research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-4-benzyl­­idene-6-phenyl-1,2,3,4,7,8,9,10-octa­hydro­phenanthridine

aDepartment of Chemistry, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Iraq, bDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein, South Africa, cAnalytical Sciences, Manchester Metropolitan University, Chester Street M1 5GD, UK, dSchool of Research, Enterprise & Innovation, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK, and eSchool of Chemical & Metallurgical Engineering, University of the Witwatersr, Private Bag X3, Wits 2050, South Africa
*Correspondence e-mail: mohamadaljeboori@yahoo.com

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 6 June 2017; accepted 26 June 2017; online 30 June 2017)

The preparation of the title compound, C26H25N, was achieved by the condensation of an ethano­lic mixture of benzaldehyde, cyclo­hexa­none and ammonium acetate in a 2:1:1 molar ratio. There are two crystallographically independent mol­ecules in the asymmetric unit. The two cyclo­hexyl rings adopt an anti-envelope conformation with the benzyl moiety adopting a cis conformation with respect to the nitro­gen atom of the phenanthridine segment. In the crystal, mol­ecules are linked through C—H⋯N inter­actions into hydrogen-bonded chains that are further arranged into distinct layers by weak offset ππ inter­actions.

1. Chemical context

The preparation of piperidine derivatives via the Mannich reaction is well documented (Noller & Baliah, 1948[Noller, C. R. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853-3855.]). Further, the condensation of a ketone with α-methyl­ene groups, with an aldehyde in the presence of ammonium acetate results in the formation of the required piperidone derivatives through the Mannich reaction (Karthikeyan et al., 2009[Karthikeyan, N. S., Sathiyanarayanan, K. & Aravindan, P. G. (2009). Bull. Korean Chem. Soc. 30, 2555-2558.]; Al-Jeboori et al., 2009[Al-Jeboori, M. J., Al-Fahdawi, M. S. & Sameh, A. A. (2009). J. Coord. Chem. 62, 3853-3863.]). However, the formation of unpredicted phenanthridine derivatives as a second product with piperidone upon using a range of cyclic ketones has also been mentioned (Karthikeyan et al., 2009[Karthikeyan, N. S., Sathiyanarayanan, K. & Aravindan, P. G. (2009). Bull. Korean Chem. Soc. 30, 2555-2558.]). Phenanthridine derivatives are an important class of heterocyclic nitro­gen-based compounds that form a range of natural products and biologically important mol­ecules (Tumir et al., 2014[Tumir, L. M., Stojković, R. M. & Piantanida, I. (2014). Beilstein J. Org. Chem. 10, 2930-2954.]). These compounds have found significant applications in different fields, including their potential applications in medicinal chemistry (Stevens et al., 2008[Stevens, N., O'Connor, N., Vishwasrao, H., Samaroo, D., Kandel, E. R., Akins, D. L., Drain, C. M. & Turro, N. J. J. (2008). J. Am. Chem. Soc. 130, 7182-7183.]) and in the fabrication of materials (Gerfaud et al., 2009[Gerfaud, T., Neuville, L. & Zhu, J. (2009). Angew. Chem. Int. Ed. 48, 572-577.]). Therefore, researchers have been inter­ested in the development of efficient and versatile methods for the synthesis of these materials (Bao et al., 2014[Bao, X., Yao, W., Zhu, Q. & Xu, Y. (2014). Eur. J. Org. Chem. pp. 7443-7450.]; Xu et al., 2014[Xu, Z., Yan, C. & Liu, Z. Q. (2014). Org. Lett. 16, 5670-5673.]). These compounds can be fabricated using a range of synthetic methods, including cyclization, that require harsh conditions and several preparation steps to obtain phenanthridines (Herrera et al., 2006[Herrera, A., Martínez-Alvarez, R., Chioua, M., Chatt, R., Chioua, R., Sanchez, A. & Almy, J. (2006). Tetrahedron, 62, 2799-2811.]). In this paper, the formation of a phenanthridine derivative was achieved via a one-pot reaction using cyclo­hexa­none and benzaldehyde in an ethano­lic solution of ammonium acetate.

[Scheme 1]

2. Structural commentary

The asymmetric unit contains two crystallographically independent mol­ecules, A and B, shown in Figs. 1[link] and 2[link], with no solvent mol­ecules incorporated into the crystal lattice. Selected geometric parameters for the title compound are given in Table 1[link]. All of the bond lengths and bond angles are within the normal range of analogous phenanthridine compounds (Helesbeux et al., 2011[Helesbeux, J.-J., Vanquelef, E., Guillon, J., Léger, J.-M. & Duval, O. (2011). J. Chem. Crystallogr. 41, 1945-1948.]; Shabashov & Daugulis, 2007[Shabashov, D. & Daugulis, O. (2007). J. Org. Chem. 72, 7720-7725.]). In the structure, the cyclo­hexane rings adopt the anti-envelope conformation. In mol­ecule B one of these rings shows static disorder of the C91 and C92 atoms over two sets of sites. This was modelled as two positions with the site occupancies refined to give 81.7 (3)% occupancy for the major component and 18.3 (3)% for the minor component. Full refinement details are given in Section 5. In both of the crystallographically independent mol­ecules, the phenyl and benzyl­idene groups are rotated out-of-plane with respect to the octa­hydro­phenanthrine moieties: in mol­ecule A the angle between the mean planes of the phenyl and pyridine rings is 46.92 (5)° with the equivalent angle in mol­ecule B of 53.43 (5)°. The angle between the mean planes of the benzyl­idine and pyridine rings in mol­ecule A is 48.53 (5)° and the corresponding angle in mol­ecule B is 41.37 (5)°.

Table 1
Selected geometric parameters (Å, °)

C1—N2 1.3351 (19) C101—N1 1.3492 (18)
C5—N2 1.3511 (18) C105—N1 1.3308 (19)
C14—C9—C5 120.36 (13) C106—C114—C130 128.70 (14)
C9—C14—C20 128.41 (14) C105—N1—C101 119.51 (12)
C114—C106—C101 119.35 (13) C1—N2—C5 119.35 (12)
[Figure 1]
Figure 1
Atom arrangement and numbering scheme for mol­ecule A, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Atom arrangement and numbering scheme for mol­ecule B, with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

The crystal structure features a combination of weak hydrogen bonds and weak offset ππ inter­actions. A weak C—H⋯N contact is formed from the octa­hydro­phenanthridine C6 position in mol­ecule A to the N1 position in a B mol­ecule (symmetry operation 1 + x, −1 + y, z), with an equivalent weak contact formed from the C109 position in mol­ecule B to the N2 position of a neighbouring mol­ecule A (symmetry operation 1 – x, 2 − y, z). Geometric parameters for these contacts are given in Table 2[link]. The geometric parameters for these contacts are within the accepted range of DA distances for weak hydrogen bonds of 3.2–4.0 Å, the D—H⋯A angles being slightly more linear than the expected values of 90–150° (Gilli, 2002[Gilli, G. (2002). Fundamentals of Crystallography, edited by C. Giacovazzo, pp. 590-595. Oxford University Press.]). These inter­actions lead to the formation of chains consisting of alternating A and B mol­ecules oriented along the a-axis direction. These chains propagate along the baxis, with neighbouring chains offset from each other along the a axis to allow inter­calation of the phenyl and benzyl aromatic rings of neighbouring groups, as shown in Fig 3[link], forming layers. These layers further stack along the c-axis with the orientation of the layers inverted with respect to the layer above and below, as shown in Fig. 4[link]. The structure is further stabilized by along the b-axis stabilized by weak offset ππ stacking inter­actions between the benzyl­idine rings of B mol­ecules in adjacent layers where the aromatic groups are oriented towards each other (symmetry operation for second B mol­ecule 1 − x, −y, 1 − z) with a centroid–centroid distance of 3.9853 (14) Å and shift distance of 2.285 (3) Å.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯N1i 0.97 2.77 (1) 3.672 (2) 155 (1)
C109—H10B⋯N2i 0.97 2.74 (1) 3.6756 (18) 163 (1)
Symmetry code: (i) -x, -y, -z.
[Figure 3]
Figure 3
C—H⋯N hydrogen-bonded chains, viewed down the crystallographic c axis. The C—H⋯N contacts are shown as dotted blue lines and run along the crystallographic a axis.
[Figure 4]
Figure 4
Packing arrangement of the structure viewed along the crystallographic a axis with the c axis parallel to the long axis of the paper. The ππ inter­actions occur between the benzyl rings that lie between the second and third rows of mol­ecules The labels of the axes should be larger.

4. Database survey

Version 5.38 of the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) was queried for inter­molecular C—H⋯N inter­actions between cyclo­hexyl and pyridyl groups with H-atom positions normalized and metals excluded with H⋯N distances restricted to vdW + 0.5 Å. 198 hits were obtained with the minimum and maximum H⋯N contact distances of 2.421 Å and 3.246 Å respectively with a median distance of 2.866 Å and mean of 2.853 Å. The C—H⋯N angles ranged from 92 to 174° with a mean of 128° and a median of 127°. The C—H⋯N contacts for the two crystallographically independent mol­ecules in this work are therefore shorter and more linear than the average, indicating a non-trivial role in determining the supra­molecular structure.

5. Hirschfeld surface analysis

Fingerprint analysis of the inter­molecular inter­actions by the generation of Hirschfeld surfaces using CrystalExplorer (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]) reveals that the two types of mol­ecules have similar inter­molecular contact patterns. Selected fingerprint plots corresponding to the complete inter­molecular contact surface and H⋯H, H⋯C and H⋯N contacts are shown in Fig. 5[link]. The percentage contributions of each contact type to the overall inter­action environment are tabulated in Table 3[link]. In both cases, the major contribution is from H⋯H contacts, accounting for 66.9% of the surface area in mol­ecule A and 64.8% in mol­ecule B. It is notable that, in addition to making the largest contribution to the inter­molecular contact surfaces, the H⋯H contacts account for the closest inter­molecular contact in the case of both mol­ecules, between cyclo­hexyl hydrogen atoms on a mol­ecule A and B (H91B⋯H10X). The direction of these contacts runs parallel to the axis of the C—H⋯N contacts between mol­ecules on neighbouring hydrogen-bonded chains and appears to result from the inter­calation of these chains. As these contacts are not associated with either of the major attractive inter­actions (AB C—H⋯N hydrogen bonds or BB ππ stacking), it is probable that this contact arises solely from the packing arrangement required to maximize the number and strength of these favourable inter­actions.

Table 3
Percentage of dnorm Hirschfeld surface accounted for by each (int)–(ext) contact type

Contact (int)–(ext) H⋯H H⋯C H⋯N C⋯H N⋯H
Mol­ecule A 66.9% 12.8% 1.3% 16.5% 1.5%
Mol­ecule B 64.8% 14.5% 1.3% 17.9% 1.5%
[Figure 5]
Figure 5
Hirschfeld surface fingerprint plots generated from the dnorm surfaces generated for mol­ecules A and B in CrystalExplorer at high resolution. The decomposed plots show the areas of contact between H atoms (inter­nal) and H, C and N atoms (external).

6. Synthesis and crystallization

The title compound was isolated from the reaction mixture using a flash column chromatography and as follows: A solution of benzaldehyde (4.02 mL, 0.038 mol), ammonium acetate (1 g, 0.019 mol) and cyclo­hexa­none (2 mL, 0.019 mol) in ethanol (20 mL) was heated to reflux for 2 h. The obtained residue was purified from the crude product by flash chromatography with an eluent mixture of 33% ethyl acetate in hexane, m.p. = 467–469 K, yield: 42%. Colourless crystals suitable for X-ray single crystal analysis were obtained by slow evaporation of a methanol solution of the compound.

(IR, KBr) cm−1: 1600 ν (C=N), 1508 ν (C=C)aromatic ring. NMR data (ppm) (numbering scheme shown in Fig. 6[link]); 1H NMR, δH (400 MHz, DMSO-d6): 7.81 (s, 1H, H-14), 7.52–7.35 (m, 9H, Ar-H), 7.28–7.21 (m, 1H, Ar-H), 2.79 (t, 2H, H-13, J = 10.4Hz), 2.71 (t, 2H, H-6, J = 12Hz), 2.66 (t, 2H, H-10, J = 12.8Hz), 2.61 (t, 2H, H-8, J = 12.8Hz), 1.80 (m, 4H, H-11;12), 1.62 (m, 2H, H-7). 13C NMR, δc (100 MHz, DMSO-d6): 155.15 (C-1), 147.72 (C-5), 144.86 (C-3), 140.98 (C-9) and 137.45 (C-2), 136.07 (C-15), 129.61 (C-4), 129.44 (C-21), 129.14, 129.03, 128.76, 128.33, 128.00 and 127.76 and 126.70 (C-Ar), 124.60 (C-14), 27.83 C-8), 26.90 (C-6), 25.80 (C-10), 24.91 (C-13), 22.18 (C-11;12), 21.96 (C-7). The electrospray (+) mass spectrum showed the parent ion peak at m/z = 352.2068 (M + H)+ for C26H26N; requires =352.2065. Elemental analysis: calculated for C26H25N: C 88.85%, H 7.17%, N 3.99%; found: C 88.76%, H 7.20%, N 3.88%.

[Figure 6]
Figure 6
General numbering pattern for NMR spectra of the title compound.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Hydrogen atoms were positioned geometrically (C—H = 0.95–0.99 Å) and refined using a riding model with Uiso(H)= 1.2Ueq(C). Disorder at C90/C91/C92/C93 was modelled by splitting the component atoms across two positions and refining the occupancy using FVAR to 82% for C90A–C93A and 12% for C90B–C93B. 1,2 distances were restrained using SADI and ADPs for C90A/C90B and C93A/C93B constrained using EADP commands.

Table 4
Experimental details

Crystal data
Chemical formula C26H25N
Mr 351.47
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 11.0758 (8), 12.4989 (11), 14.2425 (13)
α, β, γ (°) 98.088 (3), 96.537 (3), 102.151 (3)
V3) 1887.2 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.73 × 0.12 × 0.10
 
Data collection
Diffractometer Bruker APEX II CCD
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 37669, 9087, 6437
Rint 0.052
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.131, 1.04
No. of reflections 9087
No. of parameters 500
No. of restraints 7
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.36
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(E)-4-benzylidene-6-phenyl-1,2,3,4,7,8,9,10-octahydrophenanthridine top
Crystal data top
C26H25NZ = 4
Mr = 351.47F(000) = 752
Triclinic, P1Dx = 1.237 Mg m3
a = 11.0758 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.4989 (11) ÅCell parameters from 8882 reflections
c = 14.2425 (13) Åθ = 3.7–28.2°
α = 98.088 (3)°µ = 0.07 mm1
β = 96.537 (3)°T = 100 K
γ = 102.151 (3)°Needle, colourless
V = 1887.2 (3) Å30.73 × 0.12 × 0.10 mm
Data collection top
Bruker APEX II CCD
diffractometer
6437 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.052
Graphite monochromatorθmax = 28.0°, θmin = 1.5°
Detector resolution: 8 pixels mm-1h = 1412
ω and φ scansk = 1616
37669 measured reflectionsl = 1818
9087 independent reflections
Refinement top
Refinement on F27 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.341P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
9087 reflectionsΔρmax = 0.28 e Å3
500 parametersΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Positional disorder at C90-C91-C92-C93 modelled by splitting the component atoms across two positions and refining occupamcy using FVAR to 82% for C90A-C93A and 12% for C90B-C93B. C90A/C90B and C93A/C93B. 1,2 distances were restrained using SADI and ADPs for C90A/C90B and C93A/C93B constrained using EADP commands.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.75248 (13)0.29476 (12)0.20313 (10)0.0158 (3)
C20.84704 (13)0.30527 (12)0.14419 (10)0.0159 (3)
C30.88741 (13)0.20963 (12)0.11278 (10)0.0167 (3)
C40.84028 (13)0.11067 (12)0.14605 (10)0.0167 (3)
C50.75826 (13)0.11251 (12)0.21406 (10)0.0162 (3)
C60.88220 (14)0.00608 (12)0.11239 (11)0.0210 (3)
H6A0.9713080.0160080.1385700.025*
H6B0.8748270.0059660.0415690.025*
C70.80663 (15)0.09584 (13)0.14287 (11)0.0228 (3)
H7A0.8485290.1580800.1316300.027*
H7B0.7228410.1181410.1036570.027*
C80.79308 (15)0.07234 (13)0.24859 (11)0.0226 (3)
H8A0.7479090.1408450.2681880.027*
H8B0.8767620.0485010.2879100.027*
C90.72234 (13)0.01739 (12)0.26527 (10)0.0174 (3)
C100.91203 (13)0.41798 (13)0.12489 (11)0.0190 (3)
H10G0.9200790.4744290.1828540.023*
H10H0.8605080.4388840.0720750.023*
C111.04157 (14)0.41736 (13)0.09788 (11)0.0215 (3)
H11A1.0773840.4888020.0781860.026*
H11B1.0977250.4083370.1539990.026*
C121.03130 (15)0.32257 (13)0.01614 (11)0.0237 (4)
H12A1.1138640.3260400.0051360.028*
H12B0.9720450.3300660.0387440.028*
C130.98628 (14)0.21096 (13)0.04722 (11)0.0212 (3)
H13A0.9521180.1541180.0107380.025*
H13B1.0588690.1897940.0805830.025*
C140.63212 (13)0.01532 (12)0.32117 (11)0.0182 (3)
H140.5896590.0738770.3206250.022*
C200.59071 (14)0.06578 (12)0.38298 (11)0.0185 (3)
C210.67174 (14)0.11676 (13)0.43322 (11)0.0215 (3)
H210.7573190.1023340.4252040.026*
C220.62901 (16)0.18842 (14)0.49489 (12)0.0267 (4)
H220.6856670.2219670.5288590.032*
C230.50500 (16)0.21108 (14)0.50704 (12)0.0280 (4)
H230.4760050.2606760.5486980.034*
C240.42291 (15)0.16108 (14)0.45813 (12)0.0260 (4)
H240.3372390.1768940.4658550.031*
C250.46554 (14)0.08796 (13)0.39791 (11)0.0215 (3)
H250.4090130.0523580.3662840.026*
C300.69251 (13)0.38769 (12)0.23336 (11)0.0173 (3)
C310.67721 (13)0.41515 (13)0.32883 (11)0.0199 (3)
H310.7070410.3754970.3752120.024*
C320.61888 (14)0.49979 (13)0.35682 (12)0.0247 (4)
H320.6101500.5184230.4223120.030*
C330.57346 (14)0.55707 (14)0.29010 (13)0.0283 (4)
H330.5334120.6149150.3095010.034*
C340.58648 (14)0.52993 (14)0.19485 (13)0.0274 (4)
H340.5546510.5686800.1485550.033*
C350.64618 (14)0.44587 (13)0.16682 (12)0.0222 (3)
H350.6554030.4280210.1013460.027*
C1010.24367 (12)1.06093 (12)0.22013 (10)0.0159 (3)
C1020.31762 (13)1.01710 (12)0.15830 (10)0.0167 (3)
C1030.31864 (13)0.90403 (13)0.15121 (10)0.0175 (3)
C1040.24125 (13)0.83688 (12)0.20087 (10)0.0169 (3)
C1050.16390 (12)0.88740 (12)0.25625 (10)0.0159 (3)
C1060.24962 (13)1.18171 (12)0.24183 (10)0.0167 (3)
C1070.34880 (15)1.25554 (13)0.20045 (11)0.0236 (4)
H10A0.4299831.2693020.2425020.028*
H10B0.3268971.3279280.1974590.028*
C1080.36013 (15)1.20115 (13)0.10034 (11)0.0240 (4)
H10C0.4234621.2514910.0732960.029*
H10D0.2791511.1882660.0581940.029*
C1090.39768 (14)1.09112 (13)0.10293 (11)0.0223 (3)
H10E0.3907841.0518870.0364400.027*
H10F0.4860781.1059000.1327380.027*
C93A0.4116 (5)0.8580 (4)0.0917 (4)0.0206 (7)0.817 (3)
H93A0.3754430.8413740.0229290.025*0.817 (3)
H93B0.4901990.9155210.0992590.025*0.817 (3)
C90B0.231 (2)0.707 (3)0.203 (2)0.0180 (7)0.183 (3)
H90A0.2183180.6886510.2671330.022*0.183 (3)
H90B0.1637000.6597810.1540550.022*0.183 (3)
C1140.16908 (13)1.21776 (12)0.29555 (11)0.0173 (3)
H1140.1067531.1614690.3117640.021*
C1200.07724 (13)0.82602 (12)0.31378 (11)0.0160 (3)
C1210.01618 (13)0.73238 (12)0.27271 (11)0.0171 (3)
H1210.0230460.7033790.2064970.021*
C1220.09929 (13)0.68110 (13)0.32762 (11)0.0205 (3)
H1220.1631110.6177500.2987200.025*
C1230.08947 (14)0.72189 (14)0.42419 (12)0.0240 (4)
H1230.1457320.6860910.4618450.029*
C1240.00251 (15)0.81502 (14)0.46590 (12)0.0265 (4)
H1240.0095180.8430980.5323240.032*
C1250.08462 (14)0.86754 (13)0.41083 (11)0.0220 (3)
H1250.1464120.9323880.4396060.026*
C1300.16464 (13)1.33237 (12)0.33245 (10)0.0171 (3)
C1310.04885 (14)1.35477 (13)0.34805 (11)0.0194 (3)
H1310.0238261.2958520.3348570.023*
C1320.03890 (15)1.46137 (13)0.38235 (11)0.0230 (3)
H1320.0405041.4750800.3914110.028*
C1330.14399 (15)1.54818 (14)0.40355 (12)0.0261 (4)
H1330.1368141.6214210.4263290.031*
C1340.25990 (15)1.52720 (13)0.39122 (12)0.0255 (4)
H1340.3324971.5861580.4063670.031*
C1350.27010 (14)1.42036 (13)0.35684 (11)0.0209 (3)
H1350.3501051.4068350.3497750.025*
N10.16703 (11)0.99549 (10)0.26679 (9)0.0163 (3)
N20.71246 (11)0.20276 (10)0.23903 (9)0.0172 (3)
C91A0.31965 (18)0.67122 (17)0.12626 (16)0.0232 (5)0.817 (3)
H91A0.3384160.6007670.1407960.028*0.817 (3)
H91B0.2653620.6552610.0633780.028*0.817 (3)
C92A0.44037 (19)0.75409 (17)0.12225 (16)0.0240 (5)0.817 (3)
H92A0.4923910.7731500.1862070.029*0.817 (3)
H92B0.4879910.7204990.0761500.029*0.817 (3)
C91B0.3619 (9)0.6965 (8)0.1797 (7)0.0232 (5)0.183 (3)
H91C0.4276550.7450270.2297200.028*0.183 (3)
H91D0.3698340.6188660.1783790.028*0.183 (3)
C92B0.3780 (10)0.7300 (8)0.0831 (7)0.0240 (5)0.183 (3)
H92C0.3038900.6929310.0349950.029*0.183 (3)
H92D0.4527220.7095340.0603880.029*0.183 (3)
C90A0.2523 (4)0.7201 (5)0.2044 (4)0.0180 (7)0.817 (3)
H90C0.1673520.6722610.1986100.022*0.817 (3)
H90D0.2976390.7178200.2678890.022*0.817 (3)
C93B0.394 (3)0.8628 (19)0.100 (2)0.0206 (7)0.183 (3)
H93C0.4810930.8974580.1305080.025*0.183 (3)
H93D0.3839600.8855930.0359150.025*0.183 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0151 (7)0.0161 (7)0.0154 (7)0.0035 (6)0.0000 (6)0.0017 (6)
C20.0146 (7)0.0183 (8)0.0143 (7)0.0033 (6)0.0003 (5)0.0032 (6)
C30.0144 (7)0.0228 (8)0.0124 (7)0.0053 (6)0.0002 (5)0.0018 (6)
C40.0147 (7)0.0185 (8)0.0162 (7)0.0053 (6)0.0003 (6)0.0005 (6)
C50.0143 (7)0.0162 (7)0.0171 (7)0.0038 (6)0.0002 (6)0.0011 (6)
C60.0213 (7)0.0223 (8)0.0211 (8)0.0091 (6)0.0050 (6)0.0013 (7)
C70.0304 (8)0.0190 (8)0.0218 (8)0.0114 (7)0.0056 (7)0.0025 (7)
C80.0291 (8)0.0211 (8)0.0213 (8)0.0119 (7)0.0058 (7)0.0049 (7)
C90.0194 (7)0.0164 (8)0.0157 (7)0.0056 (6)0.0009 (6)0.0012 (6)
C100.0212 (7)0.0192 (8)0.0173 (8)0.0043 (6)0.0048 (6)0.0043 (6)
C110.0205 (7)0.0246 (8)0.0199 (8)0.0023 (6)0.0055 (6)0.0076 (7)
C120.0249 (8)0.0291 (9)0.0210 (8)0.0090 (7)0.0092 (7)0.0080 (7)
C130.0213 (7)0.0262 (9)0.0188 (8)0.0088 (7)0.0070 (6)0.0048 (7)
C140.0197 (7)0.0143 (7)0.0198 (8)0.0045 (6)0.0002 (6)0.0016 (6)
C200.0232 (7)0.0147 (7)0.0155 (7)0.0029 (6)0.0022 (6)0.0012 (6)
C210.0247 (8)0.0209 (8)0.0177 (8)0.0050 (6)0.0022 (6)0.0009 (6)
C220.0369 (9)0.0236 (9)0.0201 (8)0.0086 (7)0.0019 (7)0.0044 (7)
C230.0403 (10)0.0200 (8)0.0214 (9)0.0005 (7)0.0077 (7)0.0050 (7)
C240.0252 (8)0.0242 (9)0.0233 (9)0.0035 (7)0.0055 (7)0.0011 (7)
C250.0221 (7)0.0216 (8)0.0183 (8)0.0039 (6)0.0001 (6)0.0013 (6)
C300.0127 (6)0.0157 (7)0.0232 (8)0.0015 (6)0.0042 (6)0.0034 (6)
C310.0167 (7)0.0185 (8)0.0248 (8)0.0022 (6)0.0067 (6)0.0042 (7)
C320.0197 (7)0.0229 (9)0.0301 (9)0.0014 (7)0.0113 (7)0.0014 (7)
C330.0206 (8)0.0213 (8)0.0455 (11)0.0079 (7)0.0125 (7)0.0032 (8)
C340.0233 (8)0.0251 (9)0.0383 (10)0.0112 (7)0.0067 (7)0.0107 (8)
C350.0196 (7)0.0236 (8)0.0256 (9)0.0073 (6)0.0054 (6)0.0059 (7)
C1010.0139 (7)0.0186 (8)0.0143 (7)0.0014 (6)0.0014 (5)0.0039 (6)
C1020.0141 (7)0.0219 (8)0.0134 (7)0.0016 (6)0.0018 (5)0.0046 (6)
C1030.0150 (7)0.0233 (8)0.0136 (7)0.0044 (6)0.0015 (6)0.0022 (6)
C1040.0161 (7)0.0181 (8)0.0153 (7)0.0037 (6)0.0005 (6)0.0011 (6)
C1050.0142 (7)0.0176 (8)0.0145 (7)0.0022 (6)0.0002 (5)0.0024 (6)
C1060.0169 (7)0.0180 (8)0.0129 (7)0.0005 (6)0.0001 (6)0.0032 (6)
C1070.0259 (8)0.0209 (8)0.0221 (8)0.0022 (7)0.0095 (7)0.0037 (7)
C1080.0259 (8)0.0241 (9)0.0215 (8)0.0011 (7)0.0095 (7)0.0076 (7)
C1090.0185 (7)0.0286 (9)0.0200 (8)0.0026 (7)0.0076 (6)0.0052 (7)
C93A0.019 (2)0.0278 (11)0.0188 (14)0.0098 (9)0.0118 (10)0.0021 (9)
C90B0.0137 (19)0.016 (2)0.0228 (8)0.0004 (15)0.0038 (12)0.0014 (10)
C1140.0178 (7)0.0167 (8)0.0167 (7)0.0010 (6)0.0012 (6)0.0057 (6)
C1200.0157 (7)0.0162 (7)0.0190 (8)0.0066 (6)0.0053 (6)0.0062 (6)
C1210.0172 (7)0.0166 (7)0.0189 (8)0.0058 (6)0.0040 (6)0.0033 (6)
C1220.0161 (7)0.0168 (8)0.0300 (9)0.0040 (6)0.0064 (6)0.0063 (7)
C1230.0237 (8)0.0263 (9)0.0272 (9)0.0080 (7)0.0125 (7)0.0119 (7)
C1240.0344 (9)0.0306 (9)0.0162 (8)0.0086 (8)0.0087 (7)0.0047 (7)
C1250.0242 (8)0.0191 (8)0.0204 (8)0.0008 (6)0.0043 (6)0.0018 (6)
C1300.0210 (7)0.0173 (8)0.0130 (7)0.0035 (6)0.0016 (6)0.0054 (6)
C1310.0201 (7)0.0216 (8)0.0161 (8)0.0023 (6)0.0020 (6)0.0065 (6)
C1320.0248 (8)0.0259 (9)0.0214 (8)0.0107 (7)0.0044 (6)0.0063 (7)
C1330.0340 (9)0.0191 (8)0.0264 (9)0.0090 (7)0.0044 (7)0.0042 (7)
C1340.0268 (8)0.0197 (8)0.0271 (9)0.0006 (7)0.0020 (7)0.0029 (7)
C1350.0197 (7)0.0222 (8)0.0206 (8)0.0036 (6)0.0033 (6)0.0046 (7)
N10.0146 (6)0.0171 (6)0.0168 (6)0.0018 (5)0.0034 (5)0.0037 (5)
N20.0153 (6)0.0178 (6)0.0191 (7)0.0051 (5)0.0023 (5)0.0037 (5)
C91A0.0211 (10)0.0225 (10)0.0253 (12)0.0076 (8)0.0045 (9)0.0032 (9)
C92A0.0185 (10)0.0279 (11)0.0280 (12)0.0094 (9)0.0077 (9)0.0030 (9)
C91B0.0211 (10)0.0225 (10)0.0253 (12)0.0076 (8)0.0045 (9)0.0032 (9)
C92B0.0185 (10)0.0279 (11)0.0280 (12)0.0094 (9)0.0077 (9)0.0030 (9)
C90A0.0137 (19)0.016 (2)0.0228 (8)0.0004 (15)0.0038 (12)0.0014 (10)
C93B0.019 (2)0.0278 (11)0.0188 (14)0.0098 (9)0.0118 (10)0.0021 (9)
Geometric parameters (Å, º) top
C1—C21.4115 (19)C23—C241.386 (2)
C1—C301.492 (2)C24—H240.9500
C93A—H93A0.9900C24—C251.387 (2)
C93A—H93B0.9900C25—H250.9500
C90B—H90A0.9900C30—C311.393 (2)
C90B—H90B0.9900C30—C351.389 (2)
C1—N21.3351 (19)C31—H310.9500
C91A—H91A0.9900C31—C321.387 (2)
C91A—H91B0.9900C32—H320.9500
C93A—C92A1.510 (4)C32—C331.380 (2)
C91A—C92A1.521 (3)C33—H330.9500
C92A—H92A0.9900C33—C341.383 (2)
C92A—H92B0.9900C34—H340.9500
C90B—C91B1.55 (2)C34—C351.391 (2)
C91B—H91C0.9900C35—H350.9500
C91B—H91D0.9900C101—C1021.4014 (19)
C91B—C92B1.513 (11)C101—C1061.484 (2)
C92B—H92C0.9900C101—N11.3492 (18)
C92B—H92D0.9900C102—C1031.405 (2)
C91A—C90A1.536 (5)C102—C1091.511 (2)
C90A—H90C0.9900C103—C1041.393 (2)
C90A—H90D0.9900C103—C93A1.556 (4)
C92B—C93B1.61 (2)C103—C93B1.31 (2)
C93B—H93C0.9900C104—C1051.4128 (19)
C93B—H93D0.9900C104—C90B1.61 (4)
C2—C31.396 (2)C104—C90A1.498 (7)
C2—C101.518 (2)C105—C1201.492 (2)
C3—C41.406 (2)C105—N11.3308 (19)
C3—C131.5168 (19)C106—C1071.510 (2)
C4—C51.4025 (19)C106—C1141.3460 (19)
C4—C61.511 (2)C107—H10A0.9900
C5—C91.488 (2)C107—H10B0.9900
C5—N21.3511 (18)C107—C1081.521 (2)
C6—H6A0.9900C108—H10C0.9900
C6—H6B0.9900C108—H10D0.9900
C6—C71.517 (2)C108—C1091.522 (2)
C7—H7A0.9900C109—H10E0.9900
C7—H7B0.9900C109—H10F0.9900
C7—C81.524 (2)C114—H1140.9500
C8—H8A0.9900C114—C1301.468 (2)
C8—H8B0.9900C120—C1211.394 (2)
C8—C91.505 (2)C120—C1251.393 (2)
C9—C141.345 (2)C121—H1210.9500
C10—H10G0.9900C121—C1221.388 (2)
C10—H10H0.9900C122—H1220.9500
C10—C111.5285 (19)C122—C1231.381 (2)
C11—H11A0.9900C123—H1230.9500
C11—H11B0.9900C123—C1241.384 (2)
C11—C121.516 (2)C124—H1240.9500
C12—H12A0.9900C124—C1251.389 (2)
C12—H12B0.9900C125—H1250.9500
C12—C131.524 (2)C130—C1311.4040 (19)
C13—H13A0.9900C130—C1351.398 (2)
C13—H13B0.9900C131—H1310.9500
C14—H140.9500C131—C1321.385 (2)
C14—C201.470 (2)C132—H1320.9500
C20—C211.395 (2)C132—C1331.385 (2)
C20—C251.402 (2)C133—H1330.9500
C21—H210.9500C133—C1341.388 (2)
C21—C221.391 (2)C134—H1340.9500
C22—H220.9500C134—C1351.388 (2)
C22—C231.379 (2)C135—H1350.9500
C23—H230.9500
C2—C1—C30122.39 (13)C24—C23—H23120.2
N2—C1—C2123.03 (13)C23—C24—H24119.9
N2—C1—C30114.54 (12)C23—C24—C25120.16 (15)
C1—C2—C10121.26 (12)C25—C24—H24119.9
C3—C2—C1117.21 (13)C20—C25—H25119.5
C3—C2—C10121.18 (12)C24—C25—C20121.07 (15)
C2—C3—C4119.60 (12)C24—C25—H25119.5
C92A—C93A—C103112.2 (2)C31—C30—C1120.48 (13)
C91B—C90B—C104100.5 (13)C35—C30—C1121.05 (13)
C92A—C93A—H93A109.2C35—C30—C31118.43 (13)
C92A—C93A—H93B109.2C30—C31—H31119.7
H93A—C93A—H93B107.9C32—C31—C30120.65 (15)
C92B—C91B—C90B109.1 (13)C32—C31—H31119.7
C91B—C90B—H90A111.7C31—C32—H32119.8
C91B—C90B—H90B111.7C33—C32—C31120.37 (15)
C2—C3—C13121.57 (13)C33—C32—H32119.8
C4—C3—C13118.76 (13)C32—C33—H33120.1
C3—C4—C6120.39 (12)C32—C33—C34119.71 (14)
C5—C4—C3118.62 (13)C34—C33—H33120.1
C5—C4—C6120.93 (13)C33—C34—H34120.0
C4—C5—C9121.62 (13)C33—C34—C35120.00 (16)
N2—C5—C4121.40 (13)C35—C34—H34120.0
N2—C5—C9116.92 (12)C30—C35—C34120.84 (15)
C4—C6—H6A109.0C30—C35—H35119.6
C4—C6—H6B109.0C34—C35—H35119.6
C4—C6—C7112.79 (12)C102—C101—C106122.24 (13)
H6A—C6—H6B107.8C103—C93A—H93A109.2
C7—C6—H6A109.0N1—C101—C102121.45 (13)
C7—C6—H6B109.0N1—C101—C106116.24 (12)
C6—C7—H7A109.5C101—C102—C103118.68 (13)
C6—C7—H7B109.5C101—C102—C109120.45 (13)
C6—C7—C8110.76 (13)C103—C102—C109120.85 (13)
H90A—C90B—H90B109.4C102—C103—C93A118.83 (18)
C93A—C92A—C91A110.0 (2)C104—C103—C102119.70 (13)
C92A—C91A—H91A109.8C104—C103—C93A121.41 (18)
C90A—C91A—H91A109.8C103—C104—C105117.24 (13)
H91A—C91A—H91B108.3C103—C104—C90B126.8 (6)
C92A—C91A—H91B109.8C103—C104—C90A120.55 (16)
C90A—C91A—H91B109.8C105—C104—C90B115.9 (6)
C91A—C92A—H92A109.7C105—C104—C90A121.79 (17)
C93A—C92A—H92A109.7C104—C105—C120123.11 (13)
C93A—C92A—H92B109.7N1—C105—C104123.19 (13)
C91A—C92A—H92B109.7N1—C105—C120113.58 (12)
H92A—C92A—H92B108.2C101—C106—C107115.73 (12)
C90B—C91B—H91C109.9C114—C106—C101119.35 (13)
C92B—C91B—H91C109.9C114—C106—C107124.93 (14)
C92B—C91B—H91D109.9C106—C107—H10A109.6
H91C—C91B—H91D108.3C106—C107—H10B109.6
C90B—C91B—H91D109.9C106—C107—C108110.36 (13)
C91B—C92B—H92C110.6H10A—C107—H10B108.1
C93B—C92B—H92C110.6C108—C107—H10A109.6
C93B—C92B—H92D110.6C108—C107—H10B109.6
H92C—C92B—H92D108.8C103—C93A—H93B109.2
H7A—C7—H7B108.1C103—C93B—C92B117.3 (13)
C8—C7—H7A109.5C103—C93B—H93C108.0
C8—C7—H7B109.5C103—C93B—H93D108.0
C7—C8—H8A109.7C104—C90B—H90A111.7
C7—C8—H8B109.7C104—C90B—H90B111.7
H8A—C8—H8B108.2C104—C90A—C91A114.6 (3)
C9—C8—C7109.87 (13)C104—C90A—H90C108.6
C9—C8—H8A109.7C104—C90A—H90D108.6
C9—C8—H8B109.7C107—C108—H10C109.5
C5—C9—C8115.10 (12)C107—C108—H10D109.5
C14—C9—C5120.36 (13)C107—C108—C109110.87 (13)
C14—C9—C8124.55 (14)H10C—C108—H10D108.1
C2—C10—H10G109.3C109—C108—H10C109.5
C2—C10—H10H109.3C109—C108—H10D109.5
C2—C10—C11111.63 (12)C102—C109—C108112.51 (12)
H10G—C10—H10H108.0C102—C109—H10E109.1
C11—C10—H10G109.3C102—C109—H10F109.1
C11—C10—H10H109.3C108—C109—H10E109.1
C10—C11—H11A109.8C108—C109—H10F109.1
C10—C11—H11B109.8H10E—C109—H10F107.8
H11A—C11—H11B108.2C106—C114—H114115.7
C12—C11—C10109.45 (13)C106—C114—C130128.70 (14)
C12—C11—H11A109.8C130—C114—H114115.7
C12—C11—H11B109.8C121—C120—C105122.34 (13)
C11—C12—H12A109.5C125—C120—C105118.96 (13)
C11—C12—H12B109.5C125—C120—C121118.57 (13)
C11—C12—C13110.83 (12)C120—C121—H121119.7
H12A—C12—H12B108.1C122—C121—C120120.64 (14)
C13—C12—H12A109.5C122—C121—H121119.7
C13—C12—H12B109.5C121—C122—H122119.9
C3—C13—C12114.32 (12)C123—C122—C121120.20 (15)
C3—C13—H13A108.7C123—C122—H122119.9
C3—C13—H13B108.7C122—C123—H123120.1
C12—C13—H13A108.7C122—C123—C124119.83 (14)
C12—C13—H13B108.7C124—C123—H123120.1
H13A—C13—H13B107.6C123—C124—H124119.9
C9—C14—H14115.8C123—C124—C125120.11 (15)
C9—C14—C20128.41 (14)C125—C124—H124119.9
C20—C14—H14115.8C120—C125—H125119.7
C21—C20—C14123.19 (13)C124—C125—C120120.63 (15)
C21—C20—C25117.75 (14)C124—C125—H125119.7
C25—C20—C14118.91 (14)C131—C130—C114118.49 (13)
C20—C21—H21119.5C135—C130—C114123.77 (13)
C22—C21—C20120.94 (14)C135—C130—C131117.69 (14)
C22—C21—H21119.5C130—C131—H131119.5
C21—C22—H22119.8C132—C131—C130121.04 (14)
C23—C22—C21120.45 (16)C132—C131—H131119.5
C23—C22—H22119.8C131—C132—H132119.8
C22—C23—H23120.2C131—C132—C133120.43 (14)
C91B—C92B—H92D110.6C133—C132—H132119.8
C92A—C91A—C90A109.2 (2)C132—C133—H133120.3
C91A—C90A—H90C108.6C132—C133—C134119.42 (15)
C91A—C90A—H90D108.6C134—C133—H133120.3
H90C—C90A—H90D107.6C133—C134—H134119.9
C91B—C92B—C93B105.6 (12)C135—C134—C133120.25 (15)
C92B—C93B—H93C108.0C135—C134—H134119.9
C92B—C93B—H93D108.0C130—C135—H135119.4
H93C—C93B—H93D107.2C134—C135—C130121.11 (14)
C93B—C103—C102119.9 (8)C134—C135—H135119.4
C93B—C103—C104120.4 (8)C105—N1—C101119.51 (12)
C22—C23—C24119.60 (15)C1—N2—C5119.35 (12)
C90B—C91B—C92B—C93B71.8 (19)C32—C33—C34—C350.6 (2)
C90A—C91A—C92A—C93A64.4 (4)C33—C34—C35—C300.5 (2)
C91B—C92B—C93B—C10344 (3)C35—C30—C31—C321.0 (2)
C92A—C91A—C90A—C10448.1 (4)C101—C102—C103—C1043.8 (2)
C1—C2—C3—C44.7 (2)C101—C102—C109—C10816.2 (2)
C1—C2—C3—C13178.50 (13)C101—C106—C107—C10838.53 (18)
C1—C2—C10—C11155.77 (14)C101—C106—C114—C130174.32 (14)
C1—C30—C31—C32178.48 (13)C102—C101—C106—C1075.4 (2)
C1—C30—C35—C34177.76 (14)C102—C101—C106—C114174.64 (14)
C93B—C103—C104—C90B0 (2)C102—C101—N1—C1052.0 (2)
C101—C102—C103—C93B174.8 (18)C102—C103—C93A—C92A156.5 (3)
C101—C102—C103—C93A173.2 (3)C102—C103—C93B—C92B172.1 (13)
C93A—C103—C104—C90A4.7 (4)C102—C103—C104—C1050.4 (2)
C109—C102—C103—C93B3.3 (18)C103—C93A—C92A—C91A49.9 (5)
C109—C102—C103—C93A4.8 (3)C103—C102—C109—C108165.74 (14)
C93A—C103—C104—C105177.3 (3)C103—C104—C90B—C91B25 (2)
C102—C103—C104—C90B178.8 (14)C103—C104—C90A—C91A18.9 (5)
C102—C103—C104—C90A172.3 (3)C103—C104—C105—C120179.43 (13)
C93B—C103—C104—C105178.9 (18)C90B—C104—C105—N1175.5 (13)
C2—C1—C30—C31132.86 (15)C90A—C104—C105—N1168.8 (3)
C2—C1—C30—C3549.7 (2)C103—C104—C105—N13.7 (2)
C2—C1—N2—C54.0 (2)C104—C90B—C91B—C92B59.3 (17)
C2—C3—C4—C53.2 (2)C104—C103—C93A—C92A20.5 (6)
C2—C3—C4—C6179.61 (13)C104—C103—C93B—C92B9 (3)
C2—C3—C13—C122.7 (2)C104—C105—C120—C12157.7 (2)
C2—C10—C11—C1252.66 (17)C104—C105—C120—C125126.44 (16)
C3—C2—C10—C1117.37 (19)C104—C105—N1—C1012.6 (2)
C3—C4—C5—C9169.02 (13)C105—C104—C90B—C91B154.5 (9)
C3—C4—C5—N28.1 (2)C105—C104—C90A—C91A168.8 (2)
C3—C4—C6—C7170.74 (13)C105—C120—C121—C122176.48 (13)
C4—C3—C13—C12179.58 (13)C105—C120—C125—C124177.61 (14)
C4—C5—C9—C87.9 (2)C106—C101—C102—C103171.76 (13)
C4—C5—C9—C14171.80 (14)C106—C101—C102—C1096.3 (2)
C4—C5—N2—C14.6 (2)C106—C101—N1—C105175.10 (13)
C4—C6—C7—C847.05 (17)C106—C107—C108—C10960.97 (17)
C5—C4—C6—C712.1 (2)C106—C114—C130—C131151.65 (16)
C5—C9—C14—C20174.65 (14)C106—C114—C130—C13531.1 (2)
C6—C4—C5—C98.2 (2)C107—C106—C114—C1305.6 (3)
C6—C4—C5—N2174.71 (13)C107—C108—C109—C10249.52 (18)
C6—C7—C8—C962.67 (17)C109—C102—C103—C104178.16 (14)
C7—C8—C9—C542.45 (18)C114—C106—C107—C108141.57 (15)
C7—C8—C9—C14137.19 (16)C114—C130—C131—C132179.71 (14)
C8—C9—C14—C205.7 (3)C114—C130—C135—C134179.84 (14)
C9—C5—N2—C1172.70 (13)C120—C105—N1—C101178.66 (12)
C9—C14—C20—C2135.3 (2)C120—C121—C122—C1230.6 (2)
C9—C14—C20—C25149.20 (16)C121—C120—C125—C1241.6 (2)
C10—C2—C3—C4168.74 (13)C121—C122—C123—C1240.8 (2)
C90A—C104—C105—C1206.9 (3)C122—C123—C124—C1250.1 (2)
C90B—C104—C105—C1200.2 (13)C123—C124—C125—C1201.4 (2)
C10—C2—C3—C138.1 (2)C125—C120—C121—C1220.6 (2)
C10—C11—C12—C1364.02 (16)C130—C131—C132—C1331.1 (2)
C11—C12—C13—C338.47 (18)C131—C130—C135—C1342.8 (2)
C13—C3—C4—C5173.73 (13)C131—C132—C133—C1340.8 (2)
C13—C3—C4—C63.5 (2)C132—C133—C134—C1350.8 (2)
C14—C20—C21—C22176.47 (14)C133—C134—C135—C1301.1 (2)
C14—C20—C25—C24177.86 (14)C135—C130—C131—C1322.8 (2)
C20—C21—C22—C230.5 (2)N1—C101—C102—C1035.1 (2)
C21—C20—C25—C242.1 (2)N1—C101—C102—C109176.83 (13)
C21—C22—C23—C240.7 (2)N1—C101—C106—C107171.57 (13)
C22—C23—C24—C250.5 (2)N1—C101—C106—C1148.3 (2)
C23—C24—C25—C202.0 (2)N1—C105—C120—C121126.25 (15)
C25—C20—C21—C220.9 (2)N1—C105—C120—C12549.63 (18)
C30—C1—C2—C3173.79 (13)N2—C1—C2—C38.6 (2)
C30—C1—C2—C1012.8 (2)N2—C1—C2—C10164.80 (14)
C30—C1—N2—C5178.20 (13)N2—C1—C30—C3144.94 (19)
C30—C31—C32—C330.9 (2)N2—C1—C30—C35132.46 (15)
C31—C30—C35—C340.3 (2)N2—C5—C9—C8169.40 (13)
C31—C32—C33—C340.1 (2)N2—C5—C9—C1411.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···N1i0.972.77 (1)3.672 (2)155 (1)
C109—H10B···N2i0.972.74 (1)3.6756 (18)163 (1)
Symmetry code: (i) x, y, z.
Selected geometric parameters (Å, °) top
C1—N21.3351 (19)C101—N11.3492 (18)
C5—N21.3511 (18)C105—N11.3308 (19)
C14—C9—C5120.36 (13)C106—C114—C130128.70 (14)
C9—C14—C20128.41 (14)C105—N1—C101119.51 (12)
C114—C106—C101119.35 (13)C1—N2—C5119.35 (12)
Percentage of dnorm Hirschfeld surface accounted for by each (int)–(ext) contact type top
Contact (int)–(ext)H···HH···CH···NC···HN···H
Molecule A66.9%12.8%1.3%16.5%1.5%
Molecule B64.8%14.5%1.3%17.9%1.5%
 

Acknowledgements

The award of a PhD studentship to BAR by the Iraqi Ministry for Higher Education and the University of Baghdad is gratefully acknowledged.

References

First citationAl-Jeboori, M. J., Al-Fahdawi, M. S. & Sameh, A. A. (2009). J. Coord. Chem. 62, 3853–3863.  CAS Google Scholar
First citationBao, X., Yao, W., Zhu, Q. & Xu, Y. (2014). Eur. J. Org. Chem. pp. 7443–7450.  CrossRef Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGerfaud, T., Neuville, L. & Zhu, J. (2009). Angew. Chem. Int. Ed. 48, 572–577.  CrossRef CAS Google Scholar
First citationGilli, G. (2002). Fundamentals of Crystallography, edited by C. Giacovazzo, pp. 590–595. Oxford University Press.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHelesbeux, J.-J., Vanquelef, E., Guillon, J., Léger, J.-M. & Duval, O. (2011). J. Chem. Crystallogr. 41, 1945–1948.  CrossRef CAS Google Scholar
First citationHerrera, A., Martínez-Alvarez, R., Chioua, M., Chatt, R., Chioua, R., Sanchez, A. & Almy, J. (2006). Tetrahedron, 62, 2799–2811.  CrossRef CAS Google Scholar
First citationKarthikeyan, N. S., Sathiyanarayanan, K. & Aravindan, P. G. (2009). Bull. Korean Chem. Soc. 30, 2555–2558.  CAS Google Scholar
First citationNoller, C. R. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853–3855.  CrossRef PubMed CAS Web of Science Google Scholar
First citationShabashov, D. & Daugulis, O. (2007). J. Org. Chem. 72, 7720–7725.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationStevens, N., O'Connor, N., Vishwasrao, H., Samaroo, D., Kandel, E. R., Akins, D. L., Drain, C. M. & Turro, N. J. J. (2008). J. Am. Chem. Soc. 130, 7182–7183.  CrossRef PubMed CAS Google Scholar
First citationTumir, L. M., Stojković, R. M. & Piantanida, I. (2014). Beilstein J. Org. Chem. 10, 2930–2954.  CrossRef PubMed Google Scholar
First citationXu, Z., Yan, C. & Liu, Z. Q. (2014). Org. Lett. 16, 5670–5673.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds