research communications
Crystal structures and supramolecular features of 9,9-dimethyl-3,7-diazabicyclo[3.3.1]nonane-2,4,6,8-tetraone, 3,7-diazaspiro[bicyclo[3.3.1]nonane-9,1′-cyclopentane]-2,4,6,8-tetraone and 9-methyl-9-phenyl-3,7-diazabicyclo[3.3.1]nonane-2,4,6,8-tetraone dimethylformamide monosolvate
aDepartment of Chemistry, Moscow State University, 1 Leninskie Gory, Moscow 119991, Russian Federation, and bInorganic Chemistry Department, Faculty of Science, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation
*Correspondence e-mail: szv@org.chem.msu.ru
Compounds (I), C9H10N2O4, (II), C11H12N2O4, and (III), C14H12N2O4·C3H7NO represent 9,9-disubstituted-3,7-diazabicyclo[3.3.1]nonane-2,4,6,8-tetraone derivatives with very similar molecular geometries for the bicyclic framework: the dihedral angle between the planes of the imide groups is 74.87 (6), 73.86 (3) and 74.83 (6)° in (I)–(III), respectively. The dimethyl derivative (I) is positioned on a crystallographic twofold axis and its overall geometry deviates only slightly from idealized C2v symmetry. The spiro-cyclopentane derivative (II) and the phenyl/methyl analog (III) retain only internal Cs symmetry, which in the case of (II) coincides with crystallographic mirror symmetry. The cyclopentane moiety in (II) adopts an with the spiro C atom deviating from the mean plane of the rest of the ring by 0.548 (2) Å. In compound (III), an N—H⋯O hydrogen bond is formed with the dimethylformamide solvent molecule. In the crystal, both (I) and (II) form similar zigzag hydrogen-bonded ribbons through double intermolecular N—H⋯O hydrogen bonds. However, whereas in (I) the ribbons are formed by two trans-arranged O=C—N—H amide fragments, the amide fragments are cis-positioned in (II). The formation of ribbons in (III) is apparently disrupted by participation of one of its N—H groups in hydrogen bonding with the solvent molecule. As a result, the molecules of (III) form zigzag chains rather than the ribbons through intermolecular N—H⋯O hydrogen bonds. The crystal of (I) was a pseudo-merohedral twin.
1. Chemical context
Diazabicyclononane-tetraones are used in the synthesis of the sparteine et al., 2008) and are precursors in obtaining 3,7-diazabicyclo[3.3.1]nonanes which have been studied in computer models as serine protease inhibitors (Vatsadze et al., 2016). They also have value as building blocks in the design of other biologically active compounds (Kudryavtsev et al., 2014), and in the synthesis of imaging agents for positron emission tomography (Medved'ko et al., 2016). In addition, they are good chelating ligands for 3d transition metals (Vatsadze et al., 2005) including Cu (Vatsadze et al., 2014).
of lupine alcaloids (NorcrossHowever, the crystal structures of this class of compounds have not been adequately characterized so far, as shown by a small number (eight) of similar structures found in the Cambridge Structural Database (CSD; Groom et al., 2016). Moreover, their ability to form different supramolecular structures depending on the substituents at the 9-position in the heterocycle, which we report in this work, has not been not reported before. A search in the CSD for the 3,7-diaza-2,4,6,8-tetraoxobicyclo[3.3.1]nonane yielded eight hits. Although there is a similarity in chemical structure of known related compounds (Horlein et al., 1981; Norcross et al., 2008), their supramolecular features are significantly different because of the impact of substituents and solvatation.
In this work, we have synthesized three 9,9-disubstituted-3,7-diazabicyclo[3.3.1]nonane-2,4,6,8-tetraones and show how groups bound to C9 as well as the presence of solvate molecules affect their ability to form different hydrogen-bonding systems.
2. Structural commentary
Compounds (I), C9H10N2O4, (II), C11H12N2O4, and (III), C14H12N2O4·C3H7NO represent 9,9-disubstituted-3,7-diazabicyclo[3.3.1]nonane-2,4,6,8-tetraone derivatives and have very similar molecular geometries (Figs. 1–3). In general, the 3,7-diazabicyclo[3.3.1]nonane-2,4,6,8-tetraone skeleton exhibits idealized C2v (mm2) symmetry. The molecule of (I), containing two 9-methyl substituents, occupies a special position on a twofold axis [C2 (2)], and its geometry deviates only slightly from the perfectly symmetrical C2v. As a result of the presence of spiro-9-cyclopentane [in the case of (II)] and 9-phenyl and 9-methyl [in the case of (III)] substituents, the overall symmetry of these molecules decreases to Cs (m). However, in the crystal, the intrinsic Cs symmetry remains only for the molecule of (II), which occupies a special position on a mirror plane. Compound (III) crystallizes as a dimethyl formamide monosolvate, with the main molecule occupying a general position.
The two imide fragments in the molecules of (I)–(III) are almost planar (r.m.s. deviations are 0.013, 0.009 and 0.009/0.036 Å, respectively). The dihedral angles between the imide planes are 74.87 (6), 73.86 (3) and 74.83 (6)° for (I)–(III), respectively. Moreover, the four carbonyl carbon atoms in (I)–(III) are each coplanar with r.m.s. deviations of 0.018, 0.000, and 0.031 Å, respectively; the bridged carbon atom lies by 1.854 (3), 1.846 (1), and 1.858 (2) Å, respectively, above this plane in (I)–(III). The cyclopentane substituent in (II) adopts an with the C6 spiro-carbon atom deviating from the mean plane through the other ring atoms by 0.548 (2) Å.
Importantly, in (III) the main molecule forms a strong N7—H7⋯O5 hydrogen bond with the dimethyl formamide solvate molecule (Table 3, Fig. 3).
3. Supramolecular features
In general, any compound of type (I)–(III) could form up to six intermolecular hydrogen bonds utilizing two hydrogen-bond donor NH groups and four hydrogen-bond acceptor carbonyl oxygen atoms. In the literature, even the unsubstituted analogue (refcode GOHHER; Norcross et al., 2008) shows only four intermolecular hydrogen bonds involving both imide fragments of bispidintetraone with the formation of an infinite three-dimensional hydrogen-bonded network. If one of the nitrogen atoms is alkylated (for example, refcode BAHFIZ; Horlein et al., 1981), the other one is involved in the formation of a doubly hydrogen-bonded dimer. When both nitrogen atoms are functionalized [refcodes JIMWUY (Hametner et al., 2007), NAWLIH (Mereiter et al., 2014), NAWLON et al., 2014), PILXAK (Hametner et al., 2007), XAZGAH (Blakemore, et al., 2005)], no hydrogen-bonds are observed.
Despite the geometrical similarity of compounds (I)-(III), they form different supramolecular structures in the solid state. Thus, in the crystals of (I) and (II), the molecules form the zigzag hydrogen-bonded ribbons by double N—H⋯O hydrogen bonds (Tables 1 and 2, Figs. 4 and 5). The hydrogen-bonded ribbons in (I) and (II) are distinguished by the binding sites of the 3,7-diazabicyclo[3.3.1]nonane-2,4,6,8-tetraone skeleton. According to symmetry, the ribbons in (I) are formed by the two trans-arranged O=C—N—H amide fragments, whereas the binding O=C—N—H amide fragments in (II) are cis disposed. As one of the two NH groups in (III) is bonded to the dimethyl formamide solvate molecule, the N—H⋯O hydrogen bonds form the zigzag chains rather than ribbons (Table 3, Fig. 6).
|
4. Synthesis and crystallization
The title compounds (I)–(III) were synthesized (Fig. 7) according to the procedure described earlier (Schon et al., 1998).
Dinitrile subproducts were obtained by adding 2-cyanoacetamide to the corresponding ketone [(I) – acetone, (II) – acetophenone, (III) – cyclopentanone] in ethanol at room temperature. Then, the dinitriles were heated to 393–413 K upon stirring in an acidic medium to complete dissolving. After 10–15 min, the mixture was poured into ice–water. The precipitated tetraoxo-compounds were filtered off by suction, recrystallized from ethanol solution and finally dried. Single crystals suitable for X-ray diffraction study were obtained by recrystallization of the crude products from DMF solution.
5. Refinement
Crystal data, data collection and structure . The hydrogen atoms of the amino groups were localized in the difference-Fourier maps and refined isotropically with fixed displacement parameters [Uiso(H) = 1.2Ueq(N)]. The other hydrogen atoms were placed in calculated positions with C—H = 0.95–1.00 Å and refined in the riding/rotating model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for the CH3-groups and 1.2Ueq(C) for the other groups]. The crystal of (I) was a pseudo-merohedral twin. The twin matrix is ( 0 0 0 0 0.775 0 1), and BASF = 0.180 (1).
details are summarized in Table 4Supporting information
https://doi.org/10.1107/S2056989017009458/ld2140sup1.cif
contains datablocks global, I, II, III. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017009458/ld2140Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989017009458/ld2140IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989017009458/ld2140IIIsup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017009458/ld2140Isup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989017009458/ld2140IIsup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989017009458/ld2140IIIsup7.cml
For all compounds, data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C9H10N2O4 | F(000) = 440 |
Mr = 210.19 | Dx = 1.579 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.4321 (17) Å | Cell parameters from 3269 reflections |
b = 6.6263 (10) Å | θ = 3.5–30.0° |
c = 12.4819 (19) Å | µ = 0.13 mm−1 |
β = 110.788 (3)° | T = 100 K |
V = 884.0 (2) Å3 | Prism, colourless |
Z = 4 | 0.30 × 0.20 × 0.15 mm |
Bruker SMART 1K CCD diffractometer | 1165 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.027 |
φ and ω scans | θmax = 30.0°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −16→16 |
Tmin = 0.950, Tmax = 0.970 | k = −9→9 |
4993 measured reflections | l = −17→17 |
1289 independent reflections |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.062 | Hydrogen site location: mixed |
wR(F2) = 0.184 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0846P)2 + 3.9571P] where P = (Fo2 + 2Fc2)/3 |
1289 reflections | (Δ/σ)max < 0.001 |
74 parameters | Δρmax = 0.55 e Å−3 |
0 restraints | Δρmin = −0.54 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.39535 (15) | 0.3325 (3) | 0.25497 (14) | 0.0103 (4) | |
H1 | 0.3243 | 0.4158 | 0.2595 | 0.012* | |
C2 | 0.43977 (16) | 0.1911 (3) | 0.35793 (14) | 0.0110 (4) | |
O2 | 0.36911 (13) | 0.1256 (2) | 0.40357 (12) | 0.0156 (3) | |
N3 | 0.56404 (14) | 0.1339 (2) | 0.39595 (13) | 0.0119 (4) | |
H3 | 0.591 (3) | 0.054 (4) | 0.458 (2) | 0.014* | |
C4 | 0.65231 (16) | 0.1966 (3) | 0.35040 (14) | 0.0109 (4) | |
O4 | 0.75961 (13) | 0.1393 (2) | 0.39060 (12) | 0.0161 (4) | |
C5 | 0.5000 | 0.4737 (4) | 0.2500 | 0.0107 (5) | |
C6 | 0.54703 (18) | 0.6086 (3) | 0.35697 (16) | 0.0147 (4) | |
H6A | 0.6154 | 0.6941 | 0.3532 | 0.022* | |
H6B | 0.5774 | 0.5239 | 0.4257 | 0.022* | |
H6C | 0.4783 | 0.6939 | 0.3603 | 0.022* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0104 (7) | 0.0099 (8) | 0.0096 (7) | −0.0002 (5) | 0.0026 (6) | 0.0002 (5) |
C2 | 0.0117 (8) | 0.0105 (7) | 0.0094 (7) | −0.0007 (6) | 0.0021 (6) | −0.0012 (6) |
O2 | 0.0148 (6) | 0.0192 (7) | 0.0135 (6) | −0.0021 (5) | 0.0058 (5) | 0.0027 (5) |
N3 | 0.0131 (7) | 0.0114 (7) | 0.0106 (7) | 0.0004 (5) | 0.0035 (6) | 0.0024 (5) |
C4 | 0.0119 (8) | 0.0105 (7) | 0.0093 (7) | 0.0000 (6) | 0.0026 (6) | −0.0020 (6) |
O4 | 0.0131 (7) | 0.0200 (7) | 0.0139 (7) | 0.0037 (5) | 0.0031 (5) | 0.0006 (5) |
C5 | 0.0107 (10) | 0.0100 (10) | 0.0114 (10) | 0.000 | 0.0039 (8) | 0.000 |
C6 | 0.0148 (8) | 0.0129 (8) | 0.0160 (8) | −0.0011 (6) | 0.0049 (6) | −0.0039 (6) |
C1—C2 | 1.525 (2) | N3—H3 | 0.90 (3) |
C1—C4i | 1.527 (2) | C4—O4 | 1.210 (2) |
C1—C5 | 1.537 (2) | C5—C6 | 1.537 (2) |
C1—H1 | 1.0000 | C6—H6A | 0.9800 |
C2—O2 | 1.221 (2) | C6—H6B | 0.9800 |
C2—N3 | 1.382 (2) | C6—H6C | 0.9800 |
N3—C4 | 1.386 (2) | ||
C2—C1—C4i | 105.89 (14) | O4—C4—C1i | 122.81 (16) |
C2—C1—C5 | 112.14 (13) | N3—C4—C1i | 116.17 (14) |
C4i—C1—C5 | 111.67 (12) | C6i—C5—C6 | 108.8 (2) |
C2—C1—H1 | 109.0 | C6—C5—C1i | 110.59 (9) |
C4i—C1—H1 | 109.0 | C6—C5—C1 | 110.87 (10) |
C5—C1—H1 | 109.0 | C1i—C5—C1 | 105.1 (2) |
O2—C2—N3 | 120.80 (17) | C5—C6—H6A | 109.5 |
O2—C2—C1 | 122.27 (16) | C5—C6—H6B | 109.5 |
N3—C2—C1 | 116.90 (15) | H6A—C6—H6B | 109.5 |
C2—N3—C4 | 125.92 (15) | C5—C6—H6C | 109.5 |
C2—N3—H3 | 117.3 (18) | H6A—C6—H6C | 109.5 |
C4—N3—H3 | 116.7 (18) | H6B—C6—H6C | 109.5 |
O4—C4—N3 | 120.97 (17) | ||
C4i—C1—C2—O2 | −86.7 (2) | C2—N3—C4—C1i | −3.3 (3) |
C5—C1—C2—O2 | 151.29 (17) | C2—C1—C5—C6i | 178.06 (14) |
C4i—C1—C2—N3 | 91.29 (17) | C4i—C1—C5—C6i | 59.40 (19) |
C5—C1—C2—N3 | −30.7 (2) | C2—C1—C5—C6 | −61.11 (19) |
O2—C2—N3—C4 | 179.35 (16) | C4i—C1—C5—C6 | −179.77 (14) |
C1—C2—N3—C4 | 1.3 (3) | C2—C1—C5—C1i | 58.38 (11) |
C2—N3—C4—O4 | 179.26 (16) | C4i—C1—C5—C1i | −60.28 (11) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O2ii | 0.90 (3) | 2.01 (3) | 2.906 (2) | 173 (3) |
Symmetry code: (ii) −x+1, −y, −z+1. |
C11H12N2O4 | Dx = 1.545 Mg m−3 |
Mr = 236.23 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnma | Cell parameters from 4118 reflections |
a = 12.8058 (6) Å | θ = 3.2–33.9° |
b = 11.4850 (6) Å | µ = 0.12 mm−1 |
c = 6.9058 (3) Å | T = 120 K |
V = 1015.67 (8) Å3 | Prism, colourless |
Z = 4 | 0.30 × 0.20 × 0.20 mm |
F(000) = 496 |
Bruker SMART 1K CCD diffractometer | 1782 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.031 |
φ and ω scans | θmax = 34.8°, θmin = 3.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −19→19 |
Tmin = 0.960, Tmax = 0.970 | k = −17→18 |
15297 measured reflections | l = −10→10 |
2181 independent reflections |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: mixed |
wR(F2) = 0.119 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0631P)2 + 0.338P] where P = (Fo2 + 2Fc2)/3 |
2181 reflections | (Δ/σ)max < 0.001 |
85 parameters | Δρmax = 0.42 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.40454 (6) | 0.09843 (6) | 0.57775 (10) | 0.01863 (16) | |
O2 | 0.56727 (6) | 0.10479 (6) | −0.00332 (11) | 0.02057 (17) | |
C1 | 0.35046 (9) | 0.2500 | 0.35970 (17) | 0.0114 (2) | |
H1 | 0.2831 | 0.2500 | 0.4330 | 0.014* | |
C2 | 0.41314 (6) | 0.14320 (7) | 0.41787 (12) | 0.01265 (16) | |
N3 | 0.48223 (6) | 0.10060 (7) | 0.28341 (11) | 0.01450 (16) | |
H3 | 0.5177 (10) | 0.0407 (13) | 0.3159 (19) | 0.017* | |
C4 | 0.49953 (7) | 0.14512 (8) | 0.09885 (13) | 0.01376 (16) | |
C5 | 0.43357 (9) | 0.2500 | 0.04181 (17) | 0.0130 (2) | |
H5 | 0.4232 | 0.2500 | −0.1017 | 0.016* | |
C6 | 0.32636 (9) | 0.2500 | 0.14282 (17) | 0.0130 (2) | |
C7 | 0.25898 (8) | 0.14463 (9) | 0.08181 (14) | 0.01871 (19) | |
H7A | 0.3034 | 0.0757 | 0.0571 | 0.022* | |
H7B | 0.2078 | 0.1251 | 0.1842 | 0.022* | |
C8 | 0.20315 (9) | 0.18259 (12) | −0.10339 (15) | 0.0277 (2) | |
H8A | 0.1307 | 0.1525 | −0.1051 | 0.033* | |
H8B | 0.2403 | 0.1525 | −0.2187 | 0.033* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0241 (3) | 0.0172 (3) | 0.0146 (3) | 0.0043 (2) | 0.0040 (2) | 0.0046 (2) |
O2 | 0.0232 (3) | 0.0186 (3) | 0.0199 (3) | 0.0043 (2) | 0.0081 (3) | −0.0004 (3) |
C1 | 0.0116 (4) | 0.0102 (4) | 0.0124 (4) | 0.000 | 0.0003 (4) | 0.000 |
C2 | 0.0135 (3) | 0.0113 (3) | 0.0131 (3) | −0.0001 (3) | 0.0003 (3) | 0.0000 (3) |
N3 | 0.0172 (3) | 0.0123 (3) | 0.0140 (3) | 0.0038 (2) | 0.0023 (2) | 0.0015 (2) |
C4 | 0.0160 (4) | 0.0120 (3) | 0.0133 (3) | −0.0006 (3) | 0.0010 (3) | −0.0007 (3) |
C5 | 0.0149 (5) | 0.0135 (5) | 0.0105 (4) | 0.000 | −0.0001 (4) | 0.000 |
C6 | 0.0130 (5) | 0.0137 (5) | 0.0124 (5) | 0.000 | −0.0017 (4) | 0.000 |
C7 | 0.0170 (4) | 0.0213 (4) | 0.0179 (4) | −0.0047 (3) | −0.0031 (3) | −0.0026 (3) |
C8 | 0.0248 (5) | 0.0397 (6) | 0.0187 (4) | −0.0066 (4) | −0.0075 (4) | −0.0015 (4) |
O1—C2 | 1.2230 (11) | C5—C6 | 1.5399 (17) |
O2—C4 | 1.2103 (11) | C5—H5 | 1.0000 |
C1—C2 | 1.5200 (11) | C6—C7 | 1.5448 (12) |
C1—C6 | 1.5292 (17) | C7—C8 | 1.5287 (14) |
C1—H1 | 1.0000 | C7—H7A | 0.9900 |
C2—N3 | 1.3727 (11) | C7—H7B | 0.9900 |
N3—C4 | 1.3910 (11) | C8—C8i | 1.549 (3) |
N3—H3 | 0.855 (14) | C8—H8A | 0.9900 |
C4—C5 | 1.5231 (11) | C8—H8B | 0.9900 |
C2i—C1—C2 | 107.61 (9) | C1—C6—C5 | 105.29 (10) |
C2—C1—C6 | 111.43 (6) | C1—C6—C7 | 112.32 (7) |
C2—C1—H1 | 108.8 | C5—C6—C7 | 111.99 (7) |
C6—C1—H1 | 108.8 | C7i—C6—C7 | 103.14 (10) |
O1—C2—N3 | 121.26 (8) | C8—C7—C6 | 105.43 (9) |
O1—C2—C1 | 122.03 (8) | C8—C7—H7A | 110.7 |
N3—C2—C1 | 116.69 (8) | C6—C7—H7A | 110.7 |
C2—N3—C4 | 126.26 (8) | C8—C7—H7B | 110.7 |
C2—N3—H3 | 116.9 (9) | C6—C7—H7B | 110.7 |
C4—N3—H3 | 116.8 (9) | H7A—C7—H7B | 108.8 |
O2—C4—N3 | 120.51 (8) | C7—C8—C8i | 106.57 (6) |
O2—C4—C5 | 123.33 (9) | C7—C8—H8A | 110.4 |
N3—C4—C5 | 116.06 (8) | C8i—C8—H8A | 110.4 |
C4i—C5—C4 | 104.54 (10) | C7—C8—H8B | 110.4 |
C4—C5—C6 | 112.17 (7) | C8i—C8—H8B | 110.4 |
C4—C5—H5 | 109.3 | H8A—C8—H8B | 108.6 |
C6—C5—H5 | 109.3 | ||
C2i—C1—C2—O1 | 89.14 (11) | C2i—C1—C6—C7i | −62.03 (11) |
C6—C1—C2—O1 | −148.42 (9) | C2—C1—C6—C7i | 177.76 (8) |
C2i—C1—C2—N3 | −89.33 (10) | C2i—C1—C6—C7 | −177.76 (8) |
C6—C1—C2—N3 | 33.11 (11) | C2—C1—C6—C7 | 62.03 (11) |
O1—C2—N3—C4 | −179.14 (8) | C4i—C5—C6—C1 | −58.65 (7) |
C1—C2—N3—C4 | −0.66 (13) | C4—C5—C6—C1 | 58.65 (7) |
C2—N3—C4—O2 | 175.36 (9) | C4i—C5—C6—C7i | 63.69 (12) |
C2—N3—C4—C5 | −1.04 (13) | C4—C5—C6—C7i | −179.00 (8) |
O2—C4—C5—C4i | −84.18 (12) | C4i—C5—C6—C7 | 179.00 (8) |
N3—C4—C5—C4i | 92.10 (10) | C4—C5—C6—C7 | −63.70 (12) |
O2—C4—C5—C6 | 154.04 (9) | C1—C6—C7—C8 | 155.71 (9) |
N3—C4—C5—C6 | −29.68 (11) | C5—C6—C7—C8 | −86.05 (10) |
C2i—C1—C6—C5 | 60.10 (7) | C7i—C6—C7—C8 | 34.55 (12) |
C2—C1—C6—C5 | −60.11 (7) | C6—C7—C8—C8i | −21.58 (8) |
Symmetry code: (i) x, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O1ii | 0.855 (14) | 2.021 (14) | 2.8718 (11) | 173.7 (13) |
Symmetry code: (ii) −x+1, −y, −z+1. |
C14H12N2O4·C3H7NO | Dx = 1.389 Mg m−3 |
Mr = 345.35 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 2856 reflections |
a = 7.7876 (5) Å | θ = 2.3–26.0° |
b = 19.4656 (12) Å | µ = 0.10 mm−1 |
c = 21.7879 (13) Å | T = 120 K |
V = 3302.8 (4) Å3 | Prism, colourless |
Z = 8 | 0.22 × 0.20 × 0.18 mm |
F(000) = 1456 |
Bruker SMART 1K CCD diffractometer | 3210 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.090 |
φ and ω scans | θmax = 30.6°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −11→11 |
Tmin = 0.970, Tmax = 0.975 | k = −27→27 |
41691 measured reflections | l = −31→30 |
5056 independent reflections |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: mixed |
wR(F2) = 0.124 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0448P)2 + 1.1286P] where P = (Fo2 + 2Fc2)/3 |
5056 reflections | (Δ/σ)max < 0.001 |
235 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.91018 (15) | 0.32972 (6) | 0.24687 (5) | 0.0195 (3) | |
O2 | 1.28067 (16) | 0.39316 (7) | 0.39546 (6) | 0.0277 (3) | |
O3 | 1.05101 (18) | 0.54938 (6) | 0.41859 (6) | 0.0284 (3) | |
O4 | 0.71389 (17) | 0.48551 (6) | 0.25953 (6) | 0.0247 (3) | |
C1 | 0.7904 (2) | 0.39619 (8) | 0.33006 (7) | 0.0154 (3) | |
H1 | 0.6777 | 0.3746 | 0.3193 | 0.019* | |
C2 | 0.9331 (2) | 0.35860 (8) | 0.29593 (7) | 0.0156 (3) | |
N3 | 1.09219 (18) | 0.36122 (7) | 0.32247 (6) | 0.0169 (3) | |
H3 | 1.178 (2) | 0.3463 (10) | 0.3014 (9) | 0.020* | |
C4 | 1.1346 (2) | 0.39341 (9) | 0.37714 (7) | 0.0176 (3) | |
C5 | 0.9888 (2) | 0.42888 (8) | 0.41126 (8) | 0.0159 (3) | |
H5 | 1.0146 | 0.4280 | 0.4562 | 0.019* | |
C6 | 0.9822 (2) | 0.50346 (9) | 0.38999 (8) | 0.0197 (4) | |
N7 | 0.89576 (19) | 0.51620 (7) | 0.33590 (7) | 0.0196 (3) | |
H7 | 0.902 (3) | 0.5588 (10) | 0.3194 (9) | 0.024* | |
C8 | 0.7939 (2) | 0.46953 (9) | 0.30509 (8) | 0.0177 (3) | |
C9 | 0.8163 (2) | 0.39217 (8) | 0.40019 (7) | 0.0157 (3) | |
C10 | 0.8217 (2) | 0.31744 (8) | 0.42225 (7) | 0.0157 (3) | |
C11 | 0.7451 (2) | 0.26429 (9) | 0.38892 (8) | 0.0200 (4) | |
H11 | 0.6928 | 0.2740 | 0.3505 | 0.024* | |
C12 | 0.7444 (2) | 0.19734 (9) | 0.41138 (8) | 0.0229 (4) | |
H12 | 0.6912 | 0.1618 | 0.3883 | 0.027* | |
C13 | 0.8208 (2) | 0.18232 (9) | 0.46704 (8) | 0.0226 (4) | |
H13 | 0.8210 | 0.1365 | 0.4821 | 0.027* | |
C14 | 0.8969 (2) | 0.23430 (9) | 0.50061 (8) | 0.0218 (4) | |
H14 | 0.9496 | 0.2242 | 0.5389 | 0.026* | |
C15 | 0.8965 (2) | 0.30139 (9) | 0.47846 (8) | 0.0196 (4) | |
H15 | 0.9482 | 0.3368 | 0.5021 | 0.024* | |
C16 | 0.6721 (2) | 0.43004 (9) | 0.43480 (8) | 0.0205 (4) | |
H16A | 0.6658 | 0.4777 | 0.4205 | 0.031* | |
H16B | 0.6965 | 0.4295 | 0.4789 | 0.031* | |
H16C | 0.5623 | 0.4071 | 0.4270 | 0.031* | |
O5 | 0.91561 (18) | 0.64557 (7) | 0.28362 (6) | 0.0289 (3) | |
N1 | 0.84929 (19) | 0.65410 (7) | 0.18198 (7) | 0.0212 (3) | |
C17 | 0.8439 (2) | 0.67440 (9) | 0.24001 (8) | 0.0232 (4) | |
H17 | 0.7793 | 0.7146 | 0.2489 | 0.028* | |
C18 | 0.9381 (3) | 0.59137 (10) | 0.16458 (9) | 0.0284 (4) | |
H18A | 1.0181 | 0.5782 | 0.1972 | 0.043* | |
H18B | 1.0020 | 0.5991 | 0.1265 | 0.043* | |
H18C | 0.8541 | 0.5545 | 0.1583 | 0.043* | |
C19 | 0.7595 (3) | 0.69190 (10) | 0.13395 (9) | 0.0273 (4) | |
H19A | 0.6956 | 0.7301 | 0.1523 | 0.041* | |
H19B | 0.6795 | 0.6611 | 0.1128 | 0.041* | |
H19C | 0.8431 | 0.7099 | 0.1044 | 0.041* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0215 (6) | 0.0208 (6) | 0.0164 (6) | 0.0008 (5) | −0.0011 (5) | −0.0023 (5) |
O2 | 0.0151 (6) | 0.0414 (8) | 0.0265 (7) | −0.0016 (6) | −0.0042 (5) | −0.0007 (6) |
O3 | 0.0373 (8) | 0.0194 (7) | 0.0286 (7) | −0.0081 (6) | −0.0075 (6) | −0.0011 (5) |
O4 | 0.0294 (7) | 0.0235 (7) | 0.0213 (6) | 0.0040 (5) | −0.0068 (5) | 0.0021 (5) |
C1 | 0.0142 (8) | 0.0162 (8) | 0.0160 (8) | −0.0006 (6) | −0.0027 (6) | 0.0005 (6) |
C2 | 0.0166 (8) | 0.0145 (8) | 0.0156 (8) | −0.0004 (6) | 0.0002 (6) | 0.0030 (6) |
N3 | 0.0127 (7) | 0.0211 (7) | 0.0168 (7) | 0.0026 (6) | 0.0007 (5) | 0.0004 (6) |
C4 | 0.0176 (8) | 0.0189 (8) | 0.0162 (8) | −0.0033 (6) | −0.0018 (6) | 0.0029 (7) |
C5 | 0.0155 (8) | 0.0174 (8) | 0.0148 (8) | −0.0029 (6) | −0.0014 (6) | −0.0001 (6) |
C6 | 0.0189 (8) | 0.0194 (8) | 0.0207 (9) | −0.0007 (7) | −0.0009 (7) | −0.0003 (7) |
N7 | 0.0235 (8) | 0.0153 (7) | 0.0200 (7) | −0.0010 (6) | −0.0029 (6) | 0.0019 (6) |
C8 | 0.0168 (8) | 0.0186 (8) | 0.0177 (8) | 0.0036 (6) | 0.0010 (6) | −0.0019 (7) |
C9 | 0.0140 (8) | 0.0190 (8) | 0.0141 (8) | −0.0015 (6) | −0.0009 (6) | −0.0009 (6) |
C10 | 0.0140 (8) | 0.0178 (8) | 0.0152 (8) | −0.0023 (6) | 0.0037 (6) | 0.0002 (6) |
C11 | 0.0221 (9) | 0.0217 (9) | 0.0162 (8) | −0.0031 (7) | −0.0002 (7) | 0.0002 (7) |
C12 | 0.0269 (9) | 0.0203 (9) | 0.0216 (9) | −0.0052 (7) | 0.0030 (7) | −0.0032 (7) |
C13 | 0.0255 (10) | 0.0193 (9) | 0.0231 (9) | 0.0006 (7) | 0.0050 (7) | 0.0023 (7) |
C14 | 0.0220 (9) | 0.0249 (9) | 0.0185 (8) | 0.0002 (7) | −0.0006 (7) | 0.0027 (7) |
C15 | 0.0198 (9) | 0.0208 (9) | 0.0183 (8) | −0.0028 (7) | −0.0003 (7) | −0.0007 (7) |
C16 | 0.0168 (8) | 0.0246 (9) | 0.0200 (8) | 0.0004 (7) | 0.0015 (7) | −0.0014 (7) |
O5 | 0.0420 (8) | 0.0229 (7) | 0.0218 (7) | −0.0009 (6) | −0.0041 (6) | 0.0037 (5) |
N1 | 0.0230 (8) | 0.0195 (7) | 0.0210 (7) | 0.0020 (6) | −0.0005 (6) | 0.0007 (6) |
C17 | 0.0286 (10) | 0.0169 (8) | 0.0240 (9) | −0.0006 (7) | 0.0012 (8) | 0.0011 (7) |
C18 | 0.0328 (11) | 0.0249 (10) | 0.0276 (10) | 0.0060 (8) | 0.0064 (8) | −0.0001 (8) |
C19 | 0.0317 (11) | 0.0259 (10) | 0.0244 (9) | −0.0014 (8) | −0.0075 (8) | 0.0049 (8) |
O1—C2 | 1.2209 (19) | C11—H11 | 0.9500 |
O2—C4 | 1.205 (2) | C12—C13 | 1.382 (3) |
O3—C6 | 1.214 (2) | C12—H12 | 0.9500 |
O4—C8 | 1.213 (2) | C13—C14 | 1.382 (2) |
C1—C2 | 1.524 (2) | C13—H13 | 0.9500 |
C1—C8 | 1.528 (2) | C14—C15 | 1.392 (2) |
C1—C9 | 1.543 (2) | C14—H14 | 0.9500 |
C1—H1 | 1.0000 | C15—H15 | 0.9500 |
C2—N3 | 1.368 (2) | C16—H16A | 0.9800 |
N3—C4 | 1.386 (2) | C16—H16B | 0.9800 |
N3—H3 | 0.861 (19) | C16—H16C | 0.9800 |
C4—C5 | 1.523 (2) | O5—C17 | 1.237 (2) |
C5—C6 | 1.525 (2) | N1—C17 | 1.325 (2) |
C5—C9 | 1.541 (2) | N1—C18 | 1.454 (2) |
C5—H5 | 1.0000 | N1—C19 | 1.458 (2) |
C6—N7 | 1.380 (2) | C17—H17 | 0.9500 |
N7—C8 | 1.380 (2) | C18—H18A | 0.9800 |
N7—H7 | 0.90 (2) | C18—H18B | 0.9800 |
C9—C10 | 1.533 (2) | C18—H18C | 0.9800 |
C9—C16 | 1.540 (2) | C19—H19A | 0.9800 |
C10—C15 | 1.392 (2) | C19—H19B | 0.9800 |
C10—C11 | 1.398 (2) | C19—H19C | 0.9800 |
C11—C12 | 1.392 (2) | ||
C2—C1—C8 | 105.18 (13) | C12—C11—C10 | 120.78 (16) |
C2—C1—C9 | 111.30 (13) | C12—C11—H11 | 119.6 |
C8—C1—C9 | 113.43 (13) | C10—C11—H11 | 119.6 |
C2—C1—H1 | 108.9 | C13—C12—C11 | 120.33 (17) |
C8—C1—H1 | 108.9 | C13—C12—H12 | 119.8 |
C9—C1—H1 | 108.9 | C11—C12—H12 | 119.8 |
O1—C2—N3 | 121.31 (15) | C12—C13—C14 | 119.61 (17) |
O1—C2—C1 | 122.78 (15) | C12—C13—H13 | 120.2 |
N3—C2—C1 | 115.87 (14) | C14—C13—H13 | 120.2 |
C2—N3—C4 | 126.58 (15) | C13—C14—C15 | 120.16 (17) |
C2—N3—H3 | 117.7 (13) | C13—C14—H14 | 119.9 |
C4—N3—H3 | 115.2 (13) | C15—C14—H14 | 119.9 |
O2—C4—N3 | 120.51 (16) | C10—C15—C14 | 121.10 (16) |
O2—C4—C5 | 122.95 (15) | C10—C15—H15 | 119.5 |
N3—C4—C5 | 116.53 (14) | C14—C15—H15 | 119.5 |
C4—C5—C6 | 107.97 (14) | C9—C16—H16A | 109.5 |
C4—C5—C9 | 111.32 (13) | C9—C16—H16B | 109.5 |
C6—C5—C9 | 111.39 (14) | H16A—C16—H16B | 109.5 |
C4—C5—H5 | 108.7 | C9—C16—H16C | 109.5 |
C6—C5—H5 | 108.7 | H16A—C16—H16C | 109.5 |
C9—C5—H5 | 108.7 | H16B—C16—H16C | 109.5 |
O3—C6—N7 | 121.43 (16) | C17—N1—C18 | 120.96 (15) |
O3—C6—C5 | 122.02 (15) | C17—N1—C19 | 121.26 (15) |
N7—C6—C5 | 116.55 (15) | C18—N1—C19 | 117.71 (15) |
C6—N7—C8 | 125.29 (15) | O5—C17—N1 | 125.66 (17) |
C6—N7—H7 | 118.5 (13) | O5—C17—H17 | 117.2 |
C8—N7—H7 | 116.2 (13) | N1—C17—H17 | 117.2 |
O4—C8—N7 | 121.65 (16) | N1—C18—H18A | 109.5 |
O4—C8—C1 | 121.45 (15) | N1—C18—H18B | 109.5 |
N7—C8—C1 | 116.88 (14) | H18A—C18—H18B | 109.5 |
C10—C9—C16 | 108.70 (13) | N1—C18—H18C | 109.5 |
C10—C9—C5 | 111.53 (13) | H18A—C18—H18C | 109.5 |
C16—C9—C5 | 109.69 (13) | H18B—C18—H18C | 109.5 |
C10—C9—C1 | 111.25 (13) | N1—C19—H19A | 109.5 |
C16—C9—C1 | 111.43 (13) | N1—C19—H19B | 109.5 |
C5—C9—C1 | 104.20 (13) | H19A—C19—H19B | 109.5 |
C15—C10—C11 | 118.01 (15) | N1—C19—H19C | 109.5 |
C15—C10—C9 | 120.04 (14) | H19A—C19—H19C | 109.5 |
C11—C10—C9 | 121.86 (14) | H19B—C19—H19C | 109.5 |
C8—C1—C2—O1 | −88.55 (18) | C4—C5—C9—C16 | −179.36 (13) |
C9—C1—C2—O1 | 148.23 (15) | C6—C5—C9—C16 | −58.79 (18) |
C8—C1—C2—N3 | 89.02 (16) | C4—C5—C9—C1 | −59.96 (16) |
C9—C1—C2—N3 | −34.20 (19) | C6—C5—C9—C1 | 60.61 (16) |
O1—C2—N3—C4 | 178.71 (15) | C2—C1—C9—C10 | −58.45 (17) |
C1—C2—N3—C4 | 1.1 (2) | C8—C1—C9—C10 | −176.82 (13) |
C2—N3—C4—O2 | −178.77 (16) | C2—C1—C9—C16 | −179.93 (13) |
C2—N3—C4—C5 | 0.6 (2) | C8—C1—C9—C16 | 61.69 (18) |
O2—C4—C5—C6 | 87.7 (2) | C2—C1—C9—C5 | 61.86 (16) |
N3—C4—C5—C6 | −91.58 (17) | C8—C1—C9—C5 | −56.52 (17) |
O2—C4—C5—C9 | −149.71 (16) | C16—C9—C10—C15 | −77.40 (18) |
N3—C4—C5—C9 | 31.0 (2) | C5—C9—C10—C15 | 43.7 (2) |
C4—C5—C6—O3 | −96.53 (19) | C1—C9—C10—C15 | 159.54 (15) |
C9—C5—C6—O3 | 140.95 (17) | C16—C9—C10—C11 | 99.18 (17) |
C4—C5—C6—N7 | 82.61 (18) | C5—C9—C10—C11 | −139.75 (16) |
C9—C5—C6—N7 | −39.9 (2) | C1—C9—C10—C11 | −23.9 (2) |
O3—C6—N7—C8 | −170.25 (17) | C15—C10—C11—C12 | −0.2 (2) |
C5—C6—N7—C8 | 10.6 (2) | C9—C10—C11—C12 | −176.84 (16) |
C6—N7—C8—O4 | 175.77 (16) | C10—C11—C12—C13 | −0.4 (3) |
C6—N7—C8—C1 | −5.8 (2) | C11—C12—C13—C14 | 0.5 (3) |
C2—C1—C8—O4 | 87.35 (18) | C12—C13—C14—C15 | 0.0 (3) |
C9—C1—C8—O4 | −150.80 (15) | C11—C10—C15—C14 | 0.7 (2) |
C2—C1—C8—N7 | −91.04 (16) | C9—C10—C15—C14 | 177.42 (15) |
C9—C1—C8—N7 | 30.8 (2) | C13—C14—C15—C10 | −0.6 (3) |
C4—C5—C9—C10 | 60.15 (17) | C18—N1—C17—O5 | 3.0 (3) |
C6—C5—C9—C10 | −179.28 (13) | C19—N1—C17—O5 | 179.89 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O1i | 0.861 (19) | 2.12 (2) | 2.9650 (19) | 168.3 (18) |
N7—H7···O5 | 0.90 (2) | 1.86 (2) | 2.7682 (19) | 178.6 (18) |
Symmetry code: (i) x+1/2, y, −z+1/2. |
Acknowledgements
The synthesis, purification and crystallization of compounds (I)–(III) were funded by RSF (grant No. 16–13-00114). This work was financially supported in part by the Ministry of Education and Science of the Russian Federation (the Agreement number 02.a03.21.0008).
References
Blakemore, P. R., Kilner, C., Norcross, N. R. & Astles, P. C. (2005). Org. Lett. 7, 4721–4724. CrossRef PubMed CAS Google Scholar
Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hametner, C., Dangl, D., Mereiter, K., Marchetti, M. & Fröhlich, J. (2007). Heterocycles, 71, 2331. CrossRef Google Scholar
Horlein, U., Schroder, T. & Born, L. (1981). Liebigs Ann. Chem. pp. 1699–1704. Google Scholar
Kudryavtsev, K. V., Shulga, D. A., Chupakhin, V. I., Sinauridze, E. I., Ataullakhanov, F. I. & Vatsadze, S. Z. (2014). Tetrahedron, 70, 7854–7864. CrossRef CAS Google Scholar
Medved'ko, A. V., Egorova, B. V., Komarova, A. A., Rakhimov, R. D., Krut'ko, D. P., Kalmykov, S. N. & Vatsadze, S. Z. (2016). ACS Omega, 1, 854-867. CAS Google Scholar
Mereiter, K., Dangl, D. & Frohlich, J. (2014). Private communication (refcodes NAWLIH, NAWLON). CCDC, Cambridge, England. Google Scholar
Norcross, N. R., Melbardis, J. P., Solera, M. F., Sephton, M. A., Kilner, C., Zakharov, L. N., Astles, P. C., Warriner, S. L. & Blakemore, P. R. (2008). J. Org. Chem. 73, 7939–7951. Web of Science CSD CrossRef PubMed CAS Google Scholar
Schön, U., Antel, J., Brückner, R., Messinger, J., Franke, R. & Gruska, A. (1998). J. Med. Chem. 41, 318–331. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Vatsadze, S. Z., Semashko, V. S., Manaenkova, M. A., Krut'ko, D. P., Nuriev, V. N., Rakhimov, R. D., Davlyatshin, D. I., Churakov, A. V., Howard, J. A. K., Maksimov, A. L., Li, W. & Yu, H. (2014). Russ. Chem. Bull. 63, 895–911. CrossRef CAS Google Scholar
Vatsadze, S. Z., Shulga, D. A., Loginova, Y. D., Vatsadze, I. A., Wang, L., Yu, H. & Kudryavtsev, K. V. (2016). Mendeleev Commun. 26, 212–213. CrossRef CAS Google Scholar
Vatsadze, S. Z., Tyurin, V. S., Zyk, N. V., Churakov, A. V., Kuz'mina, L. G., Avtomonov, E. V., Rakhimov, R. D. & Butin, K. P. (2005). Russ. Chem. Bull. 54, 1825–1835. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.