 (18)0.0357 (4)
H20.3127660.3613410.9900120.043*
H10.0938010.3871310.9577600.043*
C30.2629 (3)0.4566 (2)0.78541 (18)0.0363 (4)
H40.1879720.4277980.7104960.044*
H30.2215280.5773970.8001630.044*
C40.5548 (2)0.34481 (19)0.63744 (16)0.0308 (4)
C50.7407 (3)0.3710 (2)0.64288 (17)0.0356 (4)
C60.8817 (3)0.2937 (2)0.5534 (2)0.0441 (5)
H51.0099540.3093930.5570830.053*
C70.8268 (3)0.1947 (2)0.46046 (19)0.0441 (5)
H60.9193840.1392490.3989950.053*
C80.6372 (3)0.1724 (2)0.45317 (18)0.0397 (5)
H70.6049400.1043620.3854870.048*
C90.4981 (3)0.2455 (2)0.54036 (17)0.0352 (4)
H80.3700030.2300340.5355560.042*
C100.2411 (3)0.0869 (3)1.15684 (19)0.0505 (5)
H100.1380000.0367491.2098140.061*
H90.2192910.2104501.1594580.061*
H110.3609940.0402581.1988820.061*
C110.2605 (3)0.1321 (2)0.9926 (2)0.0454 (5)
H13A0.3861190.1906041.0158260.054*0.59 (2)
H14A0.2387410.1441730.8945960.054*0.59 (2)
H12A0.1646660.1823991.0541970.054*0.59 (2)
H12B0.1402310.1541800.9605870.054*0.41 (2)
H13B0.2876090.2006111.0818160.054*0.41 (2)
H14B0.3616850.1623850.9222160.054*0.41 (2)
N10.2484 (2)0.04712 (18)1.01231 (15)0.0362 (4)
N20.4605 (2)0.43518 (16)0.73920 (14)0.0327 (4)
N30.5824 (2)0.51402 (18)0.80163 (15)0.0390 (4)
N40.7510 (2)0.4768 (2)0.74587 (16)0.0422 (4)
O0.2366 (2)0.11687 (15)0.77971 (13)0.0442 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0305 (8)0.0308 (8)0.0359 (9)0.0073 (6)0.0002 (7)0.0095 (7)
C20.0391 (10)0.0295 (8)0.0404 (9)0.0059 (7)0.0002 (7)0.0114 (7)
C30.0403 (10)0.0251 (8)0.0446 (9)0.0027 (7)0.0055 (8)0.0088 (7)
C40.0403 (9)0.0226 (7)0.0307 (8)0.0074 (7)0.0052 (7)0.0021 (6)
C50.0421 (10)0.0325 (8)0.0345 (8)0.0118 (7)0.0058 (7)0.0020 (7)
C60.0380 (10)0.0498 (11)0.0452 (10)0.0101 (8)0.0022 (8)0.0020 (8)
C70.0528 (12)0.0388 (10)0.0387 (10)0.0024 (8)0.0040 (8)0.0046 (7)
C80.0592 (12)0.0289 (8)0.0330 (9)0.0102 (8)0.0031 (8)0.0066 (7)
C90.0453 (10)0.0281 (8)0.0352 (9)0.0111 (7)0.0066 (7)0.0064 (7)
C100.0641 (13)0.0521 (12)0.0382 (10)0.0184 (10)0.0010 (9)0.0050 (8)
C110.0473 (11)0.0292 (9)0.0601 (12)0.0079 (8)0.0025 (9)0.0032 (8)
N10.0405 (8)0.0313 (7)0.0386 (8)0.0088 (6)0.0016 (6)0.0065 (6)
N20.0418 (8)0.0245 (6)0.0349 (7)0.0102 (6)0.0056 (6)0.0071 (5)
N30.0482 (9)0.0340 (7)0.0401 (8)0.0164 (7)0.0093 (7)0.0090 (6)
N40.0446 (9)0.0438 (9)0.0429 (8)0.0166 (7)0.0073 (7)0.0092 (7)
O0.0648 (9)0.0330 (7)0.0382 (7)0.0126 (6)0.0033 (6)0.0111 (5)
Geometric parameters (Å, º) top
C1—O1.228 (2)C7—H60.9500
C1—N11.344 (2)C8—C91.364 (3)
C1—C21.513 (2)C8—H70.9500
C2—C31.515 (2)C9—H80.9500
C2—H20.9900C10—N11.451 (2)
C2—H10.9900C10—H100.9800
C3—N21.448 (2)C10—H90.9800
C3—H40.9900C10—H110.9800
C3—H30.9900C11—N11.455 (2)
C4—N21.361 (2)C11—H13A0.9800
C4—C51.385 (3)C11—H14A0.9800
C4—C91.401 (2)C11—H12A0.9800
C5—N41.379 (2)C11—H12B0.9800
C5—C61.399 (3)C11—H13B0.9800
C6—C71.365 (3)C11—H14B0.9800
C6—H50.9500N2—N31.3535 (19)
C7—C81.404 (3)N3—N41.296 (2)
O—C1—N1121.60 (14)N1—C10—H9109.5
O—C1—C2120.14 (15)H10—C10—H9109.5
N1—C1—C2118.25 (14)N1—C10—H11109.5
C1—C2—C3112.71 (13)H10—C10—H11109.5
C1—C2—H2109.1H9—C10—H11109.5
C3—C2—H2109.1N1—C11—H13A109.5
C1—C2—H1109.1N1—C11—H14A109.5
C3—C2—H1109.1H13A—C11—H14A109.5
H2—C2—H1107.8N1—C11—H12A109.5
N2—C3—C2113.14 (14)H13A—C11—H12A109.5
N2—C3—H4109.0H14A—C11—H12A109.5
C2—C3—H4109.0N1—C11—H12B109.5
N2—C3—H3109.0H13A—C11—H12B141.1
C2—C3—H3109.0H14A—C11—H12B56.3
H4—C3—H3107.8H12A—C11—H12B56.3
N2—C4—C5104.46 (14)N1—C11—H13B109.5
N2—C4—C9133.38 (16)H13A—C11—H13B56.3
C5—C4—C9122.15 (16)H14A—C11—H13B141.1
N4—C5—C4108.56 (16)H12A—C11—H13B56.3
N4—C5—C6130.69 (17)H12B—C11—H13B109.5
C4—C5—C6120.75 (16)N1—C11—H14B109.5
C7—C6—C5117.01 (17)H13A—C11—H14B56.3
C7—C6—H5121.5H14A—C11—H14B56.3
C5—C6—H5121.5H12A—C11—H14B141.1
C6—C7—C8121.86 (18)H12B—C11—H14B109.5
C6—C7—H6119.1H13B—C11—H14B109.5
C8—C7—H6119.1C1—N1—C10125.72 (14)
C9—C8—C7121.95 (16)C1—N1—C11118.52 (14)
C9—C8—H7119.0C10—N1—C11115.70 (15)
C7—C8—H7119.0N3—N2—C4109.63 (14)
C8—C9—C4116.25 (16)N3—N2—C3119.52 (13)
C8—C9—H8121.9C4—N2—C3130.85 (14)
C4—C9—H8121.9N4—N3—N2109.52 (13)
N1—C10—H10109.5N3—N4—C5107.81 (14)
O—C1—C2—C316.2 (2)C2—C1—N1—C102.2 (3)
N1—C1—C2—C3164.77 (15)O—C1—N1—C110.2 (3)
C1—C2—C3—N272.24 (18)C2—C1—N1—C11179.27 (15)
N2—C4—C5—N40.66 (18)C5—C4—N2—N30.86 (18)
C9—C4—C5—N4178.42 (14)C9—C4—N2—N3178.07 (17)
N2—C4—C5—C6178.83 (15)C5—C4—N2—C3179.29 (15)
C9—C4—C5—C62.1 (3)C9—C4—N2—C31.8 (3)
N4—C5—C6—C7179.73 (18)C2—C3—N2—N378.81 (17)
C4—C5—C6—C70.9 (3)C2—C3—N2—C4101.35 (19)
C5—C6—C7—C80.8 (3)C4—N2—N3—N40.77 (19)
C6—C7—C8—C91.4 (3)C3—N2—N3—N4179.36 (14)
C7—C8—C9—C40.2 (2)N2—N3—N4—C50.32 (18)
N2—C4—C9—C8179.75 (17)C4—C5—N4—N30.23 (19)
C5—C4—C9—C81.5 (2)C6—C5—N4—N3179.20 (18)
O—C1—N1—C10176.82 (17)
 

Acknowledgements

The material is based on work supported by the National Science Foundation under CHE-1461175. General financial support by the Otto-von-Guericke-Universität Magdeburg is also gratefully acknowledged.

References

First citationAgilent (2003). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBassanetti, I., Atzeri, C., Tinonin, D. A. & Marchiò, L. (2016). Cryst. Growth Des. 16, 3543–3552.  CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBigmore, H. R., Lawrence, S. C., Mountford, P. & Tredget, C. S. (2005). Dalton Trans. pp. 635–651.  Web of Science CrossRef PubMed Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationD'Amico, D. J., McDougal, M. A., Amenta, D. S., Gilje, J. W., Wang, S., Hrib, C. G. & Edelmann, F. T. (2015). Polyhedron, 88, 19–28.  CAS Google Scholar
First citationGirma, K. B., Lorenz, V., Blaurock, S. & Edelmann, F. T. (2008). Z. Anorg. Allg. Chem. 634, 267–273.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrieck, S., Koch, A., Hinze, K., Müller, C., Lange, J., Görls, H. & Westerhausen, M. (2016). Eur. J. Inorg. Chem. pp. 2332–2348.  CSD CrossRef Google Scholar
First citationMarques, N., Sella, A. & Takats, J. (2002). Chem. Rev. 102, 2137–2160.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMauret, P., Fayet, J. P., Fabre, M., Elguero, J. & De Mendoza, J. (1974). J. Chim. Phys. Chim. Biol. 71, 115–116.  CAS Google Scholar
First citationMcGaughey, G. B., Gagné, M. & Rappé, A. K. (1998). J. Biol. Chem. 273, 15458–15463.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNegri, F. & Caminati, W. (1996). Chem. Phys. Lett. 260, 119–124.  CrossRef CAS Google Scholar
First citationNesmeyanov, A. N., Babin, V. N., Fedorov, L. A., Rybinskaya, M. I. & Fedin, E. I. (1969). Tetrahedron, 25, 4667–4670.  CrossRef CAS Google Scholar
First citationOtero, A., Fernández-Baeza, J., Lara-Sánchez, A. & Sánchez-Barba, L. F. (2013). Coord. Chem. Rev. 257, 1806–1868.  CrossRef CAS Google Scholar
First citationPaulo, A., Correia, J. D. G., Campello, M. P. C. & Santos, I. A. (2004). Polyhedron, 23, 331–360.  CrossRef CAS Google Scholar
First citationPoznański, J., Najda, A., Bretner, M. & Shugar, D. (2007). J. Phys. Chem. A, 111, 6501–6509.  Google Scholar
First citationSemeniuc, R. F. & Reger, D. L. (2016). Eur. J. Inorg. Chem. pp. 2253–2271.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, J. M. (2008). Comments Inorg. Chem. 29, 189–233.  Web of Science CrossRef CAS Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTrofimenko, S. (1993). Chem. Rev. 93, 943–980.  CrossRef CAS Web of Science Google Scholar
First citationTrofimenko, S. (2004). Polyhedron, 23, 197–203.  Web of Science CrossRef CAS Google Scholar
First citationWagner, T., Hrib, C. G., Lorenz, V., Edelmann, F. T., Zhang, J. & Li, Q. (2012). Z. Anorg. Allg. Chem. 638, 2185–2188.  CAS Google Scholar
First citationWang, S., Liebing, P., Oehler, F., Gilje, J. W., Hrib, C. G. & Edelmann, F. T. (2017). Cryst. Growth Des. 17 doi: 10.1021/acs.cgd.7b00361.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds