research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and characterization of 3-methyl-6-[(propyn­yl­oxy)meth­yl]-1,4-dioxane-2,5-dione

CROSSMARK_Color_square_no_text.svg

aFaculty of Pharmacy, Université de Montréal, 2900 Edouard-Montpetit Blvd, Montreal, Quebec, H3T1J4, Canada, and bDepartment of Chemistry, Université de Montréal, 2900 Edouard-Montpetit Blvd, Montreal, Quebec, H3T1J4, Canada
*Correspondence e-mail: patrice.hildgen@umontreal.ca

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 1 June 2017; accepted 8 June 2017; online 16 June 2017)

The number of known asymmetrically substituted hemilactides, important precursors for obtaining regular derivatives of polylactide polymers, is still limited and structural characterization of most of them is incomplete. In the title racemic 1,4-dioxane-2,5-dione derivative, C9H10O5, the hemilactide heterocycle exhibits a twist-boat conformation. The bulkier propynyloxymethyl group is in an axial position with a gauche conformation for the CH2–O–CH2–C segment. In the crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers. The dimers are linked by further C—H⋯O contacts, forming a three-dimensional structure.

1. Chemical context

Cyclic dilactides, or hemilactides, close structural analogs of 1,4-dioxane-2,5-dione (glycolide) with methyl- or methyl­ene-containing substituents at the sp3 C atoms, are the most important precursors for obtaining polylactide polymers, which are widely employed in biodegradable plastics and in the food and biomedical industries due to their intrinsic biocompatibility and biodegradability (Gerhardt et al., 2006[Gerhardt, W. W., Noga, D. E., Hardcastle, K. I., Garcia, A. J., Collard, D. M. & Weck, M. (2006). Macromolecules, 7, 1735-1742.]). Well-tuned architectures of substituted hemilactides lead to the creation of new polylactide materials with regular structures that allow clarification of polymer behaviour at the supra­molecular level, as well as achieving new useful properties (Fuoco et al., 2016[Fuoco, T., Finne-Wistrand, A. & Pappalardo, D. (2016). Biomacromolecules, 17, 1383-1394.]; Trimaille et al., 2007[Trimaille, T., Gurny, R. & Möller, M. (2007). J. Biomed. Mater. Res. A, 80, 55-65.]; Zhang & Song, 2014[Zhang, J. & Song, J. (2014). Acta Biomater. 10, 3079-3090.]). Nevertheless, the further development of the field is hampered by the fact that asymmetrically substituted hemilactides still constitute a very limited group of compounds, the structural characterization of most of which remains incomplete. In this context, the goal of the present study was to elaborate a reliable protocol for obtaining 3-methyl-6-[(propyn­yloxy)meth­yl]-1,4-dioxane-2,5-dione, 1.

[Scheme 1]

2. Structural commentary

The mol­ecule of the final product (Fig. 1[link]) possesses a 1,4-dioxane-2,5-dione six-membered ring, as well as the two different substituents, i.e. methyl and propynyloxymethyl groups, linked to atoms C1 and C3, respectively, determining the aimed architecture of 1. In general, the bond lengths and angles are in normal ranges for organic carbohydrates. The hemilactide heterocycle exhibits a twisted boat conformation, where atoms C1, C2 and O1 are in one plane and atoms C1, C3, C4 and O2 are in another plane; the planes are inclined at a dihedral angle of 27.9 (2)°. The values of the observed puckering parameters [θ = 84.8 (3)° and φ = 308.2 (3)°] deviate slightly from those corresponding to an ideal boat conformation (θ = 90° and φ = 300°). Two stereocentres represented by the C1 and C3 atoms have opposite chirality, i.e. R,S (and S,R in the centrosymmetric counterpart), the substituents at which adopt a trans configuration with respect to the ring, by minimizing repulsive inter­actions. The bulkier propynyloxymethyl group is located above the ring, i.e. in the axial position with a gauche conf­ormation for the C6—O5—C7—C8 segment, at a dihedral angle of 71.3 (2)°. A similar conformation has been observed in meso-3,6-dipropargyloxymethyl-1,4-dioxane-2,5-dione (Zhang et al., 2015[Zhang, Q., Ren, H. & Baker, G. L. (2015). Polym. Chem. 6, 1275-1285.]).

[Figure 1]
Figure 1
The atom-numbering diagram of the mol­ecule of 1. C and O atoms are shown as displacement ellipsoids at the 50% probability level and H atoms are shown as spheres of arbitrary radius.

3. Supra­molecular features

In the crystal cell of 1 (Fig. 2[link]), all the 1,4-dioxane-2,5-dione rings are located in parallel planes at a distance of approximately 2.0 Å, but do not tend to form mol­ecular stacks and organize the rings neither into columns, as reported for hemilactides bearing relatively small substituents, such as 3,6-dimethyl-1,4-dioxane-2,5-dione (van Hummel et al., 1982[Hummel, G. J. van, Harkema, S., Kohn, F. E. & Feijen, J. (1982). Acta Cryst. B38, 1679-1681.]) and 3-bromo-3,6-dimethyl-1,4-dioxane-2,5-dione and 3-methyl­ene-6-methyl-1,4-dioxane-2,5-dione (Fiore et al., 2010[Fiore, G. L., Jing, F., Young, V. G. Jr, Cramer, C. J. & Hillmyer, M. A. (2010). Polym. Chem. 1, 870-877.]), nor into supra­molecular formations where one half of the parallel plane is perpendicular to the other, as reported in the cases of 3-benzyl­oxymethyl-6-methyl-1,4-dioxane-2,5-dione (Kooijman et al., 2005[Kooijman, H., Leemhuis, M., van Nostrum, C. F., Hennink, W. E. & Spek, A. L. (2005). Acta Cryst. E61, o901-o903.]) and 3,6-diphenyl-l,4-dioxane-2,5-dione (Lynch et al., 1990[Lynch, V. M., Pojman, J., Whitesell, J. K. & Davis, B. E. (1990). Acta Cryst. C46, 1125-1127.]). In addition, the crystal packing shows some short C—H⋯O contacts (Table 1[link]) leading to the pairwise mol­ecular binding, i.e. by hydrogen bonds. It is assumed that the packing is mostly determined by the contact involving the acid acetylenyl H9 and ketone O4 atoms (Fig. 2[link]), analogous to the centrosymmetric inter­actions reported for symmetric meso-3,6-dipropargyloxymethyl-1,4-dioxane-2,5-dione (Zhang et al., 2015[Zhang, Q., Ren, H. & Baker, G. L. (2015). Polym. Chem. 6, 1275-1285.]). It is worthy of note that the unit cell contains no residual solvent-accessible voids.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O4i 0.92 (2) 2.60 (2) 3.247 (3) 127.8 (16)
C3—H3⋯O5 0.92 (2) 2.49 (2) 3.033 (2) 118.1 (16)
C6—H6B⋯O3ii 0.99 (3) 2.47 (2) 3.369 (3) 151.0 (19)
C7—H7A⋯O3iii 0.98 (2) 2.66 (2) 3.627 (3) 169.1 (18)
C9—H9⋯O4iv 0.88 (3) 2.58 (3) 3.412 (3) 156 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z; (iv) -x+1, -y, -z+1.
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of 1. Weak C—H⋯O contacts involving the acetylenyl H and ketone O atoms are shown as dotted lines.

4. Database survey

A search in the Cambridge Structural Database (Version 5.38 with two updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for pure and functionalized lactides (i.e. glycolides with one methyl substituent) returned 25 entries, including different lactide stereoisomers (Kooijman et al., 2014[Kooijman, H., Leemhuis, M., van Nostrum, C. F., Hennink, W. E. & Spek, A. L. (2014). Private communication (refcode NAHNOZ01). CCDC, Cambridge, England.]; Fedushkin et al., 2009[Fedushkin, I. L., Morozov, A. G., Chudakova, V. A., Fukin, G. K. & Cherkasov, V. K. (2009). Eur. J. Inorg. Chem. pp. 4995-5003.]; van Hummel et al., 1982[Hummel, G. J. van, Harkema, S., Kohn, F. E. & Feijen, J. (1982). Acta Cryst. B38, 1679-1681.]) and other derivatives (Zhang et al., 2015[Zhang, Q., Ren, H. & Baker, G. L. (2015). Polym. Chem. 6, 1275-1285.]; Fiore et al., 2010[Fiore, G. L., Jing, F., Young, V. G. Jr, Cramer, C. J. & Hillmyer, M. A. (2010). Polym. Chem. 1, 870-877.]; Kooijman et al., 2005[Kooijman, H., Leemhuis, M., van Nostrum, C. F., Hennink, W. E. & Spek, A. L. (2005). Acta Cryst. E61, o901-o903.]; Bolte et al.,1994[Bolte, M., Beck, H., Nieger, M. & Egert, E. (1994). Acta Cryst. C50, 1717-1721.]; Lynch et al., 1990[Lynch, V. M., Pojman, J., Whitesell, J. K. & Davis, B. E. (1990). Acta Cryst. C46, 1125-1127.]).

5. Synthesis and crystallization

The desired product 1 was obtained from the initial rac-1-chloro­propane-2,3-diol (2) via a three-step pathway (see Fig. 3[link]) inspired partly by general protocols (Bredikhina et al., 2014[Bredikhina, Z. A., Pashagin, A. V., Kurenkov, A. V. & Bredikhin, A. A. (2014). Russ. J. Org. Chem. 50, 535-539.]; Trimaille et al., 2004[Trimaille, T., Möller, M. & Gurny, R. (2004). J. Polym. Sci. A Polym. Chem. 42, 4379-4391.]; Nagase et al., 2008[Nagase, R., Iida, Y., Sugi, M., Misaki, T. & Tanabe, Y. (2008). Synthesis, 2008, 3670-3674.]), comprising the oxidation of 2 to rac-3-chloro-2-hy­droxy­propanoic acid (3) followed by the etherification with propargyl alcohol to 2-hy­droxy-1-(propynyloxymeth­yl)propanoic acid (4) and the final double esterification of 4 with bromo­propyonyl bromide. The final purification of 1 was performed by auto-flash-chromatography on silica, using chloro­form as eluent to give, after evaporation under reduced pressure, a white crystalline solid (see supporting information for more details on the synthesis and structural characterization of the inter­mediate and final products).

[Figure 3]
Figure 3
Scheme of the chemical synthesis of the title compound 3-methyl-6-[(propyn­yloxy)meth­yl]-1,4-dioxane-2,5-dione (1).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were located from Fourier difference maps and fully refined.

Table 2
Experimental details

Crystal data
Chemical formula C9H10O5
Mr 198.17
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 6.9774 (5), 6.8273 (5), 19.4895 (14)
β (°) 95.804 (3)
V3) 923.66 (12)
Z 4
Radiation type Ga Kα, λ = 1.34139 Å
μ (mm−1) 0.65
Crystal size (mm) 0.11 × 0.08 × 0.08
 
Data collection
Diffractometer Bruker Venture Metaljet
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.570, 0.752
No. of measured, independent and observed [I > 2σ(I)] reflections 19524, 2055, 1640
Rint 0.073
(sin θ/λ)max−1) 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.183, 1.05
No. of reflections 2055
No. of parameters 168
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.35, −0.37
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008).

3-Methyl-6-[(propynyloxy)methyl]-1,4-dioxane-2,5-dione top
Crystal data top
C9H10O5F(000) = 416
Mr = 198.17Dx = 1.425 Mg m3
Monoclinic, P21/cGa Kα radiation, λ = 1.34139 Å
a = 6.9774 (5) ÅCell parameters from 9932 reflections
b = 6.8273 (5) Åθ = 4.0–60.8°
c = 19.4895 (14) ŵ = 0.65 mm1
β = 95.804 (3)°T = 100 K
V = 923.66 (12) Å3Chunk, clear light colourless
Z = 40.11 × 0.08 × 0.08 mm
Data collection top
Bruker Venture Metaljet
diffractometer
2055 independent reflections
Radiation source: Metal Jet, Gallium Liquid Metal Jet Source1640 reflections with I > 2σ(I)
Helios MX Mirror Optics monochromatorRint = 0.073
Detector resolution: 10.24 pixels mm-1θmax = 60.9°, θmin = 4.0°
ω and φ scansh = 99
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 88
Tmin = 0.570, Tmax = 0.752l = 2525
19524 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.063 w = 1/[σ2(Fo2) + (0.1166P)2 + 0.2436P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.183(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.35 e Å3
2055 reflectionsΔρmin = 0.37 e Å3
168 parametersExtinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0045 (17)
Special details top

Experimental. X-ray crystallographic data for I were collected from a single crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Venture diffractometer equipped with a Photon 100 CMOS Detector, a Helios MX optics and a Kappa goniometer. The crystal-to-detector distance was 4.0 cm, and the data collection was carried out in 1024 x 1024 pixel mode.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8442 (2)0.6986 (2)0.38601 (7)0.0450 (4)
O20.8604 (2)0.3277 (2)0.44578 (7)0.0445 (4)
O31.0103 (2)0.5925 (2)0.30315 (8)0.0528 (5)
O40.7313 (2)0.4446 (2)0.53563 (7)0.0500 (4)
O50.5693 (2)0.3519 (2)0.32715 (7)0.0433 (4)
C10.8967 (3)0.3454 (3)0.37415 (10)0.0442 (5)
H11.029 (4)0.277 (3)0.3718 (12)0.047 (6)*
C20.9217 (3)0.5552 (3)0.35135 (10)0.0427 (5)
C30.7092 (3)0.6521 (3)0.43558 (10)0.0413 (5)
H30.591 (3)0.624 (3)0.4123 (11)0.033 (5)*
C40.7669 (3)0.4688 (3)0.47711 (10)0.0412 (5)
C50.6982 (4)0.8289 (4)0.48109 (12)0.0490 (6)
H5A0.817 (4)0.861 (4)0.5017 (13)0.050 (6)*
H5B0.656 (4)0.940 (4)0.4515 (14)0.059 (7)*
H5C0.613 (4)0.797 (4)0.5153 (16)0.061 (8)*
C60.7425 (3)0.2424 (3)0.32707 (12)0.0452 (5)
H6A0.725 (3)0.111 (4)0.3442 (12)0.041 (6)*
H6B0.783 (3)0.234 (3)0.2801 (14)0.047 (6)*
C70.4081 (3)0.2573 (3)0.28966 (11)0.0472 (5)
H7A0.299 (3)0.349 (3)0.2863 (11)0.041 (6)*
H7B0.440 (3)0.222 (3)0.2426 (14)0.047 (6)*
C80.3455 (3)0.0836 (3)0.32598 (10)0.0437 (5)
C90.2952 (3)0.0550 (3)0.35607 (12)0.0476 (5)
H90.252 (4)0.157 (4)0.3776 (15)0.060 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0527 (9)0.0485 (8)0.0346 (8)0.0021 (6)0.0088 (6)0.0033 (6)
O20.0478 (8)0.0505 (8)0.0355 (8)0.0025 (6)0.0065 (6)0.0062 (6)
O30.0586 (9)0.0640 (10)0.0373 (8)0.0117 (7)0.0125 (7)0.0011 (7)
O40.0548 (9)0.0617 (9)0.0338 (8)0.0022 (7)0.0066 (6)0.0060 (6)
O50.0446 (8)0.0472 (8)0.0383 (8)0.0030 (6)0.0057 (6)0.0039 (6)
C10.0453 (11)0.0522 (12)0.0367 (11)0.0023 (9)0.0119 (9)0.0025 (8)
C20.0436 (11)0.0538 (12)0.0310 (10)0.0062 (9)0.0050 (8)0.0003 (8)
C30.0411 (10)0.0519 (11)0.0311 (9)0.0003 (9)0.0048 (8)0.0023 (8)
C40.0392 (10)0.0520 (11)0.0321 (10)0.0041 (8)0.0028 (8)0.0017 (8)
C50.0534 (13)0.0552 (13)0.0380 (11)0.0041 (10)0.0035 (10)0.0019 (9)
C60.0521 (12)0.0463 (11)0.0390 (11)0.0015 (9)0.0128 (9)0.0016 (8)
C70.0511 (12)0.0557 (12)0.0344 (10)0.0038 (10)0.0026 (9)0.0012 (9)
C80.0445 (11)0.0535 (12)0.0327 (10)0.0027 (9)0.0019 (8)0.0055 (8)
C90.0503 (12)0.0507 (12)0.0419 (11)0.0062 (10)0.0049 (9)0.0031 (9)
Geometric parameters (Å, º) top
O1—C21.335 (3)C3—C41.522 (3)
O1—C31.451 (2)C3—C51.505 (3)
O2—C11.449 (3)C5—H5A0.91 (3)
O2—C41.344 (3)C5—H5B0.98 (3)
O3—C21.203 (3)C5—H5C0.96 (3)
O4—C41.203 (3)C6—H6A0.97 (2)
O5—C61.421 (3)C6—H6B0.99 (3)
O5—C71.432 (3)C7—H7A0.98 (2)
C1—H11.04 (2)C7—H7B1.00 (3)
C1—C21.515 (3)C7—C81.470 (3)
C1—C61.515 (3)C8—C91.184 (3)
C3—H30.92 (2)C9—H90.88 (3)
C2—O1—C3119.98 (16)C3—C5—H5A110.8 (16)
C4—O2—C1121.22 (16)C3—C5—H5B107.6 (15)
C6—O5—C7112.74 (16)C3—C5—H5C107.4 (16)
O2—C1—H1104.3 (14)H5A—C5—H5B106 (2)
O2—C1—C2113.46 (17)H5A—C5—H5C110 (2)
O2—C1—C6111.23 (18)H5B—C5—H5C115 (2)
C2—C1—H1106.6 (13)O5—C6—C1107.90 (17)
C6—C1—H1110.0 (13)O5—C6—H6A110.3 (13)
C6—C1—C2110.91 (17)O5—C6—H6B111.0 (14)
O1—C2—C1118.72 (18)C1—C6—H6A109.2 (13)
O3—C2—O1120.44 (19)C1—C6—H6B109.7 (14)
O3—C2—C1120.83 (19)H6A—C6—H6B108.8 (19)
O1—C3—H3109.1 (13)O5—C7—H7A108.0 (13)
O1—C3—C4112.30 (16)O5—C7—H7B109.8 (14)
O1—C3—C5106.96 (18)O5—C7—C8112.01 (17)
C4—C3—H3105.6 (13)H7A—C7—H7B109.8 (18)
C5—C3—H3111.0 (13)C8—C7—H7A106.4 (13)
C5—C3—C4111.88 (17)C8—C7—H7B110.8 (13)
O2—C4—C3117.51 (17)C9—C8—C7179.1 (2)
O4—C4—O2119.26 (18)C8—C9—H9177.3 (19)
O4—C4—C3123.22 (19)
O1—C3—C4—O231.7 (2)C3—O1—C2—O3168.81 (18)
O1—C3—C4—O4149.05 (19)C3—O1—C2—C111.5 (3)
O2—C1—C2—O123.6 (3)C4—O2—C1—C230.6 (3)
O2—C1—C2—O3156.06 (19)C4—O2—C1—C695.2 (2)
O2—C1—C6—O570.2 (2)C5—C3—C4—O2152.00 (19)
C1—O2—C4—O4176.43 (18)C5—C3—C4—O428.8 (3)
C1—O2—C4—C32.8 (3)C6—O5—C7—C871.3 (2)
C2—O1—C3—C439.0 (2)C6—C1—C2—O1102.4 (2)
C2—O1—C3—C5162.14 (17)C6—C1—C2—O377.9 (2)
C2—C1—C6—O557.0 (2)C7—O5—C6—C1174.10 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O4i0.92 (2)2.60 (2)3.247 (3)127.8 (16)
C3—H3···O50.92 (2)2.49 (2)3.033 (2)118.1 (16)
C6—H6B···O3ii0.99 (3)2.47 (2)3.369 (3)151.0 (19)
C7—H7A···O3iii0.98 (2)2.66 (2)3.627 (3)169.1 (18)
C9—H9···O4iv0.88 (3)2.58 (3)3.412 (3)156 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y1/2, z+1/2; (iii) x1, y, z; (iv) x+1, y, z+1.
 

Acknowledgements

F. Belanger-Gariepy, M. Cibian and A. Melkoumov are gratefully acknowledged for their help with the elemental and mass analysis, and the auto-flash-chromatography purification, respectively.

Funding information

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada (NSERC) and Fonds de recherche du Québec – Nature et technologies (FRQNT).

References

First citationBolte, M., Beck, H., Nieger, M. & Egert, E. (1994). Acta Cryst. C50, 1717–1721.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBredikhina, Z. A., Pashagin, A. V., Kurenkov, A. V. & Bredikhin, A. A. (2014). Russ. J. Org. Chem. 50, 535–539.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFedushkin, I. L., Morozov, A. G., Chudakova, V. A., Fukin, G. K. & Cherkasov, V. K. (2009). Eur. J. Inorg. Chem. pp. 4995–5003.  Web of Science CSD CrossRef Google Scholar
First citationFiore, G. L., Jing, F., Young, V. G. Jr, Cramer, C. J. & Hillmyer, M. A. (2010). Polym. Chem. 1, 870–877.  Web of Science CSD CrossRef CAS Google Scholar
First citationFuoco, T., Finne-Wistrand, A. & Pappalardo, D. (2016). Biomacromolecules, 17, 1383–1394.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGerhardt, W. W., Noga, D. E., Hardcastle, K. I., Garcia, A. J., Collard, D. M. & Weck, M. (2006). Macromolecules, 7, 1735–1742.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHummel, G. J. van, Harkema, S., Kohn, F. E. & Feijen, J. (1982). Acta Cryst. B38, 1679–1681.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationKooijman, H., Leemhuis, M., van Nostrum, C. F., Hennink, W. E. & Spek, A. L. (2005). Acta Cryst. E61, o901–o903.  CSD CrossRef IUCr Journals Google Scholar
First citationKooijman, H., Leemhuis, M., van Nostrum, C. F., Hennink, W. E. & Spek, A. L. (2014). Private communication (refcode NAHNOZ01). CCDC, Cambridge, England.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLynch, V. M., Pojman, J., Whitesell, J. K. & Davis, B. E. (1990). Acta Cryst. C46, 1125–1127.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNagase, R., Iida, Y., Sugi, M., Misaki, T. & Tanabe, Y. (2008). Synthesis, 2008, 3670–3674.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTrimaille, T., Gurny, R. & Möller, M. (2007). J. Biomed. Mater. Res. A, 80, 55–65.  Web of Science CrossRef PubMed Google Scholar
First citationTrimaille, T., Möller, M. & Gurny, R. (2004). J. Polym. Sci. A Polym. Chem. 42, 4379–4391.  Web of Science CrossRef CAS Google Scholar
First citationZhang, Q., Ren, H. & Baker, G. L. (2015). Polym. Chem. 6, 1275–1285.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, J. & Song, J. (2014). Acta Biomater. 10, 3079–3090.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds