research communications
R,2R)-N,N′-bis[(quinolin-2-yl)methyl]cyclohexane-1,2-diamine}chloridoiron(III))-μ-oxido-[trichloridoferrate(III)] chloroform monosolvate
of ({(1aDepartment of Chemistry, Creighton University, Omaha, NE 68102, USA, bDepartment of Chemistry, University of Wisconsin, Madison, WI 53558, USA, and cDepartment of Chemistry, Kansas State University, Manhattan, KS 66506, USA
*Correspondence e-mail: kayodeoshin@creighton.edu
The first FeIII atom in the solvated title compound, [Fe2Cl4O(C26H28N4)]·CHCl3, adopts a distorted six-coordinate octahedral geometry. It is coordinated by one chloride ligand, four N atoms from the (1R,2R)-N,N′-bis[(quinolin-2-yl)methyl]cyclohexane-1,2-diamine ligand, and a bridging oxido ligand attached to the second FeIII atom, which is also bonded to three chloride ions. A very weak intramolecular N—H⋯Cl hydrogen bond occurs. In the crystal, the coordination complexes stack in columns, and a grouping of six such columns create channels, which are populated by disordered chloroform solvent molecules. Although the Fe—Cl bond lengths for the two metal atoms are comparable to the mean Fe—Cl bond lengths as derived from the Cambridge Structural Database, the Fe—O bond lengths are notably shorter. The solvent chloroform molecule exhibits `flip' disorder of the C—H moiety in a 0.544 (3):0.456 (3) ratio. The only directional interaction noted is a weak C—H⋯Cl hydrogen bond.
Keywords: crystal structure; six-coordinate iron(III) complex; bridging oxido ligand; tetradentate ligand; chiral ligand.
CCDC reference: 1552964
1. Chemical context
Developing small-molecule complexes incorporating iron is an area of growing interest since the discovery of non-heme iron enzymes such as methane monooxygenase and Rieske dioxygenases to be efficient catalysts in the selective oxidation of hydrocarbons under mild reaction conditions (Company et al., 2007). Studies show that highly active non-heme iron catalysts that facilitate efficient stereo-specific alkane hydroxylation using H2O2 as oxidant can be synthesized by employing tetradentate N4-donor ligands such as N,N′-dimethyl-N,N′-bis(2-pyridylmethyl)ethane-1,2-diamine (BPMEN) or tris(2-pyridylmethyl)amine (TPMA) (Costas et al., 2000). These catalysts have provided key insights into possible mechanisms used by enzymes to oxidize in nature (Meunier et al., 2004). In addition to the application of four-coordinate iron complexes as catalysts in hydroxylation reactions, studies also show that these complexes can be utilized in epoxidation reactions of terminal and electron-deficient (Dubois et al., 2003). Iron oxido-bridging complexes are reported to play an important role in oxygen transport (hemerythrin), phosphate ester hydrolysis (purple acid phosphates), or DNA synthesis (ribonucleotide reductase) (Dutta et al., 1996). These oxido complexes exhibit redox and magnetic properties making them excellent candidates for future investigations into the mechanisms behind important biological and chemical processes (Feig & Lippard, 1994). Given the significance and application of iron complexes made from tetradentate ligands, herein we report on the synthesis and of the solvated title compound [Fe2(C26H28N4)(Cl)(μ-O)Fe(Cl)3]·CHCl3 (1), incorporating (1R,2R)-N,N′-bis[(quinolin-2-yl)methyl]cyclohexane-1,2-diamine (Fig. 1).
2. Structural commentary
There is one coordination complex and one molecule of chloroform solvent in the ). The tetradentate ligand, (1R,2R)-N,N′-bis[(quinolin-2-yl)methyl]cyclohexane-1,2-diamine, interacts with the FeIII cation in the equatorial plane through the four amine groups. A chloride ion and a bridging oxido ligand, which connects the two metal cations, complete the axial coordination. The distortions from the ideal octahedral geometry occur both in the equatorial and the axial positions. The equatorial angles vary widely from 74.96 (9)°, as in the case of the N1—Fe1—N2 angle, to 133.98 (9)° for the untethered N1—Fe1—N4 angle. The axial ligands exhibit a bent conformation with a Cl1—Fe1—O1 angle of 166.06 (7)°. In contrast, the second Fe metal cation, Fe2, exhibits a near ideal tetrahedral coordination geometry composed of one O atom and three Cl atoms. As expected based on the difference in the saturation of the coordination sphere, the Fe—Cl and the Fe—O distances for Fe1 are longer than that for Fe2. The single Fe—Cl distance for Fe1 is 2.3560 (8) Å, whereas the average Fe2—Cl distance of 2.232 (9) Å is more than 0.1 Å shorter, a statistically significant variation. Similarly, the Fe—O distances for Fe1 and Fe2 are also statistically significantly different at 1.808 (2) Å and 1.756 (2) Å, respectively. The bond lengths in the title compound are comparable to the mean Fe—Cl distances from the CSD for Fe complexes in an octahedral coordination [2.33 (7) Å] and a tetrahedral coordination [2.23 (3) Å]. In contrast, the Fe—O distances for both the octahedral and tetrahedral configurations in the title compound are shorter than the mean distances from CSD [2.01 (9) and 1.87 (13) Å, respectively]. A very weak intramolecular N3—H3⋯Cl4 hydrogen bond (Table 2) occurs. Finally, we observe that complex (1) is present only as the M (left-handed) conformer.
The coordination complex features two Fe(III) metal cations. One of the metal cations, Fe1, assumes a distorted octahedral coordination (Table 1
|
3. Supramolecular features
The molecules in the a-, b-, and c-axis directions. As there are no additional symmetry elements present, the resulting P212121, is chiral. The was unequivocally established, as evidenced by a Hooft y parameter of 0.003 (6), using Apart from a weak C—H⋯Cl bond from the chloroform molecule to one of the chloride ions bonded to Fe2 (Table 2), the molecules of the coordination complexes display minimal interatomic interactions. They assemble into columns that run parallel to the a axis. A circular arrangement of six columns of coordination complex molecules creates a channel. The channel is filled with solvent chloroform molecules that exhibit extensive positional disorder. For two of the columns that frame the chloroform channels, the oxido-trichloride groups of the coordination complexes point into the channels, while the other four columns face the void with the (1R,2R)-N,N′-bis[(quinolin-2-yl)methyl]cyclohexane-1,2-diamine ligand. The packing is illustrated in Fig. 2.
are related by twofold screw axes running along the4. Database survey
In our survey of the Cambridge Structural Database (Groom et al., 2016), we found five reported structures incorporating the (1R,2R)-N,N′-bis[(quinolin-2-yl)methyl]cyclohexane-1,2-diamine ligand motif. Of the five, only one structure showed coordination to iron (Dengler et al., 2011). In that structure, the distorted octahedral coordination of the FeIII metal atom is completed by two chloride ligands in the axial positions. The two Fe—Cl distances are comparable (2.495 and 2.509 Å) and the Cl1—Fe—N angles show a narrow distribution from 92–94°, except for Cl1—Fe—N1, which is 84°.
5. Synthesis and crystallization
Synthesis of (1R,2R)-N,N′-bis[(quinolin-2-yl)methyl]cyclohexane-1,2-diamine (R-QMC): In a 50 mL round-bottom flask (1R,2R)-1,2-cyclohexanediamine (0.20 g, 1.8 mmol) and 2-quinolinecarboxaldehyde (0.55 g, 3.6 mmol) were refluxed in ethanol (10 mL) for 3 h. A yellow precipitate formed that was isolated by filtration, washed twice with ethanol, and dried in vacuo producing the unreduced form of the ligand (QMC), (0.63 g, 89% yield). 1H NMR (CDCl3, 400 MHz): δ 1.24 (br, 2 H, CH), 1.56 (br, 2 H, CH), 1.97 (br, 2 H, CH), 3.62 (br, 2 H, CH), 7.48 (t, 1 H, J = 8.06 Hz, CH), 7.65 (t, 1 H, J = 8.06 Hz, CH), 7.74 (d, 1 H, J = 8.06 Hz, CH), 8.03 (d, 1 H, J = 8.56 Hz, CH), 8.06 (s, 1 H, CH), and 8.52 (s, 1 H, CH). The reduced form of the ligand (R-QMC, Fig. 3) was synthesized by reacting ligand QMC (0.50 g, 1.3 mmol) with sodium borohydride (0.06 g, 1.5 mmol) in methanol at room temperature for 12 h to produce R-QMC (0.42 g, 82% yield). 1H NMR (CDCl3, 400 MHz): δ 1.24 (br, 2 H, CH), 1.56 (br, 2 H, CH), 1.97 (br, 2 H, CH), 3.62 (br, 2 H, CH), 4.22 (dd, 2 H, J = 8.06 Hz, CH), 7.55 (t, 1 H, J = 8.06 Hz, CH), 7.61–7.73 (m, CH), 7.81 (d, 1 H, J = 8.56 Hz, CH), 8.06 (d, 1 H J = 8.06 Hz, CH), 8.08 (d, 1 H J = 8.06 Hz, CH).
Synthesis of ({(1R,2R)-N,N′-bis[(quinolin-2-yl)methyl]cyclohexane-1,2-diamine}chloridoiron(III))-μ-oxido-[trichloridoferrate(III)] chloroform monosolvate R-QMC (0.25 g, 0.63 mmol) was dissolved in 50/50 mixture of dichloromethane and ethanol (20 mL) in a 50 mL round-bottom flask. Iron(II) chloride (0.08 g, 0.63 mmol) was added to the flask to give a brown-colored solution. The reaction was allowed to mix for 6 h under gentle heat producing a brown-colored precipitate. The precipitate was filtered and washed twice with cold solvent then dried under vacuum for 30 minutes producing a brown powder (0.19 g, 58%). Brown prisms of (1) suitable for X-ray analysis were obtained by slow solvent diffusion of diethyl ether into a concentrated complex solution made in chloroform.
6. Refinement
Crystal data, data collection and structure . All hydrogen atoms, except for the amine hydrogen atom bonded to N3, were added at idealized positions and were allowed to ride on the neighboring atoms with relative isotropic displacement coefficients. The amine hydrogen bonded to N3 was allowed to refine freely. In addition to the {[(1R,2R)-N,N′-bis[(quinolin-2-yl)methyl]cyclohexane-1,2-diamine]chloridoiron(III)}-μ-oxido-[trichloridoferrate(III)], there is one molecule of chloroform solvent in the The solvent molecule exhibits extensive positional disorder over three positions. Initially, the disorder was modeled with chloroform molecule in an idealized geometry, where the 1,2 and the 1,3 bond lengths were constrained. As the converged, the geometry constraints were lifted. The chlorine atoms Cl6 and Cl7 were modeled over two positions, with the major component contributing 54.4 (3)%. The carbon atom C27 required modeling over three positions with the major component contribution of 54.4 (3)% and the two minor components contributing 24.1 (4)% and 21.5 (4)%. The C–Cl distances for all of the disorder components were restrained to be similar. In addition, Cl6A–Cl7A and Cl7A–Cl5 were restrained to be similar. The was unequivocally determined by anomalous dispersion.
details are summarized in Table 3Supporting information
CCDC reference: 1552964
https://doi.org/10.1107/S2056989017007952/hb7682sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017007952/hb7682Isup2.hkl
Data collection: APEX2 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Fe2Cl4O(C26H28N4)]·CHCl3 | Dx = 1.635 Mg m−3 |
Mr = 785.39 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 9981 reflections |
a = 10.3489 (6) Å | θ = 2.7–30.8° |
b = 14.3664 (8) Å | µ = 1.53 mm−1 |
c = 21.4619 (13) Å | T = 120 K |
V = 3190.9 (3) Å3 | Prism, brown |
Z = 4 | 0.26 × 0.22 × 0.14 mm |
F(000) = 1592 |
Bruker APEXII CCD diffractometer | 8808 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.065 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | θmax = 31.6°, θmin = 2.4° |
Tmin = 0.658, Tmax = 0.746 | h = −14→15 |
79886 measured reflections | k = −20→20 |
10537 independent reflections | l = −30→31 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.037 | w = 1/[σ2(Fo2) + (0.0361P)2 + 0.5065P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.082 | (Δ/σ)max = 0.001 |
S = 1.05 | Δρmax = 0.67 e Å−3 |
10537 reflections | Δρmin = −0.52 e Å−3 |
413 parameters | Absolute structure: Refined as an inversion twin |
37 restraints | Absolute structure parameter: 0.000 (14) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Fe1 | 0.24940 (4) | 0.34973 (3) | 0.86909 (2) | 0.02294 (9) | |
Fe2 | 0.37047 (4) | 0.32209 (3) | 0.72075 (2) | 0.02735 (10) | |
Cl1 | 0.15040 (7) | 0.38505 (5) | 0.96507 (4) | 0.03021 (16) | |
Cl2 | 0.24573 (9) | 0.28798 (6) | 0.63979 (4) | 0.04158 (19) | |
Cl3 | 0.54491 (9) | 0.23071 (7) | 0.72381 (7) | 0.0617 (3) | |
Cl4 | 0.43247 (8) | 0.47130 (5) | 0.71335 (4) | 0.03348 (16) | |
O1 | 0.28867 (19) | 0.30834 (14) | 0.79183 (10) | 0.0295 (5) | |
N1 | 0.2138 (2) | 0.19951 (16) | 0.89191 (12) | 0.0257 (5) | |
N2 | 0.4247 (2) | 0.30306 (17) | 0.91515 (12) | 0.0276 (5) | |
H2 | 0.4088 | 0.3066 | 0.9611 | 0.033* | |
N3 | 0.3688 (2) | 0.47300 (16) | 0.86772 (13) | 0.0244 (5) | |
H3 | 0.397 (3) | 0.472 (2) | 0.8331 (18) | 0.029* | |
N4 | 0.1286 (2) | 0.46258 (17) | 0.82871 (12) | 0.0259 (5) | |
C1 | 0.0979 (3) | 0.1519 (2) | 0.88928 (14) | 0.0279 (6) | |
C2 | −0.0189 (3) | 0.2008 (2) | 0.88477 (17) | 0.0357 (7) | |
H2A | −0.0188 | 0.2669 | 0.8860 | 0.043* | |
C3 | −0.1336 (3) | 0.1535 (3) | 0.8786 (2) | 0.0474 (9) | |
H3A | −0.2119 | 0.1875 | 0.8746 | 0.057* | |
C4 | −0.1369 (4) | 0.0557 (3) | 0.8781 (2) | 0.0492 (10) | |
H4 | −0.2167 | 0.0239 | 0.8733 | 0.059* | |
C5 | −0.0246 (4) | 0.0067 (2) | 0.88457 (17) | 0.0415 (9) | |
H5 | −0.0269 | −0.0594 | 0.8849 | 0.050* | |
C6 | 0.0945 (3) | 0.0530 (2) | 0.89077 (15) | 0.0319 (7) | |
C7 | 0.2130 (4) | 0.0055 (2) | 0.89797 (15) | 0.0339 (7) | |
H7 | 0.2143 | −0.0606 | 0.8990 | 0.041* | |
C8 | 0.3249 (3) | 0.0539 (2) | 0.90334 (15) | 0.0318 (7) | |
H8 | 0.4042 | 0.0221 | 0.9101 | 0.038* | |
C9 | 0.3225 (3) | 0.1519 (2) | 0.89887 (14) | 0.0273 (6) | |
C10 | 0.4472 (3) | 0.2049 (2) | 0.89977 (17) | 0.0320 (7) | |
H10A | 0.5061 | 0.1770 | 0.9310 | 0.038* | |
H10B | 0.4892 | 0.2004 | 0.8584 | 0.038* | |
C11 | 0.5348 (3) | 0.3655 (2) | 0.90109 (15) | 0.0266 (6) | |
H11 | 0.5616 | 0.3551 | 0.8569 | 0.032* | |
C12 | 0.6531 (3) | 0.3515 (2) | 0.94307 (15) | 0.0314 (6) | |
H12A | 0.6286 | 0.3619 | 0.9871 | 0.038* | |
H12B | 0.6848 | 0.2867 | 0.9390 | 0.038* | |
C13 | 0.7603 (3) | 0.4192 (2) | 0.92475 (16) | 0.0367 (7) | |
H13A | 0.7889 | 0.4058 | 0.8817 | 0.044* | |
H13B | 0.8353 | 0.4106 | 0.9528 | 0.044* | |
C14 | 0.7134 (3) | 0.5200 (3) | 0.92877 (16) | 0.0369 (8) | |
H14A | 0.6956 | 0.5360 | 0.9728 | 0.044* | |
H14B | 0.7822 | 0.5622 | 0.9135 | 0.044* | |
C15 | 0.5912 (3) | 0.5347 (2) | 0.89019 (16) | 0.0316 (7) | |
H15A | 0.5587 | 0.5988 | 0.8970 | 0.038* | |
H15B | 0.6123 | 0.5281 | 0.8454 | 0.038* | |
C16 | 0.4860 (3) | 0.4654 (2) | 0.90736 (14) | 0.0260 (6) | |
H16 | 0.4605 | 0.4762 | 0.9517 | 0.031* | |
C17 | 0.2910 (3) | 0.5562 (2) | 0.87921 (16) | 0.0296 (6) | |
H17A | 0.3375 | 0.6120 | 0.8641 | 0.036* | |
H17B | 0.2756 | 0.5634 | 0.9245 | 0.036* | |
C18 | 0.1644 (3) | 0.5469 (2) | 0.84567 (15) | 0.0288 (6) | |
C19 | 0.0884 (3) | 0.6267 (2) | 0.83377 (17) | 0.0374 (8) | |
H19 | 0.1182 | 0.6866 | 0.8458 | 0.045* | |
C20 | −0.0278 (4) | 0.6169 (2) | 0.80486 (17) | 0.0390 (8) | |
H20 | −0.0808 | 0.6699 | 0.7977 | 0.047* | |
C21 | −0.0696 (3) | 0.5276 (2) | 0.78549 (15) | 0.0327 (7) | |
C22 | −0.1905 (3) | 0.5116 (3) | 0.75714 (16) | 0.0400 (9) | |
H22 | −0.2471 | 0.5624 | 0.7494 | 0.048* | |
C23 | −0.2267 (3) | 0.4237 (3) | 0.74077 (16) | 0.0420 (9) | |
H23 | −0.3098 | 0.4132 | 0.7233 | 0.050* | |
C24 | −0.1422 (3) | 0.3490 (3) | 0.74965 (16) | 0.0398 (8) | |
H24 | −0.1675 | 0.2883 | 0.7370 | 0.048* | |
C25 | −0.0227 (3) | 0.3622 (2) | 0.77650 (16) | 0.0327 (7) | |
H | 0.0349 | 0.3112 | 0.7811 | 0.039* | |
C26 | 0.0136 (3) | 0.4510 (2) | 0.79695 (14) | 0.0276 (6) | |
Cl5 | 0.04556 (12) | 0.59674 (7) | 1.00240 (6) | 0.0613 (3) | |
Cl6 | 0.0633 (4) | 0.79088 (18) | 0.97904 (15) | 0.0776 (11) | 0.544 (3) |
Cl6A | −0.0063 (4) | 0.7908 (4) | 0.9720 (2) | 0.0927 (17) | 0.456 (3) |
Cl7 | −0.1718 (2) | 0.71764 (14) | 1.04018 (13) | 0.0676 (7) | 0.544 (3) |
Cl7A | −0.0951 (2) | 0.70539 (15) | 1.08266 (12) | 0.0531 (7) | 0.456 (3) |
C27 | −0.0048 (11) | 0.7090 (7) | 1.0301 (6) | 0.046 (4) | 0.544 (3) |
H27 | 0.0360 | 0.7186 | 1.0718 | 0.055* | 0.544 (3) |
C27A | 0.030 (2) | 0.7114 (11) | 1.0304 (9) | 0.027 (5) | 0.241 (4) |
H27A | 0.1111 | 0.7305 | 1.0522 | 0.032* | 0.241 (4) |
C27B | −0.0529 (16) | 0.6944 (8) | 1.0038 (7) | 0.042 (5) | 0.215 (4) |
H27B | −0.1340 | 0.6761 | 0.9816 | 0.050* | 0.215 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.02119 (17) | 0.02163 (17) | 0.0260 (2) | 0.00049 (15) | 0.00144 (18) | 0.00237 (15) |
Fe2 | 0.0243 (2) | 0.0275 (2) | 0.0302 (2) | 0.00048 (16) | 0.00332 (18) | −0.00318 (17) |
Cl1 | 0.0337 (4) | 0.0278 (3) | 0.0291 (4) | 0.0003 (3) | 0.0073 (3) | 0.0025 (3) |
Cl2 | 0.0377 (4) | 0.0501 (5) | 0.0369 (4) | −0.0118 (4) | −0.0030 (4) | −0.0031 (3) |
Cl3 | 0.0351 (4) | 0.0454 (5) | 0.1045 (9) | 0.0137 (4) | 0.0018 (5) | −0.0252 (6) |
Cl4 | 0.0340 (4) | 0.0311 (3) | 0.0354 (4) | −0.0051 (3) | 0.0032 (3) | 0.0020 (3) |
O1 | 0.0321 (11) | 0.0242 (10) | 0.0323 (12) | 0.0011 (8) | 0.0013 (9) | 0.0037 (8) |
N1 | 0.0286 (12) | 0.0220 (11) | 0.0265 (13) | 0.0005 (9) | 0.0003 (10) | 0.0022 (9) |
N2 | 0.0271 (12) | 0.0298 (13) | 0.0260 (13) | −0.0001 (10) | −0.0009 (10) | 0.0025 (10) |
N3 | 0.0245 (12) | 0.0255 (11) | 0.0231 (12) | −0.0012 (9) | 0.0020 (11) | 0.0015 (10) |
N4 | 0.0223 (12) | 0.0284 (12) | 0.0271 (13) | 0.0042 (10) | 0.0030 (10) | 0.0029 (10) |
C1 | 0.0326 (15) | 0.0273 (14) | 0.0237 (14) | −0.0049 (11) | 0.0017 (12) | 0.0018 (11) |
C2 | 0.0304 (16) | 0.0346 (16) | 0.042 (2) | −0.0018 (12) | 0.0051 (14) | −0.0025 (14) |
C3 | 0.0321 (17) | 0.048 (2) | 0.062 (3) | −0.0058 (15) | 0.0095 (17) | −0.0116 (19) |
C4 | 0.0396 (19) | 0.048 (2) | 0.060 (3) | −0.0161 (16) | 0.0080 (19) | −0.0117 (18) |
C5 | 0.056 (2) | 0.0312 (16) | 0.038 (2) | −0.0146 (15) | 0.0046 (17) | −0.0048 (14) |
C6 | 0.0449 (19) | 0.0266 (14) | 0.0242 (15) | −0.0042 (12) | 0.0031 (14) | −0.0008 (12) |
C7 | 0.054 (2) | 0.0233 (14) | 0.0246 (15) | 0.0014 (13) | 0.0005 (14) | 0.0018 (12) |
C8 | 0.0449 (19) | 0.0279 (14) | 0.0225 (15) | 0.0067 (12) | −0.0027 (13) | 0.0009 (12) |
C9 | 0.0332 (15) | 0.0276 (13) | 0.0210 (14) | 0.0043 (12) | −0.0020 (12) | 0.0028 (11) |
C10 | 0.0294 (15) | 0.0298 (15) | 0.0368 (18) | 0.0054 (12) | −0.0052 (14) | 0.0021 (13) |
C11 | 0.0205 (13) | 0.0353 (15) | 0.0240 (15) | −0.0015 (11) | −0.0002 (11) | −0.0001 (12) |
C12 | 0.0264 (14) | 0.0416 (16) | 0.0261 (15) | 0.0003 (13) | 0.0003 (12) | −0.0006 (13) |
C13 | 0.0272 (15) | 0.054 (2) | 0.0284 (16) | −0.0016 (15) | −0.0033 (14) | 0.0001 (14) |
C14 | 0.0324 (16) | 0.053 (2) | 0.0256 (16) | −0.0133 (14) | −0.0024 (13) | −0.0007 (14) |
C15 | 0.0283 (15) | 0.0386 (16) | 0.0277 (16) | −0.0086 (12) | 0.0020 (13) | −0.0011 (13) |
C16 | 0.0247 (14) | 0.0310 (14) | 0.0223 (15) | −0.0041 (11) | 0.0006 (11) | 0.0011 (11) |
C17 | 0.0318 (15) | 0.0230 (13) | 0.0339 (18) | −0.0018 (11) | 0.0038 (13) | 0.0010 (12) |
C18 | 0.0319 (15) | 0.0270 (14) | 0.0275 (16) | 0.0040 (11) | 0.0070 (13) | 0.0058 (11) |
C19 | 0.047 (2) | 0.0276 (16) | 0.0380 (19) | 0.0091 (13) | 0.0060 (16) | 0.0046 (13) |
C20 | 0.044 (2) | 0.0367 (17) | 0.0366 (19) | 0.0175 (15) | 0.0084 (15) | 0.0111 (14) |
C21 | 0.0302 (15) | 0.0430 (17) | 0.0250 (16) | 0.0113 (13) | 0.0077 (13) | 0.0096 (14) |
C22 | 0.0293 (16) | 0.065 (2) | 0.0262 (17) | 0.0171 (16) | 0.0047 (13) | 0.0148 (16) |
C23 | 0.0234 (17) | 0.074 (3) | 0.0284 (17) | 0.0031 (15) | −0.0004 (13) | 0.0066 (17) |
C24 | 0.0303 (16) | 0.057 (2) | 0.0321 (18) | −0.0008 (16) | 0.0002 (14) | −0.0039 (15) |
C25 | 0.0257 (14) | 0.0415 (17) | 0.0308 (17) | 0.0046 (12) | 0.0004 (13) | −0.0028 (14) |
C26 | 0.0237 (14) | 0.0374 (15) | 0.0216 (15) | 0.0060 (11) | 0.0036 (11) | 0.0046 (12) |
Cl5 | 0.0708 (7) | 0.0439 (5) | 0.0691 (7) | −0.0069 (5) | 0.0295 (6) | 0.0027 (5) |
Cl6 | 0.143 (3) | 0.0404 (12) | 0.0489 (14) | −0.0417 (17) | 0.011 (2) | 0.0081 (10) |
Cl6A | 0.096 (3) | 0.122 (3) | 0.060 (2) | 0.051 (3) | 0.010 (2) | 0.042 (2) |
Cl7 | 0.0658 (13) | 0.0416 (10) | 0.0953 (19) | 0.0037 (9) | −0.0259 (13) | −0.0139 (10) |
Cl7A | 0.0577 (14) | 0.0441 (11) | 0.0573 (15) | −0.0032 (9) | 0.0153 (11) | −0.0198 (10) |
C27 | 0.059 (9) | 0.043 (5) | 0.036 (6) | −0.033 (5) | −0.012 (5) | 0.001 (4) |
C27A | 0.023 (9) | 0.038 (10) | 0.019 (9) | −0.011 (6) | −0.010 (6) | 0.000 (7) |
C27B | 0.025 (8) | 0.027 (8) | 0.073 (15) | −0.010 (6) | −0.002 (8) | −0.012 (8) |
Fe1—O1 | 1.808 (2) | C12—H12B | 0.9900 |
Fe1—N1 | 2.243 (2) | C12—C13 | 1.527 (5) |
Fe1—N2 | 2.172 (3) | C13—H13A | 0.9900 |
Fe1—N3 | 2.159 (2) | C13—H13B | 0.9900 |
Fe1—N4 | 2.223 (2) | C13—C14 | 1.530 (5) |
Fe1—Cl1 | 2.3560 (8) | C14—H14A | 0.9900 |
Fe2—O1 | 1.756 (2) | C14—H14B | 0.9900 |
Fe2—Cl2 | 2.2194 (9) | C14—C15 | 1.526 (4) |
Fe2—Cl3 | 2.2331 (10) | C15—H15A | 0.9900 |
Fe2—Cl4 | 2.2432 (9) | C15—H15B | 0.9900 |
N1—C1 | 1.382 (4) | C15—C16 | 1.521 (4) |
N1—C9 | 1.324 (4) | C16—H16 | 1.0000 |
N2—H2 | 1.0000 | C17—H17A | 0.9900 |
N2—C10 | 1.467 (4) | C17—H17B | 0.9900 |
N2—C11 | 1.481 (4) | C17—C18 | 1.501 (4) |
N3—H3 | 0.80 (4) | C18—C19 | 1.414 (4) |
N3—C16 | 1.486 (4) | C19—H19 | 0.9500 |
N3—C17 | 1.462 (4) | C19—C20 | 1.361 (5) |
N4—C18 | 1.318 (4) | C20—H20 | 0.9500 |
N4—C26 | 1.381 (4) | C20—C21 | 1.417 (5) |
C1—C2 | 1.401 (4) | C21—C22 | 1.411 (5) |
C1—C6 | 1.422 (4) | C21—C26 | 1.418 (4) |
C2—H2A | 0.9500 | C22—H22 | 0.9500 |
C2—C3 | 1.374 (5) | C22—C23 | 1.363 (6) |
C3—H3A | 0.9500 | C23—H23 | 0.9500 |
C3—C4 | 1.405 (5) | C23—C24 | 1.398 (5) |
C4—H4 | 0.9500 | C24—H24 | 0.9500 |
C4—C5 | 1.366 (6) | C24—C25 | 1.378 (5) |
C5—H5 | 0.9500 | C25—H | 0.9500 |
C5—C6 | 1.407 (5) | C25—C26 | 1.401 (5) |
C6—C7 | 1.412 (5) | Cl5—C27 | 1.796 (11) |
C7—H7 | 0.9500 | Cl5—C27A | 1.761 (17) |
C7—C8 | 1.355 (5) | Cl5—C27B | 1.733 (13) |
C8—H8 | 0.9500 | Cl6—C27 | 1.755 (10) |
C8—C9 | 1.413 (4) | Cl6A—C27A | 1.735 (17) |
C9—C10 | 1.498 (4) | Cl6A—C27B | 1.618 (12) |
C10—H10A | 0.9900 | Cl7—C27 | 1.746 (11) |
C10—H10B | 0.9900 | Cl7A—C27A | 1.716 (17) |
C11—H11 | 1.0000 | Cl7A—C27B | 1.755 (15) |
C11—C12 | 1.534 (4) | C27—H27 | 1.0000 |
C11—C16 | 1.527 (4) | C27A—H27A | 1.0000 |
C12—H12A | 0.9900 | C27B—H27B | 1.0000 |
O1—Fe1—Cl1 | 166.06 (7) | C13—C12—C11 | 110.2 (3) |
O1—Fe1—N1 | 85.45 (9) | C13—C12—H12A | 109.6 |
O1—Fe1—N2 | 97.36 (10) | C13—C12—H12B | 109.6 |
O1—Fe1—N3 | 97.40 (10) | C12—C13—H13A | 109.4 |
O1—Fe1—N4 | 90.50 (9) | C12—C13—H13B | 109.4 |
N1—Fe1—Cl1 | 86.84 (7) | C12—C13—C14 | 111.0 (3) |
N2—Fe1—Cl1 | 91.81 (7) | H13A—C13—H13B | 108.0 |
N2—Fe1—N1 | 74.96 (9) | C14—C13—H13A | 109.4 |
N2—Fe1—N4 | 150.72 (10) | C14—C13—H13B | 109.4 |
N3—Fe1—Cl1 | 94.82 (7) | C13—C14—H14A | 109.4 |
N3—Fe1—N1 | 152.34 (9) | C13—C14—H14B | 109.4 |
N3—Fe1—N2 | 77.39 (9) | H14A—C14—H14B | 108.0 |
N3—Fe1—N4 | 73.64 (9) | C15—C14—C13 | 111.3 (3) |
N4—Fe1—Cl1 | 86.52 (7) | C15—C14—H14A | 109.4 |
N4—Fe1—N1 | 133.98 (9) | C15—C14—H14B | 109.4 |
Cl2—Fe2—Cl3 | 111.31 (4) | C14—C15—H15A | 109.3 |
Cl2—Fe2—Cl4 | 108.78 (4) | C14—C15—H15B | 109.3 |
Cl3—Fe2—Cl4 | 109.42 (4) | H15A—C15—H15B | 107.9 |
O1—Fe2—Cl2 | 112.02 (8) | C16—C15—C14 | 111.8 (3) |
O1—Fe2—Cl3 | 107.35 (8) | C16—C15—H15A | 109.3 |
O1—Fe2—Cl4 | 107.87 (7) | C16—C15—H15B | 109.3 |
Fe2—O1—Fe1 | 150.26 (13) | N3—C16—C11 | 106.8 (2) |
C1—N1—Fe1 | 127.54 (19) | N3—C16—C15 | 113.4 (2) |
C9—N1—Fe1 | 112.45 (19) | N3—C16—H16 | 108.5 |
C9—N1—C1 | 119.1 (3) | C11—C16—H16 | 108.5 |
Fe1—N2—H2 | 107.2 | C15—C16—C11 | 111.0 (3) |
C10—N2—Fe1 | 109.10 (19) | C15—C16—H16 | 108.5 |
C10—N2—H2 | 107.2 | N3—C17—H17A | 109.9 |
C10—N2—C11 | 114.5 (2) | N3—C17—H17B | 109.9 |
C11—N2—Fe1 | 111.27 (18) | N3—C17—C18 | 109.1 (2) |
C11—N2—H2 | 107.2 | H17A—C17—H17B | 108.3 |
Fe1—N3—H3 | 102 (3) | C18—C17—H17A | 109.9 |
C16—N3—Fe1 | 113.52 (17) | C18—C17—H17B | 109.9 |
C16—N3—H3 | 104 (3) | N4—C18—C17 | 117.4 (3) |
C17—N3—Fe1 | 110.66 (17) | N4—C18—C19 | 122.7 (3) |
C17—N3—H3 | 112 (3) | C19—C18—C17 | 120.0 (3) |
C17—N3—C16 | 114.4 (2) | C18—C19—H19 | 120.3 |
C18—N4—Fe1 | 113.9 (2) | C20—C19—C18 | 119.3 (3) |
C18—N4—C26 | 119.3 (3) | C20—C19—H19 | 120.3 |
C26—N4—Fe1 | 126.1 (2) | C19—C20—H20 | 120.1 |
N1—C1—C2 | 120.3 (3) | C19—C20—C21 | 119.8 (3) |
N1—C1—C6 | 121.0 (3) | C21—C20—H20 | 120.1 |
C2—C1—C6 | 118.7 (3) | C20—C21—C26 | 117.8 (3) |
C1—C2—H2A | 119.8 | C22—C21—C20 | 123.0 (3) |
C3—C2—C1 | 120.3 (3) | C22—C21—C26 | 119.2 (3) |
C3—C2—H2A | 119.8 | C21—C22—H22 | 119.8 |
C2—C3—H3A | 119.5 | C23—C22—C21 | 120.4 (3) |
C2—C3—C4 | 121.0 (4) | C23—C22—H22 | 119.8 |
C4—C3—H3A | 119.5 | C22—C23—H23 | 119.9 |
C3—C4—H4 | 120.2 | C22—C23—C24 | 120.3 (3) |
C5—C4—C3 | 119.6 (3) | C24—C23—H23 | 119.9 |
C5—C4—H4 | 120.2 | C23—C24—H24 | 119.6 |
C4—C5—H5 | 119.6 | C25—C24—C23 | 120.9 (4) |
C4—C5—C6 | 120.8 (3) | C25—C24—H24 | 119.6 |
C6—C5—H5 | 119.6 | C24—C25—H | 120.1 |
C5—C6—C1 | 119.5 (3) | C24—C25—C26 | 119.8 (3) |
C5—C6—C7 | 122.9 (3) | C26—C25—H | 120.1 |
C7—C6—C1 | 117.7 (3) | N4—C26—C21 | 121.0 (3) |
C6—C7—H7 | 119.9 | N4—C26—C25 | 119.7 (3) |
C8—C7—C6 | 120.2 (3) | C25—C26—C21 | 119.3 (3) |
C8—C7—H7 | 119.9 | C27B—Cl5—C27A | 35.2 (10) |
C7—C8—H8 | 120.3 | C27B—Cl6A—C27A | 36.6 (11) |
C7—C8—C9 | 119.4 (3) | C27A—Cl7A—C27B | 35.5 (11) |
C9—C8—H8 | 120.3 | Cl5—C27—H27 | 107.3 |
N1—C9—C8 | 122.5 (3) | Cl6—C27—Cl5 | 106.2 (6) |
N1—C9—C10 | 118.1 (3) | Cl6—C27—H27 | 107.3 |
C8—C9—C10 | 119.4 (3) | Cl7—C27—Cl5 | 113.1 (7) |
N2—C10—C9 | 110.7 (3) | Cl7—C27—Cl6 | 115.3 (7) |
N2—C10—H10A | 109.5 | Cl7—C27—H27 | 107.3 |
N2—C10—H10B | 109.5 | Cl5—C27A—H27A | 109.9 |
C9—C10—H10A | 109.5 | Cl6A—C27A—Cl5 | 112.9 (11) |
C9—C10—H10B | 109.5 | Cl6A—C27A—H27A | 109.9 |
H10A—C10—H10B | 108.1 | Cl7A—C27A—Cl5 | 104.2 (9) |
N2—C11—H11 | 108.4 | Cl7A—C27A—Cl6A | 110.0 (11) |
N2—C11—C12 | 114.5 (2) | Cl7A—C27A—H27A | 109.9 |
N2—C11—C16 | 107.3 (2) | Cl5—C27B—Cl7A | 103.7 (8) |
C12—C11—H11 | 108.4 | Cl5—C27B—H27B | 105.9 |
C16—C11—H11 | 108.4 | Cl6A—C27B—Cl5 | 120.7 (8) |
C16—C11—C12 | 109.6 (3) | Cl6A—C27B—Cl7A | 113.8 (8) |
C11—C12—H12A | 109.6 | Cl6A—C27B—H27B | 105.9 |
C11—C12—H12B | 109.6 | Cl7A—C27B—H27B | 105.9 |
H12A—C12—H12B | 108.1 | ||
Fe1—N1—C1—C2 | −14.7 (4) | C9—N1—C1—C2 | 177.1 (3) |
Fe1—N1—C1—C6 | 165.0 (2) | C9—N1—C1—C6 | −3.2 (4) |
Fe1—N1—C9—C8 | −169.5 (2) | C10—N2—C11—C12 | −69.3 (4) |
Fe1—N1—C9—C10 | 8.4 (3) | C10—N2—C11—C16 | 168.8 (3) |
Fe1—N2—C10—C9 | −39.2 (3) | C11—N2—C10—C9 | −164.6 (3) |
Fe1—N2—C11—C12 | 166.5 (2) | C11—C12—C13—C14 | 57.7 (4) |
Fe1—N2—C11—C16 | 44.6 (3) | C12—C11—C16—N3 | −177.7 (2) |
Fe1—N3—C16—C11 | 37.6 (3) | C12—C11—C16—C15 | 58.2 (3) |
Fe1—N3—C16—C15 | 160.1 (2) | C12—C13—C14—C15 | −54.6 (4) |
Fe1—N3—C17—C18 | −39.6 (3) | C13—C14—C15—C16 | 53.5 (4) |
Fe1—N4—C18—C17 | 10.4 (3) | C14—C15—C16—N3 | −175.9 (3) |
Fe1—N4—C18—C19 | −169.2 (2) | C14—C15—C16—C11 | −55.7 (4) |
Fe1—N4—C26—C21 | 165.7 (2) | C16—N3—C17—C18 | −169.4 (2) |
Fe1—N4—C26—C25 | −13.3 (4) | C16—C11—C12—C13 | −59.2 (3) |
Cl1—Fe1—O1—Fe2 | 149.00 (17) | C17—N3—C16—C11 | 165.9 (2) |
Cl2—Fe2—O1—Fe1 | −136.6 (2) | C17—N3—C16—C15 | −71.5 (3) |
Cl3—Fe2—O1—Fe1 | 100.9 (2) | C17—C18—C19—C20 | −178.2 (3) |
Cl4—Fe2—O1—Fe1 | −16.9 (3) | C18—N4—C26—C21 | −3.6 (4) |
N1—Fe1—O1—Fe2 | −154.4 (3) | C18—N4—C26—C25 | 177.4 (3) |
N1—C1—C2—C3 | 176.3 (3) | C18—C19—C20—C21 | −1.8 (5) |
N1—C1—C6—C5 | −176.5 (3) | C19—C20—C21—C22 | 177.8 (3) |
N1—C1—C6—C7 | 2.9 (5) | C19—C20—C21—C26 | −0.4 (5) |
N1—C9—C10—N2 | 20.6 (4) | C20—C21—C22—C23 | −178.5 (3) |
N2—Fe1—O1—Fe2 | −80.2 (3) | C20—C21—C26—N4 | 3.2 (4) |
N2—C11—C12—C13 | −179.8 (3) | C20—C21—C26—C25 | −177.8 (3) |
N2—C11—C16—N3 | −52.8 (3) | C21—C22—C23—C24 | −2.6 (5) |
N2—C11—C16—C15 | −176.9 (2) | C22—C21—C26—N4 | −175.2 (3) |
N3—Fe1—O1—Fe2 | −2.1 (3) | C22—C21—C26—C25 | 3.8 (4) |
N3—C17—C18—N4 | 19.0 (4) | C22—C23—C24—C25 | 1.8 (5) |
N3—C17—C18—C19 | −161.3 (3) | C23—C24—C25—C26 | 1.9 (5) |
N4—Fe1—O1—Fe2 | 71.5 (3) | C24—C25—C26—N4 | 174.4 (3) |
N4—C18—C19—C20 | 1.4 (5) | C24—C25—C26—C21 | −4.6 (5) |
C1—N1—C9—C8 | 0.4 (5) | C26—N4—C18—C17 | −179.1 (3) |
C1—N1—C9—C10 | 178.3 (3) | C26—N4—C18—C19 | 1.3 (4) |
C1—C2—C3—C4 | 1.5 (6) | C26—C21—C22—C23 | −0.2 (5) |
C1—C6—C7—C8 | 0.2 (5) | C27A—Cl5—C27B—Cl6A | 64.6 (14) |
C2—C1—C6—C5 | 3.2 (5) | C27A—Cl5—C27B—Cl7A | −64.3 (12) |
C2—C1—C6—C7 | −177.4 (3) | C27A—Cl6A—C27B—Cl5 | −62.5 (14) |
C2—C3—C4—C5 | 0.8 (6) | C27A—Cl6A—C27B—Cl7A | 61.7 (12) |
C3—C4—C5—C6 | −1.0 (6) | C27A—Cl7A—C27B—Cl5 | 66.9 (12) |
C4—C5—C6—C1 | −1.0 (5) | C27A—Cl7A—C27B—Cl6A | −66.1 (12) |
C4—C5—C6—C7 | 179.6 (4) | C27B—Cl5—C27A—Cl6A | −51.8 (12) |
C5—C6—C7—C8 | 179.6 (3) | C27B—Cl5—C27A—Cl7A | 67.5 (14) |
C6—C1—C2—C3 | −3.4 (5) | C27B—Cl6A—C27A—Cl5 | 54.6 (12) |
C6—C7—C8—C9 | −2.8 (5) | C27B—Cl6A—C27A—Cl7A | −61.3 (14) |
C7—C8—C9—N1 | 2.6 (5) | C27B—Cl7A—C27A—Cl5 | −65.1 (12) |
C7—C8—C9—C10 | −175.2 (3) | C27B—Cl7A—C27A—Cl6A | 56.1 (12) |
C8—C9—C10—N2 | −161.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···Cl4 | 0.80 (4) | 2.60 (4) | 3.378 (3) | 167 (3) |
C27A—H27A···Cl2i | 1.00 | 2.41 | 3.30 (2) | 149 |
Symmetry code: (i) −x+1/2, −y+1, z+1/2. |
Acknowledgements
The authors thank Kansas State University for instrument support.
Funding information
Funding for this research was provided by: Creighton University; Hamilton Company; Cambridge Isotope Laboratories, Inc.; National Science Foundation, Division of Chemistryhttps://doi.org/10.13039/100000165 (award No. CHE-0349258).
References
Bruker (2016). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Company, A., Gómez, L., Güell, M., Ribas, X., Luis, J., Que, L. & Costas, M. (2007). J. Am. Chem. Soc. 129, 15766–15767. Web of Science CSD CrossRef PubMed CAS Google Scholar
Costas, M., Chen, K. & Que, L. (2000). Coord. Chem. Rev. 200–202, 517–544. Web of Science CrossRef CAS Google Scholar
Dengler, J. E., Lehenmeier, M. W., Klaus, S., Anderson, C. E., Herdtweck, E. & Rieger, B. (2011). Eur. J. Inorg. Chem. pp. 336–343. Web of Science CSD CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dubois, G., Murphy, A. & Stack, D. P. (2003). Org. Lett. 5, 2469–2472. Web of Science CrossRef PubMed CAS Google Scholar
Dutta, S. K., Werner, R., Flörke, U., Mohanta, S., Nanda, K. K., Haase, W. & Nag, K. (1996). Inorg. Chem. 35, 2292–2300. CSD CrossRef PubMed CAS Web of Science Google Scholar
Feig, A. L. & Lippard, S. T. (1994). Chem. Rev. 94, 759–805. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Meunier, B., de Visser, S. P. & Shaik, S. (2004). Chem. Rev. 104, 3947–3980. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.