research communications
μ-chlorido-bis(chlorido{N1,N1-diethyl-N4-[(pyridin-2-yl-κN)methylidene]benzene-1,4-diamine-κN4}mercury(II))
of di-aDepartment of Chemistry, College of Science, Sultan Qaboos University, PO Box 36 Al-Khod 123, Muscat, Sultanate of Oman, bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and cDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: ekaterina_goleva@list.ru
The title dinuclear mercury(II) complex, [Hg2Cl4(C16H19N3)2], synthesized from the pyridine-derived Schiff base (E)-N1,N1-diethyl-N4-[(pyridin-2-yl)methylidene]benzene-1,4-diamine (DPMBD), has inversion symmetry. The five-coordinated HgII atoms have distorted square-pyramidal stereochemistry comprising two N-atom donors from bidentate chelate BPMBD ligands and three Cl-atom donors, two bridging and one monodentate. The dihedral angle between the benzene and the pyridine rings in the BPMBD ligand is 7.55 (4)°. In the crystal, the dinuclear molecules are linked by weak C—H⋯Cl hydrogen bonds, forming zigzag ribbons lying parallel to [001]. Also present in the structure are π–π interactions between benzene and pyridine rings [minimum ring-centroid separation = 3.698 (8) Å].
Keywords: crystal structure; binuclear mercury(II) complex; five-coordinated mercury(II) ions; distorted square-pyramidal coordination; DPMBD; Schiff base.
CCDC reference: 1531593
1. Chemical context
Mercury is one of the most prevalent toxic metals in the environment and gains access to the body orally or dermally, causing cell dysfunction that consequently leads to health problems (Mandal et al., 2012). Schiff base complexes of 2-pyridinecarboxaldehyde and its derivatives have been found to be good herbicides, used for the protection of plants (Hughes & Prince, 1978). Transition metal complexes of pyridyl have found applications in catalysis (Kasselouri et al., 1993). Pyridyl derivatives of are important building blocks for many important compounds, widely used in biological applications such as antioxidative, anticancer agents, as fluorescent probes in industry, in coordination chemistry and in catalysis (Jursic et al., 2002; Song et al., 2011; Motswainyana et al., 2013; Das et al., 2013). Our research interest focuses on a study of derived from N1,N1-diethyl-p-phenylenediamine and their metal complexes (Faizi & Hussain, 2014; Faizi et al., 2015). We report herein the synthesis and the of a new complex of mercury(II), [Hg2Cl4(C16H19N3)2], with the pyridine-derived Schiff base (E)-N1,N1-diethyl-N4-[(pyridin-2-yl)methylidene]benzene-1,4-diamine (DPMBD).
2. Structural commentary
The dinuclear molecule of the title complex is generated by inversion symmetry (Fig. 1). The Schiff base-derived ligand (DPMBD) coordinates to the HgII atom in a bidentate chelating mode through the N atoms of the pyridine ring (N1) and the imine group (N2) [Hg1—N = 2.317 (9) and 2.437 (8) Å, respectively].
The five-coordinated Hg2+ ion has a distorted square-pyramidal geometry completed by three Hg—Cl bonds, one monodentate [Hg1—Cl2 = 2.402 (4) Å] and two bridging Hg1—Cl1 [2.459 (3) Å] and Hg1—Cl1i [2.999 (3) Å; symmetry code: (i) −x + 2, −y + 1, −z + 1]. The environment of a five-coordinated mercuric ion is common among Hg2+ complexes (Baul et al., 2004). The longest Hg—Cl distance bridges across the centre of inversion, giving an Hg⋯Hgi separation of 4.1985 (16) Å. The observed Hg—Cl and Hg—N bond lengths and bond angles are considered normal for this type of HgII complex (Faizi & Prisyazhnaya, 2015; Faizi & Sen, 2014). The benzene and pyridine rings of the DPMBD ligand form a dihedral angle of 7.55 (4)°.
3. Supramolecular features
In the crystal, molecules are linked by C—H⋯Cl hydrogen bonds, forming a sheet like arrangement parallel to [001] (see Table 1 and Fig. 2 for details). The centroid-to-centroid distance between inversion-related benzene rings (−x + 1, −y + 2, −z + 1) is 3.879 (6) Å, indicating a weak π–π interaction along the c axis (Fig. 2). Also present is a benzene–pyridine ring interaction with Cg⋯Cg (−x + 1, −y + 1, −z + 1) = 3.698 (8) Å (Fig. 3).
4. Database survey
A search of the Cambridge Structure Database (Version 5.37 with updates May 2016; Groom et al., 2016) reveals that there is no entry in the literature for a dichloridomercury(II) complex with (E)-N1,N1-diethyl-N4-(pyridin-2-ylmethylene)benzene-1,4-diamine that has been structurally characterized. A dihalomercury(II) complex has been reported by Baul et al. (2013) in which the HgII atom is coordinated by the bis-chelating N-heterocyclic ligand [(E)-N-(pyridin-2-ylmethylidene)arylamine)], two bridging Cl ligands and one terminal Cl ligand. Similar HgII complexes have also been reported with a slight modification of the ligand (Nejad et al., 2010), viz. di-μ-chlorido-bis{chlorido[2-(phenyliminomethyl)-pyridine-κ2N,N′]mercury(II)} (Salehzadeh et al., 2011) di-μ-chlorido-bis{chlorido[4-nitro-N-(pyridin-2-ylmethylidene-κN)aniline-κN]mercury(II)} (Hoseyni et al., 2012), di-μ-chlorido-bis{chlorido[2,3-dimethyl-N-(pyridin-2-ylmethylidene)aniline-κ2N,N′]mercury(II)} (Faizi & Prisyazhnaya, 2015) and di-μ-chlorido-bis-(chlorido{N1-phenyl-N4)-[(pyridin-2-yl-κN)methylidene]benzene-1,4-diamine-κN4} mercury(II)). All of the above compounds show the HgII ion in a distorted square-pyramidal coordination environment formed by the N atoms of the diimine ligand, two bridging Cl atoms and one monodentate Cl atom, as found in the title compound, one of the bridging Hg—Cl bonds being significantly longer than the other.
5. Synthesis and crystallization
The iminopyridyl compound (E)-N1,N1-diethyl-N4-[(pyridin-2-yl)methylidene]benzene-1,4-diamine (DPMBD) was prepared by adding portionwise pyridine-2-carbaldehyde (0.29 g, 2.71 mmol) to a methanolic solution (50 ml) of N1,N1-diethyl-p-phenylenediamine (0.50 g, 2.71 mmol). The reaction mixture was stirred for 3 h at room temperature and filtered. The resulting yellow powder was washed with methanol (2 × 3 ml) and hexane (3 × 10 ml). The compound was recrystallized from hot MeOH to give yellow crystals, which were dried in a vacuum desiccator to give the pure product (yield: 0.60 g, 80%).
The title compound was prepared by reacting DPMBD (0.10 g, 0.39 mmol) with mercury(II) chloride (0.05 g, 0.18 mmol) in methanol (5 ml), with vigorous stirring for 2 h at room temperature. The red precipitate that formed was filtered off and redissolved in dimethylformamide. Crystals of the red title complex (yield: 0.31 g, 76%) suitable for X-ray analysis were obtained within 3 d by slow evaporation of the dimethylformamide.
6. Refinement
Crystal data, data collection and structure . H atoms bonded to C atoms were placed in calculated positions with C—H = 0.93–0.97 Å and included in the in a riding-model approximation with Uiso(H) = 1.5Ueq(C) (for methyl H) and Uiso(H) = 1.2Ueq(C) (for other H atoms).
details are summarized in Table 2Supporting information
CCDC reference: 1531593
https://doi.org/10.1107/S2056989017005874/zs2377sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017005874/zs2377Isup2.hkl
Data collection: APEX2 (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenberg & Putz, 2006); software used to prepare material for publication: DIAMOND (Brandenberg & Putz, 2006).[Hg2Cl4(C16H19N3)2] | Z = 1 |
Mr = 1049.66 | F(000) = 500 |
Triclinic, P1 | Dx = 1.921 Mg m−3 |
a = 8.329 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.565 (3) Å | Cell parameters from 3407 reflections |
c = 12.936 (4) Å | θ = 2.7–26.6° |
α = 89.043 (8)° | µ = 8.78 mm−1 |
β = 81.107 (7)° | T = 100 K |
γ = 84.206 (7)° | Needle, red |
V = 907.1 (5) Å3 | 0.20 × 0.15 × 0.12 mm |
Bruker APEXII CCD diffractometer | 3303 independent reflections |
Radiation source: sealed tube | 2779 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
φ and ω scans | θmax = 25.5°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −10→10 |
Tmin = 0.944, Tmax = 0.981 | k = −7→10 |
6272 measured reflections | l = −15→15 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.054 | w = 1/[σ2(Fo2) + (0.0936P)2 + 2.7873P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.156 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 2.56 e Å−3 |
3303 reflections | Δρmin = −2.43 e Å−3 |
158 parameters | Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
57 restraints | Extinction coefficient: 0.0154 (18) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Hg1 | 0.81436 (5) | 0.66012 (4) | 0.57709 (3) | 0.0580 (3) | |
Cl1 | 0.8912 (3) | 0.3764 (3) | 0.5896 (2) | 0.0565 (6) | |
Cl2 | 0.8896 (4) | 0.8431 (4) | 0.6955 (3) | 0.0756 (8) | |
N2 | 0.5206 (9) | 0.6438 (8) | 0.5996 (6) | 0.0418 (16) | |
N1 | 0.7065 (10) | 0.8114 (9) | 0.4494 (7) | 0.0486 (18) | |
C5 | 0.5464 (11) | 0.8065 (10) | 0.4459 (7) | 0.0425 (19) | |
C7 | 0.4285 (19) | 0.564 (2) | 0.6811 (12) | 0.0965 (13) | |
C6 | 0.4541 (11) | 0.7127 (10) | 0.5239 (7) | 0.045 (2) | |
H6 | 0.345407 | 0.701618 | 0.519674 | 0.054* | |
C4 | 0.4711 (14) | 0.8919 (12) | 0.3733 (8) | 0.054 (2) | |
H4 | 0.361040 | 0.884616 | 0.371099 | 0.064* | |
C8 | 0.2645 (12) | 0.5445 (14) | 0.6857 (8) | 0.060 (3) | |
H8 | 0.207736 | 0.588526 | 0.634069 | 0.072* | |
C2 | 0.7167 (15) | 0.9953 (13) | 0.3116 (9) | 0.062 (3) | |
H2 | 0.776639 | 1.064049 | 0.268772 | 0.075* | |
C10 | 0.266 (2) | 0.389 (2) | 0.8458 (13) | 0.1012 (7) | |
C1 | 0.7883 (14) | 0.9042 (13) | 0.3803 (10) | 0.062 (3) | |
H1 | 0.899938 | 0.905612 | 0.379875 | 0.075* | |
C12 | 0.505 (2) | 0.498 (2) | 0.7587 (12) | 0.1012 (7) | |
H12 | 0.613677 | 0.512565 | 0.760116 | 0.121* | |
N3 | 0.1794 (12) | 0.3036 (16) | 0.9288 (8) | 0.1012 (9) | |
C3 | 0.5551 (16) | 0.9872 (13) | 0.3044 (9) | 0.063 (3) | |
H3 | 0.505047 | 1.044522 | 0.254433 | 0.075* | |
C9 | 0.186 (2) | 0.462 (2) | 0.7646 (13) | 0.1012 (7) | |
H9 | 0.075706 | 0.452541 | 0.766178 | 0.121* | |
C11 | 0.424 (2) | 0.409 (2) | 0.8348 (13) | 0.1012 (7) | |
H11 | 0.484613 | 0.359696 | 0.882884 | 0.121* | |
C15 | 0.2584 (16) | 0.2780 (17) | 1.0150 (10) | 0.1012 (7) | |
H15A | 0.182347 | 0.272105 | 1.079438 | 0.121* | |
H15B | 0.331868 | 0.357020 | 1.021477 | 0.121* | |
C16 | 0.3500 (18) | 0.1193 (16) | 0.9831 (12) | 0.1012 (7) | |
H16A | 0.413710 | 0.082530 | 1.036072 | 0.152* | |
H16B | 0.273224 | 0.045619 | 0.975182 | 0.152* | |
H16C | 0.420937 | 0.129507 | 0.917922 | 0.152* | |
C13 | 0.0131 (13) | 0.3113 (19) | 0.9350 (12) | 0.1012 (7) | |
H13A | −0.023986 | 0.413409 | 0.909047 | 0.121* | |
H13B | −0.033164 | 0.307139 | 1.008496 | 0.121* | |
C14 | −0.059 (2) | 0.1883 (19) | 0.8782 (12) | 0.1012 (7) | |
H14A | −0.176271 | 0.208254 | 0.889439 | 0.152* | |
H14B | −0.019235 | 0.192811 | 0.804657 | 0.152* | |
H14C | −0.028458 | 0.086028 | 0.904586 | 0.152* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg1 | 0.0436 (3) | 0.0551 (3) | 0.0792 (4) | −0.00681 (18) | −0.0217 (2) | 0.0087 (2) |
Cl1 | 0.0404 (12) | 0.0548 (13) | 0.0761 (16) | −0.0047 (10) | −0.0161 (11) | 0.0139 (11) |
Cl2 | 0.0711 (19) | 0.0739 (18) | 0.089 (2) | −0.0146 (15) | −0.0278 (16) | −0.0072 (15) |
N2 | 0.039 (4) | 0.037 (4) | 0.052 (4) | −0.007 (3) | −0.010 (3) | 0.000 (3) |
N1 | 0.042 (4) | 0.041 (4) | 0.065 (5) | −0.007 (3) | −0.012 (4) | −0.004 (3) |
C5 | 0.040 (5) | 0.039 (4) | 0.049 (5) | −0.001 (4) | −0.012 (4) | −0.010 (4) |
C7 | 0.080 (2) | 0.124 (2) | 0.089 (2) | −0.025 (2) | −0.018 (2) | 0.032 (2) |
C6 | 0.039 (5) | 0.042 (4) | 0.057 (5) | −0.005 (4) | −0.018 (4) | −0.007 (4) |
C4 | 0.056 (6) | 0.054 (6) | 0.053 (5) | 0.000 (5) | −0.022 (5) | 0.002 (4) |
C8 | 0.038 (5) | 0.087 (8) | 0.058 (6) | −0.011 (5) | −0.012 (4) | 0.020 (5) |
C2 | 0.073 (8) | 0.052 (6) | 0.060 (6) | −0.010 (5) | −0.003 (5) | 0.007 (5) |
C10 | 0.0849 (13) | 0.1288 (13) | 0.0928 (13) | −0.0231 (13) | −0.0184 (12) | 0.0329 (13) |
C1 | 0.046 (6) | 0.056 (6) | 0.083 (7) | −0.009 (5) | −0.005 (5) | 0.009 (5) |
C12 | 0.0849 (13) | 0.1288 (13) | 0.0928 (13) | −0.0231 (13) | −0.0184 (12) | 0.0329 (13) |
N3 | 0.0848 (16) | 0.1290 (17) | 0.0927 (15) | −0.0230 (16) | −0.0183 (15) | 0.0330 (16) |
C3 | 0.077 (8) | 0.049 (5) | 0.064 (6) | 0.003 (5) | −0.018 (6) | 0.002 (5) |
C9 | 0.0849 (13) | 0.1288 (13) | 0.0928 (13) | −0.0231 (13) | −0.0184 (12) | 0.0329 (13) |
C11 | 0.0849 (13) | 0.1288 (13) | 0.0928 (13) | −0.0231 (13) | −0.0184 (12) | 0.0329 (13) |
C15 | 0.0849 (13) | 0.1288 (13) | 0.0928 (13) | −0.0231 (13) | −0.0184 (12) | 0.0329 (13) |
C16 | 0.0849 (13) | 0.1288 (13) | 0.0928 (13) | −0.0231 (13) | −0.0184 (12) | 0.0329 (13) |
C13 | 0.0849 (13) | 0.1288 (13) | 0.0928 (13) | −0.0231 (13) | −0.0184 (12) | 0.0329 (13) |
C14 | 0.0849 (13) | 0.1288 (13) | 0.0928 (13) | −0.0231 (13) | −0.0184 (12) | 0.0329 (13) |
Hg1—Cl1 | 2.459 (3) | C11—C12 | 1.37 (2) |
Hg1—Cl2 | 2.402 (4) | C13—C14 | 1.52 (2) |
Hg1—N1 | 2.317 (9) | C15—C16 | 1.52 (2) |
Hg1—N2 | 2.437 (8) | C1—H1 | 0.9300 |
Hg1—Cl1i | 2.999 (3) | C2—H2 | 0.9300 |
N1—C1 | 1.339 (15) | C3—H3 | 0.9300 |
N1—C5 | 1.346 (13) | C4—H4 | 0.9300 |
N2—C6 | 1.302 (12) | C6—H6 | 0.9300 |
N2—C7 | 1.414 (18) | C8—H8 | 0.9300 |
N3—C10 | 1.43 (2) | C9—H9 | 0.9300 |
N3—C13 | 1.370 (15) | C11—H11 | 0.9300 |
N3—C15 | 1.384 (17) | C12—H12 | 0.9300 |
C1—C2 | 1.342 (17) | C13—H13A | 0.9700 |
C2—C3 | 1.372 (19) | C13—H13B | 0.9700 |
C3—C4 | 1.360 (16) | C14—H14A | 0.9600 |
C4—C5 | 1.370 (14) | C14—H14B | 0.9600 |
C5—C6 | 1.453 (13) | C14—H14C | 0.9600 |
C7—C8 | 1.385 (19) | C15—H15A | 0.9700 |
C7—C12 | 1.36 (2) | C15—H15B | 0.9700 |
C8—C9 | 1.35 (2) | C16—H16A | 0.9600 |
C9—C10 | 1.43 (2) | C16—H16B | 0.9600 |
C10—C11 | 1.33 (2) | C16—H16C | 0.9600 |
Cl1—Hg1—Cl2 | 121.69 (10) | N1—C1—H1 | 118.00 |
Cl1—Hg1—N1 | 131.9 (2) | C2—C1—H1 | 118.00 |
Cl1—Hg1—N2 | 96.06 (17) | C1—C2—H2 | 120.00 |
Cl1—Hg1—Cl1i | 79.90 (8) | C3—C2—H2 | 120.00 |
Cl2—Hg1—N1 | 105.7 (2) | C2—C3—H3 | 121.00 |
Cl2—Hg1—N2 | 112.60 (19) | C4—C3—H3 | 121.00 |
Cl1i—Hg1—Cl2 | 102.68 (10) | C3—C4—H4 | 120.00 |
N1—Hg1—N2 | 71.2 (3) | C5—C4—H4 | 120.00 |
Cl1i—Hg1—N1 | 82.2 (2) | N2—C6—H6 | 119.00 |
Cl1i—Hg1—N2 | 140.17 (19) | C5—C6—H6 | 119.00 |
Hg1—Cl1—Hg1i | 100.10 (8) | C7—C8—H8 | 120.00 |
Hg1—N1—C1 | 125.9 (7) | C9—C8—H8 | 120.00 |
Hg1—N1—C5 | 116.6 (6) | C8—C9—H9 | 119.00 |
C1—N1—C5 | 117.5 (9) | C10—C9—H9 | 119.00 |
Hg1—N2—C6 | 112.2 (6) | C10—C11—H11 | 118.00 |
Hg1—N2—C7 | 125.9 (8) | C12—C11—H11 | 117.00 |
C6—N2—C7 | 121.8 (10) | C7—C12—H12 | 120.00 |
C10—N3—C13 | 117.2 (12) | C11—C12—H12 | 120.00 |
C10—N3—C15 | 114.4 (11) | N3—C13—H13A | 108.00 |
C13—N3—C15 | 123.0 (11) | N3—C13—H13B | 108.00 |
N1—C1—C2 | 123.0 (11) | C14—C13—H13A | 108.00 |
C1—C2—C3 | 120.1 (11) | C14—C13—H13B | 108.00 |
C2—C3—C4 | 117.3 (11) | H13A—C13—H13B | 107.00 |
C3—C4—C5 | 120.9 (11) | C13—C14—H14A | 109.00 |
N1—C5—C4 | 121.0 (9) | C13—C14—H14B | 110.00 |
N1—C5—C6 | 118.1 (8) | C13—C14—H14C | 110.00 |
C4—C5—C6 | 120.8 (9) | H14A—C14—H14B | 109.00 |
N2—C6—C5 | 121.3 (8) | H14A—C14—H14C | 109.00 |
N2—C7—C8 | 124.1 (13) | H14B—C14—H14C | 110.00 |
N2—C7—C12 | 118.6 (14) | N3—C15—H15A | 112.00 |
C8—C7—C12 | 117.2 (14) | N3—C15—H15B | 112.00 |
C7—C8—C9 | 120.6 (12) | C16—C15—H15A | 112.00 |
C8—C9—C10 | 122.8 (15) | C16—C15—H15B | 112.00 |
N3—C10—C9 | 121.5 (14) | H15A—C15—H15B | 110.00 |
N3—C10—C11 | 125.2 (15) | C15—C16—H16A | 109.00 |
C9—C10—C11 | 113.3 (15) | C15—C16—H16B | 109.00 |
C10—C11—C12 | 125.2 (16) | C15—C16—H16C | 109.00 |
C7—C12—C11 | 120.7 (16) | H16A—C16—H16B | 109.00 |
N3—C13—C14 | 118.6 (13) | H16A—C16—H16C | 109.00 |
N3—C15—C16 | 98.2 (11) | H16B—C16—H16C | 109.00 |
Cl2—Hg1—Cl1—Hg1i | −98.74 (12) | C7—N2—C6—C5 | 174.3 (10) |
N1—Hg1—Cl1—Hg1i | 69.9 (3) | Hg1—N2—C7—C8 | −173.5 (10) |
N2—Hg1—Cl1—Hg1i | 139.95 (19) | Hg1—N2—C7—C12 | 4.6 (19) |
Cl1i—Hg1—Cl1—Hg1i | 0.00 (7) | C6—N2—C7—C8 | 3 (2) |
Cl1—Hg1—N1—C1 | −104.6 (8) | C6—N2—C7—C12 | −178.5 (12) |
Cl1—Hg1—N1—C5 | 76.4 (7) | C13—N3—C10—C9 | −8 (2) |
Cl2—Hg1—N1—C1 | 65.4 (9) | C13—N3—C10—C11 | 172.1 (16) |
Cl2—Hg1—N1—C5 | −113.6 (6) | C15—N3—C10—C9 | −162.9 (15) |
N2—Hg1—N1—C1 | 174.4 (9) | C15—N3—C10—C11 | 17 (2) |
N2—Hg1—N1—C5 | −4.6 (6) | C10—N3—C13—C14 | 91.1 (18) |
Cl1i—Hg1—N1—C1 | −35.7 (8) | C15—N3—C13—C14 | −116.5 (16) |
Cl1i—Hg1—N1—C5 | 145.3 (7) | C10—N3—C15—C16 | −92.0 (14) |
Cl1—Hg1—N2—C6 | −125.6 (6) | C13—N3—C15—C16 | 114.9 (15) |
Cl1—Hg1—N2—C7 | 51.6 (10) | N1—C1—C2—C3 | −5.1 (18) |
Cl2—Hg1—N2—C6 | 106.4 (6) | C1—C2—C3—C4 | 4.0 (17) |
Cl2—Hg1—N2—C7 | −76.5 (10) | C2—C3—C4—C5 | −0.7 (16) |
N1—Hg1—N2—C6 | 6.7 (6) | C3—C4—C5—N1 | −1.7 (15) |
N1—Hg1—N2—C7 | −176.1 (10) | C3—C4—C5—C6 | 175.9 (9) |
Cl1i—Hg1—N2—C6 | −44.1 (7) | N1—C5—C6—N2 | 4.7 (13) |
Cl1i—Hg1—N2—C7 | 133.1 (9) | C4—C5—C6—N2 | −173.0 (9) |
Cl1—Hg1—Cl1i—Hg1i | 0.00 (9) | N2—C7—C8—C9 | 177.8 (14) |
Cl2—Hg1—Cl1i—Hg1i | 120.45 (11) | C12—C7—C8—C9 | 0 (2) |
N1—Hg1—Cl1i—Hg1i | −135.1 (2) | N2—C7—C12—C11 | −174.8 (14) |
N2—Hg1—Cl1i—Hg1i | −87.4 (3) | C8—C7—C12—C11 | 3 (2) |
Hg1—N1—C1—C2 | −176.5 (9) | C7—C8—C9—C10 | −1 (2) |
C5—N1—C1—C2 | 2.6 (16) | C8—C9—C10—N3 | 179.4 (14) |
Hg1—N1—C5—C4 | 179.9 (7) | C8—C9—C10—C11 | −1 (2) |
Hg1—N1—C5—C6 | 2.3 (10) | N3—C10—C11—C12 | −176.2 (16) |
C1—N1—C5—C4 | 0.8 (14) | C9—C10—C11—C12 | 4 (3) |
C1—N1—C5—C6 | −176.9 (9) | C10—C11—C12—C7 | −6 (3) |
Hg1—N2—C6—C5 | −8.5 (10) |
Symmetry code: (i) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···Cl1ii | 0.93 | 2.74 | 3.578 (9) | 151 |
C1—H1···Cl1i | 0.93 | 2.89 | 3.471 (12) | 122 |
C1—H1···Cl2iii | 0.93 | 2.97 | 3.623 (11) | 129 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y+2, −z+1. |
Acknowledgements
The authors are grateful to the Department of Chemistry, Taras Shevchenko National University of Kyiv, 64, Vladimirska Str., Kiev 01601, Ukraine, for financial support and Dr Igor Fritsky for important discussions.
References
Baul, T. S. B., Kundu, S., Mitra, S., Höpfl, H., Tiekink, E. R. T. & Lindend, A. (2013). Dalton Trans. 42, 1905–1920. PubMed Google Scholar
Baul, T. S. B., Lycka, A., Butcher, R. & Smith, E. F. (2004). Polyhedron, 23, 2323–2329. Google Scholar
Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Das, P., Mandal, A. K., Reddy, G. U., Baidya, M., Ghosh, S. K. & Das, A. (2013). Org. Biomol. Chem. 11, 6604–6614. Web of Science CrossRef CAS PubMed Google Scholar
Faizi, M. S. H. & Hussain, S. (2014). Acta Cryst. E70, m197. CSD CrossRef IUCr Journals Google Scholar
Faizi, M. S. H. & Prisyazhnaya, E. V. (2015). Acta Cryst. E71, m175–m176. Web of Science CSD CrossRef IUCr Journals Google Scholar
Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m173. CSD CrossRef IUCr Journals Google Scholar
Faizi, M. S. H., Siddiqui, N. & Javed, S. (2015). Acta Cryst. E71, o49–o50. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hoseyni, S. J., Talei Bavil Olyai, M. R. & Notash, B. (2012). Acta Cryst. E68, m1294. CSD CrossRef IUCr Journals Google Scholar
Hughes, M. & Prince, R. H. (1978). J. Inorg. Nucl. Chem. 40, 719–723. CrossRef CAS Web of Science Google Scholar
Jursic, B. S., Douelle, F., Bowdy, K. & Stevens, E. D. (2002). Tetrahedron Lett. 43, 5361–5365. Web of Science CSD CrossRef CAS Google Scholar
Kasselouri, S., Garoufis, G., Kalkanis, A., Perlepes, S. P. & Hadjiliadis, N. (1993). Transition Met. Chem. 18, 531–536. CrossRef CAS Web of Science Google Scholar
Mandal, A. K., Suresh, M., Das, P., Suresh, E., Baidya, M., Ghosh, S. K. & Das, A. (2012). Org. Lett. 14, 2980–2983. Web of Science CSD CrossRef CAS PubMed Google Scholar
Motswainyana, W. M., Onani, M. O., Madiehe, A. M., Saibu, M., Jacobs, J. & van Meervelt, L. (2013). Inorg. Chim. Acta, 400, 197–202. Web of Science CSD CrossRef CAS Google Scholar
Nejad, M. F., Olyai, M. R. T. B. & Khavasi, H. R. (2010). Z. Kristallogr. New Cryst. Struct. 225, 717–718. CAS Google Scholar
Salehzadeh, S., Dehghanpour, S., Khalaj, M. & Rahimishakiba, M. (2011). Acta Cryst. E67, m327. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Song, S., Zhao, W., Wang, L., Redshaw, C., Wang, F. & Sun, W.-H. (2011). J. Organomet. Chem. 696, 3029–3035. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.