research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ({(1R,2R)-N,N′-bis­­[(quino­lin-2-yl)methyl]cyclo­hexane-1,2-di­amine}­chlorido­iron(III))-μ-oxido-[tri­chlorido­ferrate(III)] chloro­form monosolvate

aDepartment of Chemistry, Creighton University, Omaha, NE 68102, USA, bDepartment of Chemistry, University of Wisconsin, Madison, WI 53558, USA, and cDepartment of Chemistry, Kansas State University, Manhattan, KS 66506, USA
*Correspondence e-mail: kayodeoshin@creighton.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 22 May 2017; accepted 29 May 2017; online 2 June 2017)

The first FeIII atom in the solvated title compound, [Fe2Cl4O(C26H28N4)]·CHCl3, adopts a distorted six-coordinate octa­hedral geometry. It is coordinated by one chloride ligand, four N atoms from the (1R,2R)-N,N′-bis­[(quinolin-2-yl)methyl]cyclo­hexane-1,2-di­amine ligand, and a bridging oxido ligand attached to the second FeIII atom, which is also bonded to three chloride ions. A very weak intra­molecular N—H⋯Cl hydrogen bond occurs. In the crystal, the coordination complexes stack in columns, and a grouping of six such columns create channels, which are populated by disordered chloro­form solvent mol­ecules. Although the Fe—Cl bond lengths for the two metal atoms are comparable to the mean Fe—Cl bond lengths as derived from the Cambridge Structural Database, the Fe—O bond lengths are notably shorter. The solvent chloro­form mol­ecule exhibits `flip' disorder of the C—H moiety in a 0.544 (3):0.456 (3) ratio. The only directional inter­action noted is a weak C—H⋯Cl hydrogen bond.

1. Chemical context

Developing small-mol­ecule complexes incorporating iron is an area of growing inter­est since the discovery of non-heme iron enzymes such as methane monooxygenase and Rieske di­oxy­genases to be efficient catalysts in the selective oxidation of hydro­carbons under mild reaction conditions (Company et al., 2007[Company, A., Gómez, L., Güell, M., Ribas, X., Luis, J., Que, L. & Costas, M. (2007). J. Am. Chem. Soc. 129, 15766-15767.]). Studies show that highly active non-heme iron catalysts that facilitate efficient stereo-specific alkane hy­droxy­lation using H2O2 as oxidant can be synthesized by employing tetra­dentate N4-donor ligands such as N,N′-dimethyl-N,N′-bis­(2-pyridyl­meth­yl)ethane-1,2-di­amine (BPMEN) or tris(2-pyridyl­meth­yl)amine (TPMA) (Costas et al., 2000[Costas, M., Chen, K. & Que, L. (2000). Coord. Chem. Rev. 200-202, 517-544.]). These catalysts have provided key insights into possible mechanisms used by enzymes to oxidize alkanes in nature (Meunier et al., 2004[Meunier, B., de Visser, S. P. & Shaik, S. (2004). Chem. Rev. 104, 3947-3980.]). In addition to the application of four-coordinate iron complexes as catalysts in hy­droxy­lation reactions, studies also show that these complexes can be utilized in epoxidation reactions of terminal and electron-deficient alkenes (Dubois et al., 2003[Dubois, G., Murphy, A. & Stack, D. P. (2003). Org. Lett. 5, 2469-2472.]). Iron oxido-bridging complexes are reported to play an important role in oxygen transport (hemerythrin), phosphate ester hydrolysis (purple acid phosphates), or DNA synthesis (ribonucleotide reductase) (Dutta et al., 1996[Dutta, S. K., Werner, R., Flörke, U., Mohanta, S., Nanda, K. K., Haase, W. & Nag, K. (1996). Inorg. Chem. 35, 2292-2300.]). These oxido complexes exhibit redox and magnetic properties making them excellent candidates for future investigations into the mechanisms behind important biological and chemical processes (Feig & Lippard, 1994[Feig, A. L. & Lippard, S. T. (1994). Chem. Rev. 94, 759-805.]). Given the significance and application of iron complexes made from tetra­dentate ligands, herein we report on the synthesis and crystal structure of the solvated title compound [Fe2(C26H28N4)(Cl)(μ-O)Fe(Cl)3]·CHCl3 (1), incorporating (1R,2R)-N,N′-bis­[(quino­lin-2-yl)methyl]cyclo­hexane-1,2-di­amine (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of complex (1), shown with 50% probability displacement ellipsoids. All H atoms and the minor-disorder components of the solvent mol­ecule have been omitted for clarity.

2. Structural commentary

There is one coordination complex and one mol­ecule of chloro­form solvent in the asymmetric unit. The coordination complex features two Fe(III) metal cations. One of the metal cations, Fe1, assumes a distorted octa­hedral coordination (Table 1[link]). The tetradentate ligand, (1R,2R)-N,N′-bis[(quino­lin-2-yl)methyl­]cyclo­hexane-1,2-di­amine, inter­acts with the FeIII cation in the equatorial plane through the four amine groups. A chloride ion and a bridging oxido ligand, which connects the two metal cations, complete the axial coordination. The distortions from the ideal octa­hedral geometry occur both in the equatorial and the axial positions. The equatorial angles vary widely from 74.96 (9)°, as in the case of the N1—Fe1—N2 angle, to 133.98 (9)° for the untethered N1—Fe1—N4 angle. The axial ligands exhibit a bent conformation with a Cl1—Fe1—O1 angle of 166.06 (7)°. In contrast, the second Fe metal cation, Fe2, exhibits a near ideal tetra­hedral coordination geometry composed of one O atom and three Cl atoms. As expected based on the difference in the saturation of the coordination sphere, the Fe—Cl and the Fe—O distances for Fe1 are longer than that for Fe2. The single Fe—Cl distance for Fe1 is 2.3560 (8) Å, whereas the average Fe2—Cl distance of 2.232 (9) Å is more than 0.1 Å shorter, a statistically significant variation. Similarly, the Fe—O distances for Fe1 and Fe2 are also statistically significantly different at 1.808 (2) Å and 1.756 (2) Å, respectively. The bond lengths in the title compound are comparable to the mean Fe—Cl distances from the CSD for Fe complexes in an octa­hedral coordination [2.33 (7) Å] and a tetra­hedral coordination [2.23 (3) Å]. In contrast, the Fe—O distances for both the octa­hedral and tetra­hedral configurations in the title compound are shorter than the mean distances from CSD [2.01 (9) and 1.87 (13) Å, respectively]. A very weak intra­molecular N3—H3⋯Cl4 hydrogen bond (Table 2[link]) occurs. Finally, we observe that complex (1) is present only as the M (left-handed) conformer.

Table 1
Selected bond lengths (Å)

Fe1—O1 1.808 (2) Fe1—Cl1 2.3560 (8)
Fe1—N1 2.243 (2) Fe2—O1 1.756 (2)
Fe1—N2 2.172 (3) Fe2—Cl2 2.2194 (9)
Fe1—N3 2.159 (2) Fe2—Cl3 2.2331 (10)
Fe1—N4 2.223 (2) Fe2—Cl4 2.2432 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯Cl4 0.80 (4) 2.60 (4) 3.378 (3) 167 (3)
C27A—H27A⋯Cl2i 1.00 2.41 3.30 (2) 149
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

3. Supra­molecular features

The mol­ecules in the crystal structure are related by twofold screw axes running along the a-, b-, and c-axis directions. As there are no additional symmetry elements present, the resulting space group, P212121, is chiral. The absolute structure was unequivocally established, as evidenced by a Hooft y parameter of 0.003 (6), using anomalous dispersion. Apart from a weak C—H⋯Cl bond from the chloro­form mol­ecule to one of the chloride ions bonded to Fe2 (Table 2[link]), the mol­ecules of the coordination complexes display minimal inter­atomic inter­actions. They assemble into columns that run parallel to the a axis. A circular arrangement of six columns of coord­ination complex mol­ecules creates a channel. The channel is filled with solvent chloro­form mol­ecules that exhibit extensive positional disorder. For two of the columns that frame the chloro­form channels, the oxido-trichloride groups of the coordination complexes point into the channels, while the other four columns face the void with the (1R,2R)-N,N′-bis­[(quin­olin-2-yl)methyl­]cyclo­hexane-1,2-di­amine lig­and. The packing is illustrated in Fig. 2[link].

[Figure 2]
Figure 2
Packing diagram for complex (1), showing the columns of the coordination complex and the channels of disordered chloro­form solvent mol­ecules stacked along the a axis.

4. Database survey

In our survey of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), we found five reported structures incorporating the (1R,2R)-N,N′-bis­[(quinolin-2-yl)methyl­]cyclo­hex­ane-1,2-di­amine ligand motif. Of the five, only one structure showed coordination to iron (Dengler et al., 2011[Dengler, J. E., Lehenmeier, M. W., Klaus, S., Anderson, C. E., Herdtweck, E. & Rieger, B. (2011). Eur. J. Inorg. Chem. pp. 336-343.]). In that structure, the distorted octa­hedral coordination of the FeIII metal atom is completed by two chloride ligands in the axial positions. The two Fe—Cl distances are comparable (2.495 and 2.509 Å) and the Cl1—Fe—N angles show a narrow distribution from 92–94°, except for Cl1—Fe—N1, which is 84°.

5. Synthesis and crystallization

Synthesis of (1R,2R)-N,N′-bis­[(quinolin-2-yl)methyl]cyclo­hexane-1,2-di­amine (R-QMC): In a 50 mL round-bottom flask (1R,2R)-1,2-cyclo­hexa­nedi­amine (0.20 g, 1.8 mmol) and 2-quinoline­carboxaldehyde (0.55 g, 3.6 mmol) were refluxed in ethanol (10 mL) for 3 h. A yellow precipitate formed that was isolated by filtration, washed twice with ethanol, and dried in vacuo producing the unreduced form of the ligand (QMC), (0.63 g, 89% yield). 1H NMR (CDCl3, 400 MHz): δ 1.24 (br, 2 H, CH), 1.56 (br, 2 H, CH), 1.97 (br, 2 H, CH), 3.62 (br, 2 H, CH), 7.48 (t, 1 H, J = 8.06 Hz, CH), 7.65 (t, 1 H, J = 8.06 Hz, CH), 7.74 (d, 1 H, J = 8.06 Hz, CH), 8.03 (d, 1 H, J = 8.56 Hz, CH), 8.06 (s, 1 H, CH), and 8.52 (s, 1 H, CH). The reduced form of the ligand (R-QMC, Fig. 3[link]) was synthesized by reacting ligand QMC (0.50 g, 1.3 mmol) with sodium borohydride (0.06 g, 1.5 mmol) in methanol at room temperature for 12 h to produce R-QMC (0.42 g, 82% yield). 1H NMR (CDCl3, 400 MHz): δ 1.24 (br, 2 H, CH), 1.56 (br, 2 H, CH), 1.97 (br, 2 H, CH), 3.62 (br, 2 H, CH), 4.22 (dd, 2 H, J = 8.06 Hz, CH), 7.55 (t, 1 H, J = 8.06 Hz, CH), 7.61–7.73 (m, CH), 7.81 (d, 1 H, J = 8.56 Hz, CH), 8.06 (d, 1 H J = 8.06 Hz, CH), 8.08 (d, 1 H J = 8.06 Hz, CH).

[Figure 3]
Figure 3
Synthetic scheme for complex (1).

Synthesis of ({(1R,2R)-N,N′-bis­[(quinolin-2-yl)methyl]cyclo­hexane-1,2-di­amine}­chlorido­iron(III))-μ-oxido-[tri­chlo­rido­ferrate(III)] chloro­form monosolvate R-QMC (0.25 g, 0.63 mmol) was dissolved in 50/50 mixture of di­chloro­methane and ethanol (20 mL) in a 50 mL round-bottom flask. Iron(II) chloride (0.08 g, 0.63 mmol) was added to the flask to give a brown-colored solution. The reaction was allowed to mix for 6 h under gentle heat producing a brown-colored precipitate. The precipitate was filtered and washed twice with cold solvent then dried under vacuum for 30 minutes producing a brown powder (0.19 g, 58%). Brown prisms of (1) suitable for X-ray analysis were obtained by slow solvent diffusion of diethyl ether into a concentrated complex solution made in chloro­form.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms, except for the amine hydrogen atom bonded to N3, were added at idealized positions and were allowed to ride on the neighboring atoms with relative isotropic displacement coefficients. The amine hydrogen bonded to N3 was allowed to refine freely. In addition to the {[(1R,2R)-N,N′-bis­[(quinolin-2-yl)methyl]cyclo­hexane-1,2-di­amine]­chlorido­iron(III)}-μ-oxido-[tri­chlo­rido­ferrate(III)], there is one mol­ecule of chloro­form solvent in the asymmetric unit. The solvent mol­ecule exhibits extensive positional disorder over three positions. Initially, the disorder was modeled with chloro­form mol­ecule in an idealized geometry, where the 1,2 and the 1,3 bond lengths were constrained. As the refinement converged, the geometry constraints were lifted. The chlorine atoms Cl6 and Cl7 were modeled over two positions, with the major component contributing 54.4 (3)%. The carbon atom C27 required modeling over three positions with the major component contribution of 54.4 (3)% and the two minor components contributing 24.1 (4)% and 21.5 (4)%. The C–Cl distances for all of the disorder components were restrained to be similar. In addition, Cl6A–Cl7A and Cl7A–Cl5 were restrained to be similar. The absolute structure was unequivocally determined by anomalous dispersion.

Table 3
Experimental details

Crystal data
Chemical formula [Fe2Cl4O(C26H28N4)]·CHCl3
Mr 785.39
Crystal system, space group Orthorhombic, P212121
Temperature (K) 120
a, b, c (Å) 10.3489 (6), 14.3664 (8), 21.4619 (13)
V3) 3190.9 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.53
Crystal size (mm) 0.26 × 0.22 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.658, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 79886, 10537, 8808
Rint 0.065
(sin θ/λ)max−1) 0.736
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.082, 1.05
No. of reflections 10537
No. of parameters 413
No. of restraints 37
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.67, −0.52
Absolute structure parameter 0.000 (14)
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

({(1R,2R)-N1,N2-Bis[(quinolin-2-yl)methyl]cyclohexane-1,2-diamine}chloridoiron(III))-µ-oxido-[trichloridoferrate(III)] chloroform monosolvate top
Crystal data top
[Fe2Cl4O(C26H28N4)]·CHCl3Dx = 1.635 Mg m3
Mr = 785.39Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9981 reflections
a = 10.3489 (6) Åθ = 2.7–30.8°
b = 14.3664 (8) ŵ = 1.53 mm1
c = 21.4619 (13) ÅT = 120 K
V = 3190.9 (3) Å3Prism, brown
Z = 40.26 × 0.22 × 0.14 mm
F(000) = 1592
Data collection top
Bruker APEXII CCD
diffractometer
8808 reflections with I > 2σ(I)
φ and ω scansRint = 0.065
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 31.6°, θmin = 2.4°
Tmin = 0.658, Tmax = 0.746h = 1415
79886 measured reflectionsk = 2020
10537 independent reflectionsl = 3031
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0361P)2 + 0.5065P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.67 e Å3
10537 reflectionsΔρmin = 0.52 e Å3
413 parametersAbsolute structure: Refined as an inversion twin
37 restraintsAbsolute structure parameter: 0.000 (14)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.24940 (4)0.34973 (3)0.86909 (2)0.02294 (9)
Fe20.37047 (4)0.32209 (3)0.72075 (2)0.02735 (10)
Cl10.15040 (7)0.38505 (5)0.96507 (4)0.03021 (16)
Cl20.24573 (9)0.28798 (6)0.63979 (4)0.04158 (19)
Cl30.54491 (9)0.23071 (7)0.72381 (7)0.0617 (3)
Cl40.43247 (8)0.47130 (5)0.71335 (4)0.03348 (16)
O10.28867 (19)0.30834 (14)0.79183 (10)0.0295 (5)
N10.2138 (2)0.19951 (16)0.89191 (12)0.0257 (5)
N20.4247 (2)0.30306 (17)0.91515 (12)0.0276 (5)
H20.40880.30660.96110.033*
N30.3688 (2)0.47300 (16)0.86772 (13)0.0244 (5)
H30.397 (3)0.472 (2)0.8331 (18)0.029*
N40.1286 (2)0.46258 (17)0.82871 (12)0.0259 (5)
C10.0979 (3)0.1519 (2)0.88928 (14)0.0279 (6)
C20.0189 (3)0.2008 (2)0.88477 (17)0.0357 (7)
H2A0.01880.26690.88600.043*
C30.1336 (3)0.1535 (3)0.8786 (2)0.0474 (9)
H3A0.21190.18750.87460.057*
C40.1369 (4)0.0557 (3)0.8781 (2)0.0492 (10)
H40.21670.02390.87330.059*
C50.0246 (4)0.0067 (2)0.88457 (17)0.0415 (9)
H50.02690.05940.88490.050*
C60.0945 (3)0.0530 (2)0.89077 (15)0.0319 (7)
C70.2130 (4)0.0055 (2)0.89797 (15)0.0339 (7)
H70.21430.06060.89900.041*
C80.3249 (3)0.0539 (2)0.90334 (15)0.0318 (7)
H80.40420.02210.91010.038*
C90.3225 (3)0.1519 (2)0.89887 (14)0.0273 (6)
C100.4472 (3)0.2049 (2)0.89977 (17)0.0320 (7)
H10A0.50610.17700.93100.038*
H10B0.48920.20040.85840.038*
C110.5348 (3)0.3655 (2)0.90109 (15)0.0266 (6)
H110.56160.35510.85690.032*
C120.6531 (3)0.3515 (2)0.94307 (15)0.0314 (6)
H12A0.62860.36190.98710.038*
H12B0.68480.28670.93900.038*
C130.7603 (3)0.4192 (2)0.92475 (16)0.0367 (7)
H13A0.78890.40580.88170.044*
H13B0.83530.41060.95280.044*
C140.7134 (3)0.5200 (3)0.92877 (16)0.0369 (8)
H14A0.69560.53600.97280.044*
H14B0.78220.56220.91350.044*
C150.5912 (3)0.5347 (2)0.89019 (16)0.0316 (7)
H15A0.55870.59880.89700.038*
H15B0.61230.52810.84540.038*
C160.4860 (3)0.4654 (2)0.90736 (14)0.0260 (6)
H160.46050.47620.95170.031*
C170.2910 (3)0.5562 (2)0.87921 (16)0.0296 (6)
H17A0.33750.61200.86410.036*
H17B0.27560.56340.92450.036*
C180.1644 (3)0.5469 (2)0.84567 (15)0.0288 (6)
C190.0884 (3)0.6267 (2)0.83377 (17)0.0374 (8)
H190.11820.68660.84580.045*
C200.0278 (4)0.6169 (2)0.80486 (17)0.0390 (8)
H200.08080.66990.79770.047*
C210.0696 (3)0.5276 (2)0.78549 (15)0.0327 (7)
C220.1905 (3)0.5116 (3)0.75714 (16)0.0400 (9)
H220.24710.56240.74940.048*
C230.2267 (3)0.4237 (3)0.74077 (16)0.0420 (9)
H230.30980.41320.72330.050*
C240.1422 (3)0.3490 (3)0.74965 (16)0.0398 (8)
H240.16750.28830.73700.048*
C250.0227 (3)0.3622 (2)0.77650 (16)0.0327 (7)
H0.03490.31120.78110.039*
C260.0136 (3)0.4510 (2)0.79695 (14)0.0276 (6)
Cl50.04556 (12)0.59674 (7)1.00240 (6)0.0613 (3)
Cl60.0633 (4)0.79088 (18)0.97904 (15)0.0776 (11)0.544 (3)
Cl6A0.0063 (4)0.7908 (4)0.9720 (2)0.0927 (17)0.456 (3)
Cl70.1718 (2)0.71764 (14)1.04018 (13)0.0676 (7)0.544 (3)
Cl7A0.0951 (2)0.70539 (15)1.08266 (12)0.0531 (7)0.456 (3)
C270.0048 (11)0.7090 (7)1.0301 (6)0.046 (4)0.544 (3)
H270.03600.71861.07180.055*0.544 (3)
C27A0.030 (2)0.7114 (11)1.0304 (9)0.027 (5)0.241 (4)
H27A0.11110.73051.05220.032*0.241 (4)
C27B0.0529 (16)0.6944 (8)1.0038 (7)0.042 (5)0.215 (4)
H27B0.13400.67610.98160.050*0.215 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02119 (17)0.02163 (17)0.0260 (2)0.00049 (15)0.00144 (18)0.00237 (15)
Fe20.0243 (2)0.0275 (2)0.0302 (2)0.00048 (16)0.00332 (18)0.00318 (17)
Cl10.0337 (4)0.0278 (3)0.0291 (4)0.0003 (3)0.0073 (3)0.0025 (3)
Cl20.0377 (4)0.0501 (5)0.0369 (4)0.0118 (4)0.0030 (4)0.0031 (3)
Cl30.0351 (4)0.0454 (5)0.1045 (9)0.0137 (4)0.0018 (5)0.0252 (6)
Cl40.0340 (4)0.0311 (3)0.0354 (4)0.0051 (3)0.0032 (3)0.0020 (3)
O10.0321 (11)0.0242 (10)0.0323 (12)0.0011 (8)0.0013 (9)0.0037 (8)
N10.0286 (12)0.0220 (11)0.0265 (13)0.0005 (9)0.0003 (10)0.0022 (9)
N20.0271 (12)0.0298 (13)0.0260 (13)0.0001 (10)0.0009 (10)0.0025 (10)
N30.0245 (12)0.0255 (11)0.0231 (12)0.0012 (9)0.0020 (11)0.0015 (10)
N40.0223 (12)0.0284 (12)0.0271 (13)0.0042 (10)0.0030 (10)0.0029 (10)
C10.0326 (15)0.0273 (14)0.0237 (14)0.0049 (11)0.0017 (12)0.0018 (11)
C20.0304 (16)0.0346 (16)0.042 (2)0.0018 (12)0.0051 (14)0.0025 (14)
C30.0321 (17)0.048 (2)0.062 (3)0.0058 (15)0.0095 (17)0.0116 (19)
C40.0396 (19)0.048 (2)0.060 (3)0.0161 (16)0.0080 (19)0.0117 (18)
C50.056 (2)0.0312 (16)0.038 (2)0.0146 (15)0.0046 (17)0.0048 (14)
C60.0449 (19)0.0266 (14)0.0242 (15)0.0042 (12)0.0031 (14)0.0008 (12)
C70.054 (2)0.0233 (14)0.0246 (15)0.0014 (13)0.0005 (14)0.0018 (12)
C80.0449 (19)0.0279 (14)0.0225 (15)0.0067 (12)0.0027 (13)0.0009 (12)
C90.0332 (15)0.0276 (13)0.0210 (14)0.0043 (12)0.0020 (12)0.0028 (11)
C100.0294 (15)0.0298 (15)0.0368 (18)0.0054 (12)0.0052 (14)0.0021 (13)
C110.0205 (13)0.0353 (15)0.0240 (15)0.0015 (11)0.0002 (11)0.0001 (12)
C120.0264 (14)0.0416 (16)0.0261 (15)0.0003 (13)0.0003 (12)0.0006 (13)
C130.0272 (15)0.054 (2)0.0284 (16)0.0016 (15)0.0033 (14)0.0001 (14)
C140.0324 (16)0.053 (2)0.0256 (16)0.0133 (14)0.0024 (13)0.0007 (14)
C150.0283 (15)0.0386 (16)0.0277 (16)0.0086 (12)0.0020 (13)0.0011 (13)
C160.0247 (14)0.0310 (14)0.0223 (15)0.0041 (11)0.0006 (11)0.0011 (11)
C170.0318 (15)0.0230 (13)0.0339 (18)0.0018 (11)0.0038 (13)0.0010 (12)
C180.0319 (15)0.0270 (14)0.0275 (16)0.0040 (11)0.0070 (13)0.0058 (11)
C190.047 (2)0.0276 (16)0.0380 (19)0.0091 (13)0.0060 (16)0.0046 (13)
C200.044 (2)0.0367 (17)0.0366 (19)0.0175 (15)0.0084 (15)0.0111 (14)
C210.0302 (15)0.0430 (17)0.0250 (16)0.0113 (13)0.0077 (13)0.0096 (14)
C220.0293 (16)0.065 (2)0.0262 (17)0.0171 (16)0.0047 (13)0.0148 (16)
C230.0234 (17)0.074 (3)0.0284 (17)0.0031 (15)0.0004 (13)0.0066 (17)
C240.0303 (16)0.057 (2)0.0321 (18)0.0008 (16)0.0002 (14)0.0039 (15)
C250.0257 (14)0.0415 (17)0.0308 (17)0.0046 (12)0.0004 (13)0.0028 (14)
C260.0237 (14)0.0374 (15)0.0216 (15)0.0060 (11)0.0036 (11)0.0046 (12)
Cl50.0708 (7)0.0439 (5)0.0691 (7)0.0069 (5)0.0295 (6)0.0027 (5)
Cl60.143 (3)0.0404 (12)0.0489 (14)0.0417 (17)0.011 (2)0.0081 (10)
Cl6A0.096 (3)0.122 (3)0.060 (2)0.051 (3)0.010 (2)0.042 (2)
Cl70.0658 (13)0.0416 (10)0.0953 (19)0.0037 (9)0.0259 (13)0.0139 (10)
Cl7A0.0577 (14)0.0441 (11)0.0573 (15)0.0032 (9)0.0153 (11)0.0198 (10)
C270.059 (9)0.043 (5)0.036 (6)0.033 (5)0.012 (5)0.001 (4)
C27A0.023 (9)0.038 (10)0.019 (9)0.011 (6)0.010 (6)0.000 (7)
C27B0.025 (8)0.027 (8)0.073 (15)0.010 (6)0.002 (8)0.012 (8)
Geometric parameters (Å, º) top
Fe1—O11.808 (2)C12—H12B0.9900
Fe1—N12.243 (2)C12—C131.527 (5)
Fe1—N22.172 (3)C13—H13A0.9900
Fe1—N32.159 (2)C13—H13B0.9900
Fe1—N42.223 (2)C13—C141.530 (5)
Fe1—Cl12.3560 (8)C14—H14A0.9900
Fe2—O11.756 (2)C14—H14B0.9900
Fe2—Cl22.2194 (9)C14—C151.526 (4)
Fe2—Cl32.2331 (10)C15—H15A0.9900
Fe2—Cl42.2432 (9)C15—H15B0.9900
N1—C11.382 (4)C15—C161.521 (4)
N1—C91.324 (4)C16—H161.0000
N2—H21.0000C17—H17A0.9900
N2—C101.467 (4)C17—H17B0.9900
N2—C111.481 (4)C17—C181.501 (4)
N3—H30.80 (4)C18—C191.414 (4)
N3—C161.486 (4)C19—H190.9500
N3—C171.462 (4)C19—C201.361 (5)
N4—C181.318 (4)C20—H200.9500
N4—C261.381 (4)C20—C211.417 (5)
C1—C21.401 (4)C21—C221.411 (5)
C1—C61.422 (4)C21—C261.418 (4)
C2—H2A0.9500C22—H220.9500
C2—C31.374 (5)C22—C231.363 (6)
C3—H3A0.9500C23—H230.9500
C3—C41.405 (5)C23—C241.398 (5)
C4—H40.9500C24—H240.9500
C4—C51.366 (6)C24—C251.378 (5)
C5—H50.9500C25—H0.9500
C5—C61.407 (5)C25—C261.401 (5)
C6—C71.412 (5)Cl5—C271.796 (11)
C7—H70.9500Cl5—C27A1.761 (17)
C7—C81.355 (5)Cl5—C27B1.733 (13)
C8—H80.9500Cl6—C271.755 (10)
C8—C91.413 (4)Cl6A—C27A1.735 (17)
C9—C101.498 (4)Cl6A—C27B1.618 (12)
C10—H10A0.9900Cl7—C271.746 (11)
C10—H10B0.9900Cl7A—C27A1.716 (17)
C11—H111.0000Cl7A—C27B1.755 (15)
C11—C121.534 (4)C27—H271.0000
C11—C161.527 (4)C27A—H27A1.0000
C12—H12A0.9900C27B—H27B1.0000
O1—Fe1—Cl1166.06 (7)C13—C12—C11110.2 (3)
O1—Fe1—N185.45 (9)C13—C12—H12A109.6
O1—Fe1—N297.36 (10)C13—C12—H12B109.6
O1—Fe1—N397.40 (10)C12—C13—H13A109.4
O1—Fe1—N490.50 (9)C12—C13—H13B109.4
N1—Fe1—Cl186.84 (7)C12—C13—C14111.0 (3)
N2—Fe1—Cl191.81 (7)H13A—C13—H13B108.0
N2—Fe1—N174.96 (9)C14—C13—H13A109.4
N2—Fe1—N4150.72 (10)C14—C13—H13B109.4
N3—Fe1—Cl194.82 (7)C13—C14—H14A109.4
N3—Fe1—N1152.34 (9)C13—C14—H14B109.4
N3—Fe1—N277.39 (9)H14A—C14—H14B108.0
N3—Fe1—N473.64 (9)C15—C14—C13111.3 (3)
N4—Fe1—Cl186.52 (7)C15—C14—H14A109.4
N4—Fe1—N1133.98 (9)C15—C14—H14B109.4
Cl2—Fe2—Cl3111.31 (4)C14—C15—H15A109.3
Cl2—Fe2—Cl4108.78 (4)C14—C15—H15B109.3
Cl3—Fe2—Cl4109.42 (4)H15A—C15—H15B107.9
O1—Fe2—Cl2112.02 (8)C16—C15—C14111.8 (3)
O1—Fe2—Cl3107.35 (8)C16—C15—H15A109.3
O1—Fe2—Cl4107.87 (7)C16—C15—H15B109.3
Fe2—O1—Fe1150.26 (13)N3—C16—C11106.8 (2)
C1—N1—Fe1127.54 (19)N3—C16—C15113.4 (2)
C9—N1—Fe1112.45 (19)N3—C16—H16108.5
C9—N1—C1119.1 (3)C11—C16—H16108.5
Fe1—N2—H2107.2C15—C16—C11111.0 (3)
C10—N2—Fe1109.10 (19)C15—C16—H16108.5
C10—N2—H2107.2N3—C17—H17A109.9
C10—N2—C11114.5 (2)N3—C17—H17B109.9
C11—N2—Fe1111.27 (18)N3—C17—C18109.1 (2)
C11—N2—H2107.2H17A—C17—H17B108.3
Fe1—N3—H3102 (3)C18—C17—H17A109.9
C16—N3—Fe1113.52 (17)C18—C17—H17B109.9
C16—N3—H3104 (3)N4—C18—C17117.4 (3)
C17—N3—Fe1110.66 (17)N4—C18—C19122.7 (3)
C17—N3—H3112 (3)C19—C18—C17120.0 (3)
C17—N3—C16114.4 (2)C18—C19—H19120.3
C18—N4—Fe1113.9 (2)C20—C19—C18119.3 (3)
C18—N4—C26119.3 (3)C20—C19—H19120.3
C26—N4—Fe1126.1 (2)C19—C20—H20120.1
N1—C1—C2120.3 (3)C19—C20—C21119.8 (3)
N1—C1—C6121.0 (3)C21—C20—H20120.1
C2—C1—C6118.7 (3)C20—C21—C26117.8 (3)
C1—C2—H2A119.8C22—C21—C20123.0 (3)
C3—C2—C1120.3 (3)C22—C21—C26119.2 (3)
C3—C2—H2A119.8C21—C22—H22119.8
C2—C3—H3A119.5C23—C22—C21120.4 (3)
C2—C3—C4121.0 (4)C23—C22—H22119.8
C4—C3—H3A119.5C22—C23—H23119.9
C3—C4—H4120.2C22—C23—C24120.3 (3)
C5—C4—C3119.6 (3)C24—C23—H23119.9
C5—C4—H4120.2C23—C24—H24119.6
C4—C5—H5119.6C25—C24—C23120.9 (4)
C4—C5—C6120.8 (3)C25—C24—H24119.6
C6—C5—H5119.6C24—C25—H120.1
C5—C6—C1119.5 (3)C24—C25—C26119.8 (3)
C5—C6—C7122.9 (3)C26—C25—H120.1
C7—C6—C1117.7 (3)N4—C26—C21121.0 (3)
C6—C7—H7119.9N4—C26—C25119.7 (3)
C8—C7—C6120.2 (3)C25—C26—C21119.3 (3)
C8—C7—H7119.9C27B—Cl5—C27A35.2 (10)
C7—C8—H8120.3C27B—Cl6A—C27A36.6 (11)
C7—C8—C9119.4 (3)C27A—Cl7A—C27B35.5 (11)
C9—C8—H8120.3Cl5—C27—H27107.3
N1—C9—C8122.5 (3)Cl6—C27—Cl5106.2 (6)
N1—C9—C10118.1 (3)Cl6—C27—H27107.3
C8—C9—C10119.4 (3)Cl7—C27—Cl5113.1 (7)
N2—C10—C9110.7 (3)Cl7—C27—Cl6115.3 (7)
N2—C10—H10A109.5Cl7—C27—H27107.3
N2—C10—H10B109.5Cl5—C27A—H27A109.9
C9—C10—H10A109.5Cl6A—C27A—Cl5112.9 (11)
C9—C10—H10B109.5Cl6A—C27A—H27A109.9
H10A—C10—H10B108.1Cl7A—C27A—Cl5104.2 (9)
N2—C11—H11108.4Cl7A—C27A—Cl6A110.0 (11)
N2—C11—C12114.5 (2)Cl7A—C27A—H27A109.9
N2—C11—C16107.3 (2)Cl5—C27B—Cl7A103.7 (8)
C12—C11—H11108.4Cl5—C27B—H27B105.9
C16—C11—H11108.4Cl6A—C27B—Cl5120.7 (8)
C16—C11—C12109.6 (3)Cl6A—C27B—Cl7A113.8 (8)
C11—C12—H12A109.6Cl6A—C27B—H27B105.9
C11—C12—H12B109.6Cl7A—C27B—H27B105.9
H12A—C12—H12B108.1
Fe1—N1—C1—C214.7 (4)C9—N1—C1—C2177.1 (3)
Fe1—N1—C1—C6165.0 (2)C9—N1—C1—C63.2 (4)
Fe1—N1—C9—C8169.5 (2)C10—N2—C11—C1269.3 (4)
Fe1—N1—C9—C108.4 (3)C10—N2—C11—C16168.8 (3)
Fe1—N2—C10—C939.2 (3)C11—N2—C10—C9164.6 (3)
Fe1—N2—C11—C12166.5 (2)C11—C12—C13—C1457.7 (4)
Fe1—N2—C11—C1644.6 (3)C12—C11—C16—N3177.7 (2)
Fe1—N3—C16—C1137.6 (3)C12—C11—C16—C1558.2 (3)
Fe1—N3—C16—C15160.1 (2)C12—C13—C14—C1554.6 (4)
Fe1—N3—C17—C1839.6 (3)C13—C14—C15—C1653.5 (4)
Fe1—N4—C18—C1710.4 (3)C14—C15—C16—N3175.9 (3)
Fe1—N4—C18—C19169.2 (2)C14—C15—C16—C1155.7 (4)
Fe1—N4—C26—C21165.7 (2)C16—N3—C17—C18169.4 (2)
Fe1—N4—C26—C2513.3 (4)C16—C11—C12—C1359.2 (3)
Cl1—Fe1—O1—Fe2149.00 (17)C17—N3—C16—C11165.9 (2)
Cl2—Fe2—O1—Fe1136.6 (2)C17—N3—C16—C1571.5 (3)
Cl3—Fe2—O1—Fe1100.9 (2)C17—C18—C19—C20178.2 (3)
Cl4—Fe2—O1—Fe116.9 (3)C18—N4—C26—C213.6 (4)
N1—Fe1—O1—Fe2154.4 (3)C18—N4—C26—C25177.4 (3)
N1—C1—C2—C3176.3 (3)C18—C19—C20—C211.8 (5)
N1—C1—C6—C5176.5 (3)C19—C20—C21—C22177.8 (3)
N1—C1—C6—C72.9 (5)C19—C20—C21—C260.4 (5)
N1—C9—C10—N220.6 (4)C20—C21—C22—C23178.5 (3)
N2—Fe1—O1—Fe280.2 (3)C20—C21—C26—N43.2 (4)
N2—C11—C12—C13179.8 (3)C20—C21—C26—C25177.8 (3)
N2—C11—C16—N352.8 (3)C21—C22—C23—C242.6 (5)
N2—C11—C16—C15176.9 (2)C22—C21—C26—N4175.2 (3)
N3—Fe1—O1—Fe22.1 (3)C22—C21—C26—C253.8 (4)
N3—C17—C18—N419.0 (4)C22—C23—C24—C251.8 (5)
N3—C17—C18—C19161.3 (3)C23—C24—C25—C261.9 (5)
N4—Fe1—O1—Fe271.5 (3)C24—C25—C26—N4174.4 (3)
N4—C18—C19—C201.4 (5)C24—C25—C26—C214.6 (5)
C1—N1—C9—C80.4 (5)C26—N4—C18—C17179.1 (3)
C1—N1—C9—C10178.3 (3)C26—N4—C18—C191.3 (4)
C1—C2—C3—C41.5 (6)C26—C21—C22—C230.2 (5)
C1—C6—C7—C80.2 (5)C27A—Cl5—C27B—Cl6A64.6 (14)
C2—C1—C6—C53.2 (5)C27A—Cl5—C27B—Cl7A64.3 (12)
C2—C1—C6—C7177.4 (3)C27A—Cl6A—C27B—Cl562.5 (14)
C2—C3—C4—C50.8 (6)C27A—Cl6A—C27B—Cl7A61.7 (12)
C3—C4—C5—C61.0 (6)C27A—Cl7A—C27B—Cl566.9 (12)
C4—C5—C6—C11.0 (5)C27A—Cl7A—C27B—Cl6A66.1 (12)
C4—C5—C6—C7179.6 (4)C27B—Cl5—C27A—Cl6A51.8 (12)
C5—C6—C7—C8179.6 (3)C27B—Cl5—C27A—Cl7A67.5 (14)
C6—C1—C2—C33.4 (5)C27B—Cl6A—C27A—Cl554.6 (12)
C6—C7—C8—C92.8 (5)C27B—Cl6A—C27A—Cl7A61.3 (14)
C7—C8—C9—N12.6 (5)C27B—Cl7A—C27A—Cl565.1 (12)
C7—C8—C9—C10175.2 (3)C27B—Cl7A—C27A—Cl6A56.1 (12)
C8—C9—C10—N2161.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Cl40.80 (4)2.60 (4)3.378 (3)167 (3)
C27A—H27A···Cl2i1.002.413.30 (2)149
Symmetry code: (i) x+1/2, y+1, z+1/2.
 

Acknowledgements

The authors thank Kansas State University for instrument support.

Funding information

Funding for this research was provided by: Creighton University; Hamilton Company; Cambridge Isotope Laboratories, Inc.; National Science Foundation, Division of Chemistry (award No. CHE-0349258).

References

First citationBruker (2016). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCompany, A., Gómez, L., Güell, M., Ribas, X., Luis, J., Que, L. & Costas, M. (2007). J. Am. Chem. Soc. 129, 15766–15767.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCostas, M., Chen, K. & Que, L. (2000). Coord. Chem. Rev. 200–202, 517–544.  Web of Science CrossRef CAS Google Scholar
First citationDengler, J. E., Lehenmeier, M. W., Klaus, S., Anderson, C. E., Herdtweck, E. & Rieger, B. (2011). Eur. J. Inorg. Chem. pp. 336–343.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDubois, G., Murphy, A. & Stack, D. P. (2003). Org. Lett. 5, 2469–2472.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDutta, S. K., Werner, R., Flörke, U., Mohanta, S., Nanda, K. K., Haase, W. & Nag, K. (1996). Inorg. Chem. 35, 2292–2300.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationFeig, A. L. & Lippard, S. T. (1994). Chem. Rev. 94, 759–805.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeunier, B., de Visser, S. P. & Shaik, S. (2004). Chem. Rev. 104, 3947–3980.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds