research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N′-[2-(benzo[d]thia­zol-2-yl)acet­yl]-4-methyl­benzene­sulfono­hydrazide

aChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, D-38023 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

Edited by P. C. Healy, Griffith University, Australia (Received 8 June 2017; accepted 12 June 2017; online 16 June 2017)

In the title compound, C16H15N3O3S2, the hydrazide N atom bonded to the C=O group is planar, whereas that bonded to the SO2 group is pyramidally coordinated. The inter­planar angle between the ring systems is 40.71 (3)°. Mol­ecules are connected into ribbons parallel to the b axis by two classical hydrogen bonds N—H⋯O=C and N—H⋯Nthia­zole.

1. Chemical context

Benzo­thia­zoles are versatile heterocyclic compounds with potential pharmaceutical applications (Elgemeie & Aal, 1986[Elgemeie, G. H. & Aal, F. A. (1986). Heterocycles, 24, 349-353.]). Various benzo­thia­zoles have been used as anti-inflammatory, anti­microbial and analgesic agents and as laser dyes (Elgemeie, 1989[Elgemeie, G. H. (1989). Chem. Ind. 19, 653-654.]). This has led to an increasing inter­est in benzo­thia­zole derivatives in the area of drug design and discovery (Elgemeie et al., 2000[Elgemeie, G. H., Shams, H. Z., Elkholy, Y. M. & Abbas, N. S. (2000). Phosphorus Sulfur Silicon, 165, 265-272.]). As a part of our research work on new syntheses of benzo­thia­zoles as chemotherapeutic agents (Elgemeie et al., 2017[Elgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017). Nucleosides Nucleotides Nucleic Acids, 36, 213-223.]), we have previously reported the synthesis of 2-aryl­benzo­thia­zoles that later found applications as anti­cancer agents and are presently in clinical use for various diseases (Elgemeie & Elghandour, 1990[Elgemeie, G. H. & Elghandour, A. H. (1990). Phosphorus Sulfur Silicon, 48, 281-284.]). We report here the new compound N′-(2-(benzo[d]thia­zol-2-yl)acet­yl)-4-methyl­benzene­sulfono­hydrazide (1), which was prepared by the reaction of 2-(benzo[d]thia­zol-2-yl)acetohydrazide with p-toluene­sulfonyl chloride in the presence of pyridine at room temperature. The structure of (1) was determined on the basis of its spectroscopic data and elemental analysis (see Experimental). In order to establish the structure of the product unambiguously, its crystal structure was determined.

[Scheme 1]

2. Structural commentary

The X-ray analysis confirms the exclusive presence of the form (1) in the solid state (Fig. 1[link]). The mol­ecular dimensions may be regarded as normal (Table 1[link]); the torsion angles defining the conformation of the chain connecting the ring systems are also given in this Table. The bond lengths C2—S1 and C2—N3 in the heterocycle correspond well with the average values of 1.750 (15) and 1.200 (14) Å found in the Cambridge Structural Database (Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 375 examples of this ring system (unsubstituted benzo ring, carbon-substituted at C2). Nitro­gen N1 displays a planar geometry, whereas N2 is pyramidal [they lie 0.014 (7) and 0.337 (8) Å, respectively, outside the plane of their substituents]. Hydrogen atom H01 is anti­periplanar to O3 and H02 to O2 across the N1—C9 and N2—S2 bonds, respectively. The inter­planar angle between the ring systems is 40.71 (3)°.

Table 1
Selected geometric parameters (Å, °)

S1—C2 1.7373 (11) N1—N2 1.4069 (12)
C2—N3 1.2972 (14)    
       
C7A—S1—C2 89.39 (5) N1—N2—S2 112.94 (7)
C9—N1—N2 121.14 (9)    
       
S1—C2—C8—C9 −80.57 (10) N2—S2—C11—C12 77.16 (9)
C2—C8—C9—N1 −109.79 (10) H01—N1—N2—H02 −146.7 (17)
C8—C9—N1—N2 176.74 (9) O3—C9—N1—H01 175.5 (13)
C9—N1—N2—S2 −96.08 (10) H02—N2—S2—O2 179.1 (12)
N1—N2—S2—C11 62.53 (8)    
[Figure 1]
Figure 1
The structure of compound (1) in the crystal, with displacement ellipsoids at the 50% probability level.

3. Supra­molecular features

Mol­ecules are connected by two pairs of classical hydrogen bonds across inversion centres, to form ribbons parallel to the b axis (Table 2[link], Fig. 2[link]). A C—H⋯O inter­action connects the mol­ecules by c-axis translation (not shown in the Figure), forming layers parallel to (100).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H01⋯N3i 0.866 (16) 2.013 (16) 2.8717 (13) 171.0 (15)
N2—H02⋯O3ii 0.845 (17) 2.029 (17) 2.8553 (12) 165.7 (16)
C6—H6⋯O2iii 0.95 2.54 3.4142 (15) 154
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x, y, z+1.
[Figure 2]
Figure 2
Packing diagram of compound (1), viewed perpendicular to the bc plane. Hydrogen bonds are drawn as thick dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity.

4. Database survey

A search of the Cambridge Database (Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the substructure Ar—SO2—NH—NH—C(=O)—C gave six hits: EYOZIB, KUKYOG, XOVFEV, XOZDOG, YOTKAU and ZIVVUX.

5. Synthesis and crystallization

A solution of p-toluene­sulfonyl chloride (1.90 g, 0.015 mol) in pyridine (10 ml) was added gradually to a stirred solution of 2-(benzo[d]thia­zol-2-yl)acetohydrazide (2.07 g, 0.01 mol) in pyridine (10 ml) at 273 K. The reaction mixture was then stirred at room temperature for 3 h (TLC control). After the reaction was completed, the mixture was poured into ice-water with continuous stirring and neutralized with 1 N HCl solution to pH 7. The precipitate thus formed was filtered off, washed with water and recrystallized from ethanol to give colourless crystals (yield 85%; m.p. = 458 K). IR (KBr, cm−1): ν 3427 (NH), 3164 (Ar CH), 2929, 2858 (CH3, CH2), 1692 (C=O); 1H NMR (400 MHz, DMSO-d6): δ 2.26 (s, 3H, CH3), 3.95 (s, 2H, CH2), 7.15 (d, J = 8 Hz, 2H, SO2C6H4), 7.44 (t, J = 8 Hz, 1H, benzo­thia­zole H), 7.52 (t, J = 8 Hz, 1H, benzo­thia­zole H), 7.62 (d, J = 8 Hz, 2H, SO2C6H4), 7.96 (d, J = 8 Hz, 1H, benzo­thia­zole H), 8.07 (d, J = 8 Hz, 1H, benzo­thia­zole H), 9.95 (s, 1H, NH), 10.52 (s, 1H, NH).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. NH hydrogen atoms were refined freely. The methyl hydrogen atoms were not well defined and so were refined as a hexa­gon of half-occupied sites with C—H = 0.98 Å (AFIX 127). Other hydrogen atoms were included using a riding model starting from calculated positions (C—Haromatic = 0.95, C—Hmethyl­ene 0.99 Å) with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C16H15N3O3S2
Mr 361.43
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.3436 (4), 9.7591 (5), 10.8815 (6)
α, β, γ (°) 97.905 (4), 98.142 (4), 101.576 (4)
V3) 846.59 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.33
Crystal size (mm) 0.5 × 0.4 × 0.2
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.952, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 45592, 5040, 4503
Rint 0.032
(sin θ/λ)max−1) 0.726
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.079, 1.05
No. of reflections 5040
No. of parameters 226
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.42
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA.]).

Despite the slightly larger ellipsoid of the benzo­thia­zol sulfur atom S1, there is no evidence for significant mixing (disorder) of the sites N3/S1.

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

N'-[2-(Benzo[d]thiazol-2-yl)acetyl]-4-methylbenzenesulfonohydrazide top
Crystal data top
C16H15N3O3S2Z = 2
Mr = 361.43F(000) = 376
Triclinic, P1Dx = 1.418 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3436 (4) ÅCell parameters from 13640 reflections
b = 9.7591 (5) Åθ = 2.6–30.8°
c = 10.8815 (6) ŵ = 0.33 mm1
α = 97.905 (4)°T = 100 K
β = 98.142 (4)°Tablet, colourless
γ = 101.576 (4)°0.5 × 0.4 × 0.2 mm
V = 846.59 (8) Å3
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
5040 independent reflections
Radiation source: fine-focus sealed X-ray tube4503 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 16.1419 pixels mm-1θmax = 31.1°, θmin = 2.5°
ω–scanh = 1211
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
k = 1414
Tmin = 0.952, Tmax = 1.000l = 1515
45592 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0354P)2 + 0.355P]
where P = (Fo2 + 2Fc2)/3
5040 reflections(Δ/σ)max = 0.008
226 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

6.2088 (0.0012) x - 6.2111 (0.0022) y + 4.5043 (0.0028) z = 5.8783 (0.0023)

* -0.0257 (0.0005) S1 * -0.0152 (0.0007) C2 * 0.0114 (0.0007) N3 * 0.0250 (0.0009) C3A * -0.0026 (0.0008) C4 * -0.0272 (0.0009) C5 * -0.0057 (0.0009) C6 * 0.0176 (0.0009) C7 * 0.0223 (0.0009) C7A

Rms deviation of fitted atoms = 0.0190

7.8014 (0.0014) x - 0.3099 (0.0046) y + 1.6293 (0.0049) z = 2.0216 (0.0030)

Angle to previous plane (with approximate esd) = 40.71 ( 0.03 )

* 0.0051 (0.0008) C11 * -0.0053 (0.0008) C12 * -0.0012 (0.0008) C13 * 0.0080 (0.0008) C14 * -0.0083 (0.0008) C15 * 0.0018 (0.0008) C16

Rms deviation of fitted atoms = 0.0057

===========================================================

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

6.5691 (0.0357) x + 3.5739 (0.0897) y - 5.4501 (0.0327) z = 1.7544 (0.0236)

* 0.0000 (0.0001) C9 * 0.0000 (0.0000) H01 * 0.0000 (0.0000) N2 -0.0139 (0.0071) N1

Rms deviation of fitted atoms = 0.0000

- 2.5491 (0.0143) x + 2.7622 (0.0942) y + 9.8695 (0.0419) z = 3.6614 (0.0102)

Angle to previous plane (with approximate esd) = 66.25 ( 0.42 )

* 0.0000 (0.0000) S2 * 0.0000 (0.0000) H02 * 0.0000 (0.0000) N1 -0.3372 (0.0082) N2

Rms deviation of fitted atoms = 0.0000

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.57619 (4)0.26397 (3)0.86910 (3)0.01947 (7)
C20.56817 (13)0.15226 (11)0.72845 (10)0.01492 (19)
N30.46391 (11)0.03031 (9)0.70990 (9)0.01448 (17)
C3A0.38014 (13)0.01774 (11)0.81106 (10)0.01466 (19)
C40.25456 (14)0.09823 (12)0.81811 (11)0.0185 (2)
H40.22210.17820.75220.022*
C50.17867 (14)0.09401 (13)0.92308 (12)0.0223 (2)
H50.09200.17140.92870.027*
C60.22767 (15)0.02293 (14)1.02157 (11)0.0238 (2)
H60.17490.02251.09340.029*
C70.35125 (15)0.13868 (13)1.01602 (11)0.0223 (2)
H70.38400.21781.08270.027*
C7A0.42644 (13)0.13542 (12)0.90892 (10)0.0170 (2)
C80.66708 (13)0.20010 (12)0.63115 (11)0.0172 (2)
H8A0.68140.11690.57400.021*
H8B0.77840.25730.67230.021*
C90.57197 (12)0.28914 (11)0.55711 (10)0.01401 (19)
N10.50433 (11)0.22734 (9)0.43761 (9)0.01544 (17)
H010.519 (2)0.1475 (18)0.4007 (15)0.027 (4)*
N20.40574 (11)0.29335 (10)0.35950 (9)0.01529 (17)
H020.434 (2)0.3829 (18)0.3759 (15)0.029 (4)*
O10.12667 (11)0.31786 (9)0.27597 (8)0.02335 (18)
S20.20281 (3)0.23646 (3)0.35718 (2)0.01622 (7)
O20.16863 (11)0.08446 (8)0.32664 (8)0.02168 (17)
O30.55748 (10)0.40588 (8)0.60522 (8)0.01870 (16)
C110.16430 (13)0.28095 (11)0.51069 (11)0.0163 (2)
C120.15942 (14)0.42100 (12)0.55429 (12)0.0203 (2)
H120.17210.49010.50070.024*
C130.13587 (15)0.45785 (12)0.67661 (12)0.0233 (2)
H130.13290.55320.70690.028*
C140.11639 (14)0.35757 (13)0.75641 (11)0.0208 (2)
C150.11840 (13)0.21746 (12)0.71012 (11)0.0196 (2)
H150.10230.14770.76280.023*
C160.14367 (13)0.17876 (11)0.58797 (11)0.0176 (2)
H160.14680.08350.55750.021*
C170.09014 (19)0.39948 (16)0.88922 (13)0.0327 (3)
H17A0.04280.48380.89460.049*0.50
H17B0.19690.42070.94680.049*0.50
H17C0.01370.32120.91270.049*0.50
H17D0.12610.33340.94150.049*0.50
H17E0.02800.39640.88930.049*0.50
H17F0.15520.49600.92330.049*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02314 (14)0.01447 (12)0.01758 (14)0.00166 (10)0.00006 (10)0.00091 (9)
C20.0156 (4)0.0138 (4)0.0160 (5)0.0062 (4)0.0003 (4)0.0028 (4)
N30.0162 (4)0.0134 (4)0.0152 (4)0.0061 (3)0.0028 (3)0.0029 (3)
C3A0.0154 (4)0.0149 (4)0.0144 (5)0.0061 (4)0.0009 (4)0.0027 (4)
C40.0177 (5)0.0180 (5)0.0193 (5)0.0038 (4)0.0019 (4)0.0039 (4)
C50.0174 (5)0.0285 (6)0.0225 (6)0.0043 (4)0.0042 (4)0.0101 (5)
C60.0215 (5)0.0366 (7)0.0168 (5)0.0109 (5)0.0054 (4)0.0074 (5)
C70.0249 (6)0.0279 (6)0.0144 (5)0.0104 (5)0.0017 (4)0.0003 (4)
C7A0.0178 (5)0.0173 (5)0.0155 (5)0.0053 (4)0.0003 (4)0.0016 (4)
C80.0150 (5)0.0175 (5)0.0207 (5)0.0054 (4)0.0028 (4)0.0064 (4)
C90.0130 (4)0.0125 (4)0.0169 (5)0.0018 (3)0.0033 (4)0.0043 (4)
N10.0184 (4)0.0119 (4)0.0170 (4)0.0071 (3)0.0025 (3)0.0012 (3)
N20.0186 (4)0.0122 (4)0.0155 (4)0.0053 (3)0.0018 (3)0.0020 (3)
O10.0244 (4)0.0237 (4)0.0210 (4)0.0090 (3)0.0038 (3)0.0031 (3)
S20.01722 (12)0.01375 (12)0.01595 (13)0.00428 (9)0.00088 (9)0.00068 (9)
O20.0247 (4)0.0139 (4)0.0223 (4)0.0018 (3)0.0004 (3)0.0036 (3)
O30.0264 (4)0.0110 (3)0.0175 (4)0.0041 (3)0.0012 (3)0.0010 (3)
C110.0134 (4)0.0156 (5)0.0194 (5)0.0047 (4)0.0020 (4)0.0002 (4)
C120.0219 (5)0.0151 (5)0.0258 (6)0.0065 (4)0.0074 (4)0.0030 (4)
C130.0247 (6)0.0163 (5)0.0298 (6)0.0070 (4)0.0101 (5)0.0014 (4)
C140.0162 (5)0.0230 (5)0.0235 (6)0.0056 (4)0.0060 (4)0.0001 (4)
C150.0159 (5)0.0206 (5)0.0229 (6)0.0053 (4)0.0031 (4)0.0049 (4)
C160.0149 (5)0.0142 (5)0.0228 (5)0.0046 (4)0.0006 (4)0.0007 (4)
C170.0379 (7)0.0349 (7)0.0264 (7)0.0088 (6)0.0143 (6)0.0010 (5)
Geometric parameters (Å, º) top
S1—C7A1.7310 (12)C13—C141.3957 (18)
S1—C21.7373 (11)C14—C151.3949 (16)
C2—N31.2972 (14)C14—C171.5056 (17)
C2—C81.4996 (15)C15—C161.3882 (16)
N3—C3A1.3914 (14)C4—H40.9500
C3A—C41.3983 (15)C5—H50.9500
C3A—C7A1.4040 (15)C6—H60.9500
C4—C51.3819 (16)C7—H70.9500
C5—C61.4037 (18)C8—H8A0.9900
C6—C71.3826 (18)C8—H8B0.9900
C7—C7A1.3992 (16)N1—H010.866 (16)
C8—C91.5238 (14)N2—H020.845 (17)
C9—O31.2231 (13)C12—H120.9500
C9—N11.3464 (14)C13—H130.9500
N1—N21.4069 (12)C15—H150.9500
N2—S21.6680 (10)C16—H160.9500
O1—S21.4325 (8)C17—H17A0.9800
S2—O21.4353 (8)C17—H17B0.9800
S2—C111.7580 (11)C17—H17C0.9800
C11—C161.3907 (16)C17—H17D0.9800
C11—C121.3944 (15)C17—H17E0.9800
C12—C131.3821 (17)C17—H17F0.9800
C7A—S1—C289.39 (5)C5—C6—H6119.4
N3—C2—C8122.61 (10)C6—C7—H7121.1
N3—C2—S1115.98 (8)C7A—C7—H7121.1
C8—C2—S1121.25 (8)C2—C8—H8A110.2
C2—N3—C3A110.63 (9)C9—C8—H8A110.2
N3—C3A—C4124.96 (10)C2—C8—H8B110.2
N3—C3A—C7A114.86 (10)C9—C8—H8B110.2
C4—C3A—C7A120.15 (10)H8A—C8—H8B108.5
C5—C4—C3A118.54 (11)C9—N1—H01124.9 (11)
C4—C5—C6120.98 (11)N2—N1—H01113.9 (11)
C7—C6—C5121.26 (11)N1—N2—H02113.1 (11)
C6—C7—C7A117.79 (11)S2—N2—H02111.0 (11)
C7—C7A—C3A121.26 (11)C13—C12—H12120.5
C7—C7A—S1129.57 (9)C11—C12—H12120.5
C3A—C7A—S1109.14 (8)C12—C13—H13119.4
C2—C8—C9107.51 (8)C14—C13—H13119.4
O3—C9—N1123.90 (10)C16—C15—H15119.6
O3—C9—C8121.56 (10)C14—C15—H15119.6
N1—C9—C8114.53 (9)C15—C16—H16120.4
C9—N1—N2121.14 (9)C11—C16—H16120.4
N1—N2—S2112.94 (7)C14—C17—H17A109.5
O1—S2—O2120.92 (5)C14—C17—H17B109.5
O1—S2—N2103.98 (5)H17A—C17—H17B109.5
O2—S2—N2106.20 (5)C14—C17—H17C109.5
O1—S2—C11109.49 (5)H17A—C17—H17C109.5
O2—S2—C11107.66 (5)H17B—C17—H17C109.5
N2—S2—C11107.89 (5)C14—C17—H17D109.5
C16—C11—C12120.86 (10)H17A—C17—H17D141.1
C16—C11—S2120.35 (8)H17B—C17—H17D56.3
C12—C11—S2118.76 (9)H17C—C17—H17D56.3
C13—C12—C11119.02 (11)C14—C17—H17E109.5
C12—C13—C14121.22 (10)H17A—C17—H17E56.3
C15—C14—C13118.82 (11)H17B—C17—H17E141.1
C15—C14—C17120.67 (12)H17C—C17—H17E56.3
C13—C14—C17120.50 (11)H17D—C17—H17E109.5
C16—C15—C14120.77 (11)C14—C17—H17F109.5
C15—C16—C11119.28 (10)H17A—C17—H17F56.3
C5—C4—H4120.7H17B—C17—H17F56.3
C3A—C4—H4120.7H17C—C17—H17F141.1
C4—C5—H5119.5H17D—C17—H17F109.5
C6—C5—H5119.5H17E—C17—H17F109.5
C7—C6—H6119.4
C7A—S1—C2—N30.45 (8)C8—C9—N1—N2176.74 (9)
C7A—S1—C2—C8175.95 (9)C9—N1—N2—S296.08 (10)
C8—C2—N3—C3A175.40 (9)N1—N2—S2—O1178.74 (7)
S1—C2—N3—C3A0.03 (11)N1—N2—S2—O252.67 (8)
C2—N3—C3A—C4177.18 (10)N1—N2—S2—C1162.53 (8)
C2—N3—C3A—C7A0.66 (13)O1—S2—C11—C16146.33 (9)
N3—C3A—C4—C5177.98 (10)O2—S2—C11—C1613.11 (10)
C7A—C3A—C4—C50.24 (16)N2—S2—C11—C16101.12 (9)
C3A—C4—C5—C60.91 (17)O1—S2—C11—C1235.40 (10)
C4—C5—C6—C71.12 (18)O2—S2—C11—C12168.61 (9)
C5—C6—C7—C7A0.15 (17)N2—S2—C11—C1277.16 (9)
C6—C7—C7A—C3A1.00 (16)C16—C11—C12—C130.85 (17)
C6—C7—C7A—S1176.79 (9)S2—C11—C12—C13177.42 (9)
N3—C3A—C7A—C7179.17 (10)C11—C12—C13—C140.25 (18)
C4—C3A—C7A—C71.22 (16)C12—C13—C14—C151.00 (18)
N3—C3A—C7A—S10.98 (11)C12—C13—C14—C17179.74 (12)
C4—C3A—C7A—S1176.98 (8)C13—C14—C15—C161.68 (17)
C2—S1—C7A—C7178.77 (11)C17—C14—C15—C16179.58 (11)
C2—S1—C7A—C3A0.76 (8)C14—C15—C16—C111.10 (16)
N3—C2—C8—C994.63 (11)C12—C11—C16—C150.18 (16)
S1—C2—C8—C980.57 (10)S2—C11—C16—C15178.06 (8)
C2—C8—C9—O368.95 (13)H01—N1—N2—H02146.7 (17)
C2—C8—C9—N1109.79 (10)O3—C9—N1—H01175.5 (13)
O3—C9—N1—N21.96 (16)H02—N2—S2—O2179.1 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···N3i0.866 (16)2.013 (16)2.8717 (13)171.0 (15)
N2—H02···O3ii0.845 (17)2.029 (17)2.8553 (12)165.7 (16)
C6—H6···O2iii0.952.543.4142 (15)154
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y, z+1.
 

References

First citationElgemeie, G. H. (1989). Chem. Ind. 19, 653–654.  Google Scholar
First citationElgemeie, G. H. & Aal, F. A. (1986). Heterocycles, 24, 349–353.  CAS Google Scholar
First citationElgemeie, G. H. & Elghandour, A. H. (1990). Phosphorus Sulfur Silicon, 48, 281–284.  CrossRef CAS Web of Science Google Scholar
First citationElgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017). Nucleosides Nucleotides Nucleic Acids, 36, 213–223.  Web of Science CrossRef CAS PubMed Google Scholar
First citationElgemeie, G. H., Shams, H. Z., Elkholy, Y. M. & Abbas, N. S. (2000). Phosphorus Sulfur Silicon, 165, 265–272.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds