research communications
Crystal structures of the three closely related compounds: bis[(1H-tetrazol-5-yl)methyl]nitramide, triaminoguanidinium 5-({[(1H-tetrazol-5-yl)methyl](nitro)amino}methyl)tetrazol-1-ide, and diammonium bis[(tetrazol-1-id-5-yl)methyl]nitramide monohydrate
aCenter for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA, and bLos Alamos National Laboratory, Los Alamos, NM 87545, USA
*Correspondence e-mail: damon.parrish@nrl.navy.mil
In the molecule of neutral bis[(1H-tetrazol-5-yl)methyl]nitramide, (I), C4H6N10O2, there are two intramolecular N—H⋯O hydrogen bonds. In the crystal, N—H⋯N hydrogen bonds link molecules, forming a two-dimensional network parallel to (-201) and weak C—H⋯O, C—H⋯N hydrogen bonds, and intermolecular π–π stacking completes the three-dimensional network. The anion in the molecular salt, triaminoguanidinium 5-({[(1H-tetrazol-5-yl)methyl](nitro)amino}methyl)tetrazol-1-ide, (II), CH9N6+·C4H5N10O2−, displays intramolecular π–π stacking and in the crystal, N—H⋯N and N—H⋯O hydrogen bonds link the components of the structure, forming a three-dimensional network. In the crystal of diammonium bis[(tetrazol-1-id-5-yl)methyl]nitramide monohydrate, (III), 2NH4+·C4H4N10O22−·H2O, O—H⋯N, N—H⋯N, and N—H⋯O hydrogen bonds link the components of the structure into a three-dimensional network. In addition, there is intermolecular π–π stacking. In all three structures, the central N atom of the nitramide is mainly sp2-hybridized. Bond lengths indicate delocalization of charges on the tetrazole rings for all three compounds. Compound (II) was found to be a non-merohedral twin and was solved and refined in the major component.
Keywords: crystal structure; tetrazole; triaminoguandidinium; nitramide; energetic.
1. Chemical context
Materials which release large amount of energy during chemical transformations are characterized as energetic materials. Interest is high in improving energetics to reduce environmental impact and to improve safety and performance (Talawar et al., 2009). These materials can pose a hazard if they have high sensitivities to friction, heat, electrostatic discharge or impact. Compounds containing both tetrazole and nitro groups have frequently been used in the development of energetic materials (Klapötke et al., 2009; Wei et al., 2015). Tetrazoles have been of special interest because of their high nitrogen content, which lead to high heats of formation and to more environmentally benign decomposition products like N2 (Jaidann et al., 2010). Nitro groups have been commonly utilized to achieve an optimum oxygen balance (Wu et al., 2014). Herein is a discussion of the X-ray crystal structures of three nitro-containing tetrazole complexes. Structure (I), bis[(1H-tetrazol-5-yl)methyl]nitramide, is the neutral form, structure (II), triaminoguanidinium 5-({[(1H-tetrazol-5-yl)methyl](nitro)amino}methyl)tetrazol-1-ide, has one deprotonated tetrazole ring with a triaminoguandidinium counter-ion, and structure (III), diammonium bis[(tetrazol-1-id-5-yl)methyl]nitramide monohydrate, has both tetrazole rings deprotonated with ammonium counter-ions.
2. Structural commentary
In the molecule of complex (I), two intramolecular hydrogen bonds, N4—H4⋯O15 and N10—H10⋯O16, both between tetrazole donors and nitro acceptors are present (Fig. 1). This molecule adopts a chair-like conformation where the tetrazole rings are trans to one another. Molecule (III) adopts a similar conformation, despite not having any similar intramolecular hydrogen bonds (Fig. 2). Surprisingly, while structures (I) and (III) are both in a chair conformation, with respect to the tetrazole rings, structure (II) is bent into a boat where the tetrazole rings are cis to one another (Fig. 3).
This unusual conformation is likely due to the intramolecular π–π stacking interactions observed between the tetrazole rings [centroid–centroid distance = 3.4978 (10) Å]. Both tetrazole rings are nearly planar with an r.m.s. deviation of 0.0007 for the protonated ring and 0.00004 Å for the deprotonated ring.
For all three compounds, the C—N (ranging from 1.321 to 1.338 Å) and N—N (ranging from 1.301 to 1.362 Å) bond lengths for the tetrazole rings were found to match more closely with bonds of multiple character than of discrete single and double bonds, signifying a delocalized aromatic system (Allen et al., 1987).
In structure (II), the N18—C17, N20—C17, and N22—C17 bond lengths for the triaminoguandidinium cation were all found to be relatively equal (maximum difference 0.006 Å), indicating delocalization of the charge over all three branches.
The pyramidality of the amine functionality for the central tertiary amine was examined for all three structures by examining χn, the angle between the Namine—Nnitro vector and the Cmethylene1/Namine/Cmethylene2 plane, described by Allen et al. (1995). Structure (I) has a χn of 13.1 (5)° for vector N2–N1 and plane C11/C5/N1, structure (II) has a χn of 26.11 (18)° for vector N14–N7 and plane C6/N7/C8, and structure (III) has a χn of 6.21 (11)° for vector N7A–N7 and plane C6/N7/C8. This indicated the of the central nitrogen atom is mainly sp2 hybridized for all three structures (sp2 χn ≃ 0°, sp3 χn ≃ 60°).
3. Supramolecular features
The packing and intermolecular hydrogen bonding vary greatly between the three structures. Structure (I) has four intermolecular hydrogen bonds (Table 1). The tetrazole rings of adjacent molecules are linked via N—H⋯N bonds, forming a two-dimensional network parallel to (01). These interactions cause the tetrazole rings to lie in the same plane, resulting in the alignment of the tetrazole rings seen when viewed along the b axis (Fig. 4). Additionally, there is one weak C—H⋯N and one weak C—H⋯O hydrogen bond linking the molecules into a three-dimensional network.
Structure (II) does not have any non-classical intermolecular hydrogen bonds (Table 2). There are twelve N—H⋯N bonds and three N—H⋯O bonds, with the majority of the interactions between the main residue and the triamino-guandidinium counter-ion. The additional hydrogen bonds link the molecules into a three-dimensional network. The compound packs into columns of alternating anions and cations along the c axis (Fig. 5).
|
Structure (III) contains several intermolecular hydrogen bonds, which also form a three-dimensional network (Table 3). There are seven N—H⋯N bonds between ammonium donors and tetrazole acceptors, two O—H⋯N bonds between water donors and tetrazole acceptors, two N—H⋯O bonds between ammonium donors and water acceptors, and one N—H⋯O bond between an ammonium donor and a nitro acceptor. The ions and molecules pack into columns along the b axis (Fig. 6).
|
Although compounds (I) and (III) do not exhibit any intramolecular π–π stacking, intermolecular π–π stacking is present between tetrazole rings of adjacent molecules. Compound (I) displays head-to-tail stacking interactions with a centroid–centroid distance of 3.627 (2) Å. Compound (II) displays head-to-head and tail-to-tail stacking with a centroid–centroid distance of 3.8472 (10) Å for plane N1/N2/N3/N4/C5 to N1/N2/N3/N4/C5 and 4.0025 (8) Å for plane C9/N10/N11/N12/N13 to C9/N10/N11/N12/N13. There is no intermolecular π–π stacking for compound (II), which contains the larger counter-ion, triaminoguandidinium.
The neutral complex, compound (I), has a density of 1.825 g cm−3 (173 K). This is similar to the density, determined by X-ray crystallography, of the well known energetics RDX (α-hexahydro-1,3,5-trinitro-1,3,5-triazine) and HMX (1,3,5,7-tetra- nitro-1,3,5,7-tetraazacyclooctane) at 1.794 g cm−3 (298 K) and 1.948 g cm−3 (120 K) respectively (Zhurov et al., 2011). The ionic compounds have much lower densities. The density of compound (II) is 1.611 g cm−3 (293 K), and the density of compound (III) is 1.579 g cm−3 (296 K).
4. Database survey
A search of the Cambridge Structural Database (version 5.36, last updated May 2015; Groom et al., 2016) found 392 complexes that contained both tetrazole and nitro groups. The most similar compounds were 5-nitro-2H-tetrazole (Klapötke et al., 2009), ammonium 5-nitrotetrazolate (Klapötke et al., 2008), and triaminoguanidinium 5-nitrotetrazolate (Klapötke et al., 2008). A search for triaminoguandidinium containing compounds found 47 hits. The compounds from the CSD had similar bond lengths and angles to the triaminoguandidinium cation in complex (II). The average difference in C—N bond lengths for the triaminoguandidinium complexes in the CSD was found to be 0.015 Å, indicating a high level of charge delocalization, similar to that seen in complex (II).
5. Synthesis and crystallization
A 100 ml round-bottom flask was charged with N,N-bis(cyanomethyl)nitramide (2.5 g, 18 mmol), zinc bromide (3.9 g, 17 mmol), 30 ml water, and a magnetic stirbar. The reaction was heated to 323 K with stirring. Sodium azide (2.5 g, 38 mmol) was dissolved in 30 ml water and added to the heated reaction. A reflux condenser was fitted to the flask and the reaction was heated to 363 K for 1 h causing a gradual color change to light brown and the formation of a precipitate. The reaction was allowed to cool to room temperature, then 37% HCl (5 ml) was added and the mixture was allowed to stir for 30 min. The product was collected by vacuum filtration using a Buchner funnel and recrystallized from hot water. Yield 95%, 4 g. Melting point 475–477 K (dec.). CHN: Expected: C, 21.24; H, 2.67; N, 61.93. Found: C, 21.82(0.08); H, 2.96(0.08); N, 62.20(0.30). 1H NMR (DMSO-d6): 4.15 (2, s), 5.49 (4, s) ppm. 13C NMR (DMSO-d6): 40.33, 152.74 ppm. IR: 637, 685, 765, 875, 933, 1042, 1088, 1111, 1246, 1284, 1408, 1481, 1524, 1557, 2864, 3022 cm−1.
A 50 ml round-bottom flask was charged with a stir bar, barium hydroxide octahydrate (3.2 g, 10 mmol) and 20 mmol water. The base was stirred until fully dissolved. Compound (I) (4.5 g, 20 mmol) was added to the basic solution, dissolved, and the mixture was stirred 30 min as the color darkened to brown. The brown mixture was filtered to remove insoluble material, the filtrate was returned to the 50 ml round-bottom flask and stirred. Triaminoguanidinium sulfate (3.06 g, 10 mmol) was added to the stirring solution, causing immediate precipitation of barium sulfate. The mixture was stirred for 30 min and then allowed to stand for 10 min. Barium sulfate was removed by Buchner filtration and the filtrate was rotovapped until a precipitate formed. After isolating the product by filtration, it was recrystallized from water/ethanol solution. Yield 34%, 1.35 g. Melting point 428–430 K (dec.). 1H NMR (DMSO-d6): 4.65 (8, s), 5.20 (4, s), 8.6 (1, s) ppm. 13C NMR (DMSO-d6): 46.95, 157.60, 159.64 ppm. IR: 637, 685, 765, 875, 933, 1042, 1088, 1111, 1246, 1284, 1408, 1481, 1524, 1557, 2864, 3022 cm−1.
A 50 ml round-bottom flask was charged with (I) (2.5 g, 11 mmol), 10 ml water, and a magnetic stir bar and then stirred. An ammonium hydroxide solution (30%, 3 ml) was added to the reaction. After stirring for 1 h at 298 K, 10 ml ethanol was added and the resulting precipitate was collected by Buchner filtration. The product was recrystallized from water/methanol solution. Yield 80%, 2.3 g. Melting point 389–393 K (dec.). 1H NMR (DMSO-d6): 5.13 (4, s), 3.70 (broad) ppm. 13C NMR (DMSO-d6): 40.05; 155.80 ppm. IR: 2908; 2149; 1869; 1844; 1717; 1700; 1684; 1676; 1653; 1636; 1617; 1540; 1521; 1456; 1419; 1364; 1270; 1209; 1159; 1140; 1113; 1076; 920; 877; 809; 706; 612 cm−1.
6. Refinement
Crystal data, data collection and structure . The methylene H atoms were positioned geometrically and refined using a riding model, with C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C). All other H atoms were located in a difference Fourier map using. Compound (II) was found to be a non-merohedral twin and was solved and refined in the major component. The N10—H10 bond length in structure (I) was restrained.
details are summarized in Table 4
|
Supporting information
https://doi.org/10.1107/S2056989017008817/lh5843sup1.cif
contains datablocks I, II, III. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017008817/lh5843Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989017008817/lh5843IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989017008817/lh5843IIIsup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017008817/lh5843Isup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989017008817/lh5843IIsup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989017008817/lh5843IIIsup7.cml
For all compounds, data collection: APEX2 (Bruker, 2008); cell
APEX2 (Bruker, 2008); data reduction: SAINT (Bruker, 2008) and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) within WinGX (Farrugia, 2012); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).C4H6N10O2 | F(000) = 232 |
Mr = 226.19 | Dx = 1.825 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.3640 (17) Å | Cell parameters from 2717 reflections |
b = 9.627 (3) Å | θ = 3.0–26.2° |
c = 6.8627 (18) Å | µ = 0.15 mm−1 |
β = 101.805 (4)° | T = 173 K |
V = 411.57 (19) Å3 | Thin plate, colorless |
Z = 2 | 0.36 × 0.32 × 0.01 mm |
Bruker SMART APEXII CCD diffractometer | 889 independent reflections |
Radiation source: fine focus sealed tube | 835 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
ω scans | θmax = 26.4°, θmin = 3.0° |
Absorption correction: multi-scan (TWINABS; Bruker, 2008) | h = −7→7 |
Tmin = 0.615, Tmax = 0.745 | k = 0→12 |
889 measured reflections | l = 0→8 |
Refinement on F2 | 2 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.036 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.102 | w = 1/[σ2(Fo2) + (0.0513P)2 + 0.4169P] where P = (Fo2 + 2Fc2)/3 |
S = 1.14 | (Δ/σ)max < 0.001 |
889 reflections | Δρmax = 0.25 e Å−3 |
151 parameters | Δρmin = −0.32 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.0174 (5) | 0.3550 (3) | 0.2473 (5) | 0.0132 (7) | |
N2 | −0.0013 (5) | 0.3439 (4) | 0.0467 (5) | 0.0133 (7) | |
N3 | 0.0000 (5) | 0.4659 (4) | −0.0356 (5) | 0.0124 (7) | |
N4 | 0.0208 (5) | 0.5581 (4) | 0.1139 (5) | 0.0117 (7) | |
H4 | 0.028 (7) | 0.640 (7) | 0.099 (6) | 0.014* | |
C5 | 0.0317 (6) | 0.4901 (4) | 0.2851 (5) | 0.0108 (7) | |
C6 | 0.0466 (6) | 0.5533 (4) | 0.4880 (5) | 0.0125 (7) | |
H6A | −0.0542 | 0.6326 | 0.4769 | 0.015* | |
H6B | 0.0009 | 0.4834 | 0.5768 | 0.015* | |
N7 | 0.2620 (5) | 0.6017 (3) | 0.5783 (5) | 0.0122 (7) | |
C8 | 0.4251 (6) | 0.5139 (4) | 0.6986 (5) | 0.0129 (8) | |
H8A | 0.5573 | 0.5178 | 0.6438 | 0.015* | |
H8B | 0.3738 | 0.4165 | 0.6889 | 0.015* | |
C9 | 0.4788 (5) | 0.5559 (5) | 0.9148 (5) | 0.0113 (7) | |
N10 | 0.5184 (5) | 0.6848 (3) | 0.9857 (5) | 0.0118 (7) | |
H10 | 0.510 (7) | 0.764 (3) | 0.924 (6) | 0.014* | |
N11 | 0.5665 (5) | 0.6792 (3) | 1.1860 (5) | 0.0128 (7) | |
N12 | 0.5574 (5) | 0.5489 (4) | 1.2341 (4) | 0.0127 (7) | |
N13 | 0.5023 (5) | 0.4701 (4) | 1.0666 (4) | 0.0110 (7) | |
N14 | 0.3273 (5) | 0.7226 (3) | 0.5122 (4) | 0.0112 (7) | |
O15 | 0.2034 (4) | 0.7844 (3) | 0.3794 (4) | 0.0142 (6) | |
O16 | 0.5086 (4) | 0.7636 (3) | 0.5919 (4) | 0.0154 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0148 (14) | 0.0102 (17) | 0.0139 (15) | −0.0015 (13) | 0.0011 (12) | −0.0015 (13) |
N2 | 0.0141 (15) | 0.0093 (18) | 0.0164 (17) | 0.0004 (13) | 0.0029 (12) | 0.0010 (13) |
N3 | 0.0141 (14) | 0.0082 (17) | 0.0144 (16) | −0.0017 (13) | 0.0017 (12) | −0.0040 (13) |
N4 | 0.0139 (15) | 0.0074 (16) | 0.0135 (15) | −0.0021 (13) | 0.0021 (11) | −0.0019 (14) |
C5 | 0.0104 (16) | 0.0071 (18) | 0.0139 (17) | −0.0023 (14) | 0.0003 (13) | 0.0004 (15) |
C6 | 0.0139 (18) | 0.0113 (18) | 0.0122 (16) | −0.0044 (16) | 0.0020 (13) | 0.0004 (16) |
N7 | 0.0152 (16) | 0.0061 (15) | 0.0142 (15) | −0.0045 (13) | 0.0003 (12) | −0.0008 (13) |
C8 | 0.022 (2) | 0.0062 (18) | 0.0093 (16) | 0.0041 (14) | 0.0013 (14) | 0.0004 (13) |
C9 | 0.0091 (16) | 0.0115 (18) | 0.0130 (17) | 0.0008 (15) | 0.0015 (13) | −0.0036 (16) |
N10 | 0.0171 (16) | 0.0060 (17) | 0.0131 (15) | 0.0011 (13) | 0.0049 (12) | 0.0014 (13) |
N11 | 0.0155 (16) | 0.0101 (17) | 0.0122 (14) | 0.0020 (13) | 0.0013 (11) | 0.0001 (13) |
N12 | 0.0136 (15) | 0.0112 (15) | 0.0131 (15) | −0.0003 (14) | 0.0019 (11) | 0.0003 (15) |
N13 | 0.0131 (15) | 0.0079 (18) | 0.0112 (15) | −0.0010 (13) | 0.0007 (11) | −0.0005 (13) |
N14 | 0.0147 (15) | 0.0078 (15) | 0.0115 (14) | −0.0016 (12) | 0.0037 (12) | −0.0003 (12) |
O15 | 0.0182 (13) | 0.0099 (13) | 0.0136 (12) | 0.0031 (12) | 0.0012 (10) | 0.0029 (11) |
O16 | 0.0165 (13) | 0.0148 (14) | 0.0144 (12) | −0.0052 (10) | 0.0021 (10) | −0.0007 (11) |
N1—C5 | 1.326 (5) | C8—C9 | 1.508 (5) |
N1—N2 | 1.361 (4) | C8—H8A | 0.9900 |
N2—N3 | 1.304 (5) | C8—H8B | 0.9900 |
N3—N4 | 1.343 (5) | C9—N13 | 1.314 (5) |
N4—C5 | 1.334 (5) | C9—N10 | 1.338 (5) |
N4—H4 | 0.80 (6) | N10—N11 | 1.347 (4) |
C5—C6 | 1.505 (5) | N10—H10 | 0.867 (11) |
C6—N7 | 1.460 (5) | N11—N12 | 1.301 (5) |
C6—H6A | 0.9900 | N12—N13 | 1.362 (5) |
C6—H6B | 0.9900 | N14—O15 | 1.230 (4) |
N7—N14 | 1.346 (4) | N14—O16 | 1.236 (4) |
N7—C8 | 1.457 (5) | ||
C5—N1—N2 | 105.2 (3) | N7—C8—C9 | 113.2 (3) |
N3—N2—N1 | 111.1 (3) | N7—C8—H8A | 108.9 |
N2—N3—N4 | 105.8 (3) | C9—C8—H8A | 108.9 |
C5—N4—N3 | 109.1 (4) | N7—C8—H8B | 108.9 |
C5—N4—H4 | 127 (3) | C9—C8—H8B | 108.9 |
N3—N4—H4 | 124 (3) | H8A—C8—H8B | 107.8 |
N1—C5—N4 | 108.7 (4) | N13—C9—N10 | 108.2 (3) |
N1—C5—C6 | 124.5 (3) | N13—C9—C8 | 125.3 (4) |
N4—C5—C6 | 126.7 (3) | N10—C9—C8 | 126.5 (4) |
N7—C6—C5 | 113.4 (3) | C9—N10—N11 | 108.7 (3) |
N7—C6—H6A | 108.9 | C9—N10—H10 | 130 (3) |
C5—C6—H6A | 108.9 | N11—N10—H10 | 121 (3) |
N7—C6—H6B | 108.9 | N12—N11—N10 | 106.6 (3) |
C5—C6—H6B | 108.9 | N11—N12—N13 | 109.9 (3) |
H6A—C6—H6B | 107.7 | C9—N13—N12 | 106.7 (3) |
N14—N7—C8 | 117.4 (3) | O15—N14—O16 | 124.9 (3) |
N14—N7—C6 | 117.4 (3) | O15—N14—N7 | 118.2 (3) |
C8—N7—C6 | 123.6 (3) | O16—N14—N7 | 116.9 (3) |
C5—N1—N2—N3 | −0.4 (4) | N7—C8—C9—N13 | 135.9 (4) |
N1—N2—N3—N4 | 0.3 (4) | N7—C8—C9—N10 | −46.8 (5) |
N2—N3—N4—C5 | 0.0 (4) | N13—C9—N10—N11 | −0.4 (4) |
N2—N1—C5—N4 | 0.3 (4) | C8—C9—N10—N11 | −178.1 (3) |
N2—N1—C5—C6 | 177.6 (3) | C9—N10—N11—N12 | 0.5 (4) |
N3—N4—C5—N1 | −0.2 (4) | N10—N11—N12—N13 | −0.4 (4) |
N3—N4—C5—C6 | −177.4 (3) | N10—C9—N13—N12 | 0.1 (4) |
N1—C5—C6—N7 | 104.7 (4) | C8—C9—N13—N12 | 177.8 (3) |
N4—C5—C6—N7 | −78.6 (5) | N11—N12—N13—C9 | 0.2 (4) |
C5—C6—N7—N14 | 77.3 (4) | C8—N7—N14—O15 | 165.5 (3) |
C5—C6—N7—C8 | −87.9 (4) | C6—N7—N14—O15 | −0.6 (5) |
N14—N7—C8—C9 | 82.6 (4) | C8—N7—N14—O16 | −15.0 (4) |
C6—N7—C8—C9 | −112.2 (4) | C6—N7—N14—O16 | 178.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4···N2i | 0.80 (6) | 2.19 (6) | 2.957 (5) | 160 (4) |
N4—H4···O15 | 0.80 (6) | 2.45 (5) | 2.924 (5) | 119 (4) |
C6—H6B···O15ii | 0.99 | 2.37 | 3.264 (5) | 150 |
C8—H8B···N11iii | 0.99 | 2.44 | 3.316 (5) | 147 |
N10—H10···N13iv | 0.87 (1) | 1.99 (3) | 2.770 (5) | 149 (4) |
N10—H10···O16 | 0.87 (1) | 2.28 (4) | 2.796 (4) | 118 (4) |
Symmetry codes: (i) −x, y+1/2, −z; (ii) −x, y−1/2, −z+1; (iii) −x+1, y−1/2, −z+2; (iv) −x+1, y+1/2, −z+2. |
CH9N6+·C4H5N10O2− | F(000) = 688 |
Mr = 330.32 | Dx = 1.650 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 6.5312 (11) Å | Cell parameters from 2664 reflections |
b = 12.682 (2) Å | θ = 3.0–25.8° |
c = 16.183 (3) Å | µ = 0.13 mm−1 |
β = 97.118 (3)° | T = 100 K |
V = 1330.0 (4) Å3 | Thin plate, colorless |
Z = 4 | 0.52 × 0.06 × 0.02 mm |
Bruker SMART APEXII CCD diffractometer | 2733 independent reflections |
Radiation source: fine focus sealed tube | 2141 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ω scans | θmax = 26.5°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −8→8 |
Tmin = 0.674, Tmax = 0.745 | k = −15→15 |
11821 measured reflections | l = −20→17 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.037 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.093 | w = 1/[σ2(Fo2) + (0.044P)2 + 0.6423P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
2733 reflections | Δρmax = 0.23 e Å−3 |
238 parameters | Δρmin = −0.25 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.8295 (2) | 0.71404 (10) | 0.35827 (9) | 0.0141 (3) | |
H1 | 0.937 (3) | 0.7311 (14) | 0.3283 (12) | 0.017* | |
N2 | 0.8025 (2) | 0.61115 (11) | 0.37468 (9) | 0.0181 (3) | |
N3 | 0.6329 (2) | 0.60429 (11) | 0.40878 (9) | 0.0178 (3) | |
N4 | 0.5480 (2) | 0.70155 (10) | 0.41515 (9) | 0.0162 (3) | |
C5 | 0.6732 (2) | 0.76797 (12) | 0.38346 (10) | 0.0128 (3) | |
C6 | 0.6426 (2) | 0.88578 (12) | 0.37832 (11) | 0.0142 (3) | |
H6A | 0.697088 | 0.918049 | 0.432299 | 0.017* | |
H6B | 0.721587 | 0.914793 | 0.335095 | 0.017* | |
N7 | 0.42480 (19) | 0.91361 (10) | 0.35817 (9) | 0.0132 (3) | |
C8 | 0.3282 (2) | 0.90418 (12) | 0.27155 (10) | 0.0151 (3) | |
H8A | 0.416201 | 0.939648 | 0.234379 | 0.018* | |
H8B | 0.192815 | 0.940317 | 0.265472 | 0.018* | |
C9 | 0.2981 (2) | 0.79121 (12) | 0.24561 (10) | 0.0128 (3) | |
N10 | 0.1481 (2) | 0.72878 (10) | 0.26607 (9) | 0.0152 (3) | |
N11 | 0.1891 (2) | 0.63274 (11) | 0.23517 (9) | 0.0164 (3) | |
N12 | 0.3573 (2) | 0.63861 (11) | 0.19785 (9) | 0.0176 (3) | |
N13 | 0.4297 (2) | 0.73864 (11) | 0.20361 (9) | 0.0165 (3) | |
N14 | 0.3000 (2) | 0.89963 (10) | 0.41915 (9) | 0.0140 (3) | |
O15 | 0.38074 (18) | 0.89379 (9) | 0.49195 (7) | 0.0185 (3) | |
O16 | 0.11190 (17) | 0.89812 (9) | 0.39797 (8) | 0.0189 (3) | |
C17 | −0.0806 (2) | 0.68873 (12) | 0.58804 (10) | 0.0133 (3) | |
N18 | 0.0711 (2) | 0.72677 (11) | 0.54903 (9) | 0.0170 (3) | |
H18 | 0.086 (3) | 0.7929 (16) | 0.5481 (12) | 0.020* | |
N19 | 0.2228 (2) | 0.65585 (12) | 0.52819 (11) | 0.0209 (3) | |
H19A | 0.255 (3) | 0.6740 (16) | 0.4767 (14) | 0.027* | |
H19B | 0.337 (3) | 0.6698 (16) | 0.5647 (14) | 0.027* | |
N20 | −0.2213 (2) | 0.75296 (10) | 0.61240 (9) | 0.0145 (3) | |
H20 | −0.311 (3) | 0.7310 (14) | 0.6435 (12) | 0.017* | |
N21 | −0.1977 (2) | 0.86203 (11) | 0.59874 (10) | 0.0181 (3) | |
H21A | −0.139 (3) | 0.8920 (16) | 0.6454 (14) | 0.024* | |
H21B | −0.324 (3) | 0.8875 (15) | 0.5871 (13) | 0.024* | |
N22 | −0.0899 (2) | 0.58573 (11) | 0.60267 (9) | 0.0160 (3) | |
H22 | −0.002 (3) | 0.5432 (15) | 0.5856 (12) | 0.019* | |
N23 | −0.2648 (2) | 0.54700 (12) | 0.63607 (11) | 0.0212 (3) | |
H23A | −0.221 (3) | 0.4982 (17) | 0.6733 (14) | 0.028* | |
H23B | −0.346 (3) | 0.5116 (16) | 0.5941 (14) | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0119 (6) | 0.0132 (7) | 0.0177 (8) | −0.0008 (5) | 0.0036 (6) | −0.0010 (6) |
N2 | 0.0145 (7) | 0.0147 (7) | 0.0253 (9) | −0.0003 (5) | 0.0024 (6) | −0.0011 (6) |
N3 | 0.0144 (7) | 0.0140 (7) | 0.0249 (8) | 0.0012 (5) | 0.0026 (6) | 0.0029 (6) |
N4 | 0.0144 (7) | 0.0144 (7) | 0.0202 (8) | 0.0007 (5) | 0.0036 (6) | −0.0001 (6) |
C5 | 0.0110 (7) | 0.0148 (8) | 0.0122 (8) | −0.0010 (6) | 0.0002 (6) | −0.0010 (6) |
C6 | 0.0097 (7) | 0.0134 (8) | 0.0195 (9) | −0.0002 (6) | 0.0017 (6) | −0.0005 (7) |
N7 | 0.0112 (6) | 0.0136 (7) | 0.0151 (7) | 0.0000 (5) | 0.0031 (5) | 0.0009 (5) |
C8 | 0.0158 (8) | 0.0152 (8) | 0.0140 (9) | −0.0002 (6) | 0.0012 (6) | 0.0019 (6) |
C9 | 0.0130 (7) | 0.0153 (8) | 0.0095 (8) | 0.0007 (6) | −0.0015 (6) | 0.0007 (6) |
N10 | 0.0145 (7) | 0.0145 (7) | 0.0163 (8) | −0.0004 (5) | 0.0010 (6) | −0.0007 (6) |
N11 | 0.0171 (7) | 0.0158 (7) | 0.0161 (8) | −0.0004 (5) | 0.0015 (6) | −0.0013 (6) |
N12 | 0.0167 (7) | 0.0168 (7) | 0.0196 (8) | −0.0012 (5) | 0.0038 (6) | −0.0020 (6) |
N13 | 0.0168 (7) | 0.0169 (7) | 0.0159 (8) | −0.0007 (6) | 0.0029 (6) | −0.0002 (6) |
N14 | 0.0144 (7) | 0.0103 (6) | 0.0180 (8) | −0.0004 (5) | 0.0042 (6) | −0.0007 (5) |
O15 | 0.0210 (6) | 0.0207 (6) | 0.0135 (6) | 0.0011 (5) | 0.0013 (5) | −0.0004 (5) |
O16 | 0.0098 (6) | 0.0205 (6) | 0.0267 (7) | −0.0007 (4) | 0.0032 (5) | −0.0027 (5) |
C17 | 0.0137 (8) | 0.0148 (8) | 0.0104 (8) | −0.0011 (6) | −0.0021 (6) | 0.0000 (6) |
N18 | 0.0167 (7) | 0.0125 (7) | 0.0233 (8) | 0.0000 (5) | 0.0082 (6) | 0.0006 (6) |
N19 | 0.0184 (8) | 0.0223 (8) | 0.0240 (9) | 0.0020 (6) | 0.0104 (7) | −0.0017 (7) |
N20 | 0.0141 (7) | 0.0115 (7) | 0.0186 (8) | 0.0001 (5) | 0.0049 (6) | 0.0020 (6) |
N21 | 0.0183 (7) | 0.0113 (7) | 0.0237 (9) | 0.0015 (6) | −0.0016 (6) | 0.0005 (6) |
N22 | 0.0142 (7) | 0.0127 (7) | 0.0226 (8) | 0.0013 (5) | 0.0081 (6) | 0.0014 (6) |
N23 | 0.0197 (8) | 0.0147 (7) | 0.0312 (10) | −0.0033 (6) | 0.0112 (7) | 0.0024 (7) |
N1—C5 | 1.334 (2) | N12—N13 | 1.3530 (19) |
N1—N2 | 1.3475 (19) | N14—O15 | 1.2319 (18) |
N1—H1 | 0.929 (19) | N14—O16 | 1.2337 (17) |
N2—N3 | 1.300 (2) | C17—N20 | 1.324 (2) |
N3—N4 | 1.3614 (19) | C17—N18 | 1.330 (2) |
N4—C5 | 1.321 (2) | C17—N22 | 1.330 (2) |
C5—C6 | 1.508 (2) | N18—N19 | 1.410 (2) |
C6—N7 | 1.463 (2) | N18—H18 | 0.84 (2) |
C6—H6A | 0.9900 | N19—H19A | 0.92 (2) |
C6—H6B | 0.9900 | N19—H19B | 0.91 (2) |
N7—N14 | 1.3673 (19) | N20—N21 | 1.4123 (19) |
N7—C8 | 1.469 (2) | N20—H20 | 0.86 (2) |
C8—C9 | 1.499 (2) | N21—H21A | 0.89 (2) |
C8—H8A | 0.9900 | N21—H21B | 0.89 (2) |
C8—H8B | 0.9900 | N22—N23 | 1.4112 (19) |
C9—N10 | 1.333 (2) | N22—H22 | 0.86 (2) |
C9—N13 | 1.338 (2) | N23—H23A | 0.89 (2) |
N10—N11 | 1.3558 (19) | N23—H23B | 0.92 (2) |
N11—N12 | 1.3196 (19) | ||
C5—N1—N2 | 108.22 (13) | N12—N11—N10 | 109.37 (13) |
C5—N1—H1 | 134.4 (11) | N11—N12—N13 | 108.97 (13) |
N2—N1—H1 | 117.0 (11) | C9—N13—N12 | 105.14 (13) |
N3—N2—N1 | 106.71 (13) | O15—N14—O16 | 123.94 (14) |
N2—N3—N4 | 110.36 (13) | O15—N14—N7 | 118.36 (13) |
C5—N4—N3 | 105.71 (13) | O16—N14—N7 | 117.62 (14) |
N4—C5—N1 | 109.01 (14) | N20—C17—N18 | 120.25 (15) |
N4—C5—C6 | 124.68 (14) | N20—C17—N22 | 120.16 (15) |
N1—C5—C6 | 126.31 (14) | N18—C17—N22 | 119.59 (15) |
N7—C6—C5 | 111.70 (12) | C17—N18—N19 | 117.99 (14) |
N7—C6—H6A | 109.3 | C17—N18—H18 | 117.6 (13) |
C5—C6—H6A | 109.3 | N19—N18—H18 | 122.9 (13) |
N7—C6—H6B | 109.3 | N18—N19—H19A | 107.8 (13) |
C5—C6—H6B | 109.3 | N18—N19—H19B | 105.4 (13) |
H6A—C6—H6B | 107.9 | H19A—N19—H19B | 106.1 (18) |
N14—N7—C6 | 117.27 (13) | C17—N20—N21 | 117.55 (14) |
N14—N7—C8 | 117.01 (13) | C17—N20—H20 | 121.3 (12) |
C6—N7—C8 | 118.94 (13) | N21—N20—H20 | 120.1 (12) |
N7—C8—C9 | 111.78 (13) | N20—N21—H21A | 109.3 (13) |
N7—C8—H8A | 109.3 | N20—N21—H21B | 105.9 (13) |
C9—C8—H8A | 109.3 | H21A—N21—H21B | 108.4 (19) |
N7—C8—H8B | 109.3 | C17—N22—N23 | 117.82 (14) |
C9—C8—H8B | 109.3 | C17—N22—H22 | 120.9 (13) |
H8A—C8—H8B | 107.9 | N23—N22—H22 | 120.6 (13) |
N10—C9—N13 | 111.61 (14) | N22—N23—H23A | 107.1 (13) |
N10—C9—C8 | 124.97 (14) | N22—N23—H23B | 107.8 (13) |
N13—C9—C8 | 123.25 (14) | H23A—N23—H23B | 105.5 (19) |
C9—N10—N11 | 104.91 (13) | ||
C5—N1—N2—N3 | 0.17 (18) | C8—C9—N10—N11 | −175.43 (14) |
N1—N2—N3—N4 | −0.10 (18) | C9—N10—N11—N12 | −0.01 (17) |
N2—N3—N4—C5 | −0.01 (18) | N10—N11—N12—N13 | 0.01 (18) |
N3—N4—C5—N1 | 0.11 (18) | N10—C9—N13—N12 | 0.00 (18) |
N3—N4—C5—C6 | −179.14 (15) | C8—C9—N13—N12 | 175.53 (14) |
N2—N1—C5—N4 | −0.18 (19) | N11—N12—N13—C9 | 0.00 (17) |
N2—N1—C5—C6 | 179.06 (15) | C6—N7—N14—O15 | 20.04 (19) |
N4—C5—C6—N7 | −38.1 (2) | C8—N7—N14—O15 | 170.96 (13) |
N1—C5—C6—N7 | 142.82 (16) | C6—N7—N14—O16 | −162.96 (13) |
C5—C6—N7—N14 | 72.31 (18) | C8—N7—N14—O16 | −12.05 (19) |
C5—C6—N7—C8 | −78.03 (17) | N20—C17—N18—N19 | 176.83 (15) |
N14—N7—C8—C9 | −78.88 (16) | N22—C17—N18—N19 | −3.0 (2) |
C6—N7—C8—C9 | 71.53 (17) | N18—C17—N20—N21 | −2.8 (2) |
N7—C8—C9—N10 | 77.91 (19) | N22—C17—N20—N21 | 177.00 (15) |
N7—C8—C9—N13 | −97.02 (18) | N20—C17—N22—N23 | 6.8 (2) |
N13—C9—N10—N11 | 0.01 (18) | N18—C17—N22—N23 | −173.34 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N10i | 0.929 (19) | 1.804 (19) | 2.713 (2) | 165.6 (17) |
N1—H1···N11i | 0.929 (19) | 2.673 (19) | 3.422 (2) | 138.2 (14) |
N1—H1···O16i | 0.929 (19) | 2.596 (18) | 2.9952 (18) | 106.5 (13) |
N18—H18···O15 | 0.84 (2) | 2.569 (19) | 3.1451 (18) | 126.4 (16) |
N18—H18···N21 | 0.84 (2) | 2.292 (19) | 2.650 (2) | 105.9 (15) |
N19—H19A···N4 | 0.92 (2) | 2.29 (2) | 3.026 (2) | 137.3 (17) |
N19—H19B···N13ii | 0.91 (2) | 2.54 (2) | 3.275 (2) | 138.5 (16) |
N20—H20···N13iii | 0.86 (2) | 2.09 (2) | 2.867 (2) | 149.0 (17) |
N20—H20···N23 | 0.86 (2) | 2.358 (18) | 2.660 (2) | 100.9 (14) |
N21—H21A···N11ii | 0.89 (2) | 2.46 (2) | 3.143 (2) | 134.4 (16) |
N21—H21B···O15iv | 0.89 (2) | 2.31 (2) | 3.090 (2) | 146.3 (18) |
N22—H22···N2v | 0.86 (2) | 2.40 (2) | 3.118 (2) | 142.3 (17) |
N22—H22···N19 | 0.86 (2) | 2.325 (19) | 2.650 (2) | 102.9 (15) |
N23—H23A···N11vi | 0.89 (2) | 2.22 (2) | 3.087 (2) | 166.5 (18) |
N23—H23B···N3vi | 0.92 (2) | 2.38 (2) | 3.091 (2) | 133.9 (17) |
Symmetry codes: (i) x+1, y, z; (ii) x, −y+3/2, z+1/2; (iii) x−1, −y+3/2, z+1/2; (iv) x−1, y, z; (v) −x+1, −y+1, −z+1; (vi) −x, −y+1, −z+1. |
2NH4+·C4H4N10O22−·H2O | Z = 2 |
Mr = 278.27 | F(000) = 292 |
Triclinic, P1 | Dx = 1.579 Mg m−3 |
a = 7.5893 (11) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.6077 (11) Å | Cell parameters from 9690 reflections |
c = 11.2319 (15) Å | θ = 3.0–29.3° |
α = 85.564 (4)° | µ = 0.13 mm−1 |
β = 85.555 (4)° | T = 296 K |
γ = 65.007 (4)° | Irregular, colorless |
V = 585.29 (14) Å3 | 0.75 × 0.63 × 0.24 mm |
Bruker SMART APEXII CCD diffractometer | 3178 independent reflections |
Radiation source: fine-focus sealed tube | 3000 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.057 |
ω and φ scans | θmax = 29.3°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −10→10 |
Tmin = 0.687, Tmax = 0.746 | k = −10→10 |
38379 measured reflections | l = −15→15 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.036 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.106 | w = 1/[σ2(Fo2) + (0.0606P)2 + 0.0988P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max < 0.001 |
3178 reflections | Δρmax = 0.29 e Å−3 |
202 parameters | Δρmin = −0.27 e Å−3 |
Experimental. Output from intergration and final cell refinement: A B C Alpha Beta Gamma Vol 7.59208 7.60543 11.22509 85.5941 85.5165 64.9686 584.79 0.00008 0.00008 0.00012 0.0004 0.0004 0.0004 0.01 Corrected for goodness of fit: 0.00040 0.00041 0.00058 0.0020 0.0022 0.0019 0.07 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.63637 (12) | 0.17356 (11) | −0.03243 (7) | 0.02642 (17) | |
N2 | 0.74077 (12) | 0.11482 (12) | −0.13592 (7) | 0.02770 (18) | |
N3 | 0.86114 (14) | −0.06786 (13) | −0.12320 (8) | 0.0330 (2) | |
N4 | 0.84018 (14) | −0.13474 (12) | −0.01067 (8) | 0.03243 (19) | |
C5 | 0.70207 (12) | 0.01714 (12) | 0.04216 (7) | 0.02088 (17) | |
C6 | 0.62734 (14) | 0.01115 (14) | 0.16882 (8) | 0.02520 (18) | |
H6A | 0.4887 | 0.0929 | 0.1739 | 0.030* | |
H6B | 0.6459 | −0.1207 | 0.1923 | 0.030* | |
N7 | 0.72326 (12) | 0.07574 (11) | 0.25251 (7) | 0.02516 (17) | |
C8 | 0.88186 (13) | −0.06259 (14) | 0.32289 (8) | 0.02571 (18) | |
H8A | 0.9528 | 0.0041 | 0.3523 | 0.031* | |
H8B | 0.9712 | −0.1626 | 0.2717 | 0.031* | |
C9 | 0.81243 (12) | −0.15606 (13) | 0.42648 (8) | 0.02285 (17) | |
N10 | 0.76291 (15) | −0.08633 (13) | 0.53514 (7) | 0.0334 (2) | |
N11 | 0.70900 (16) | −0.21454 (14) | 0.59893 (8) | 0.0382 (2) | |
N12 | 0.72763 (14) | −0.35383 (13) | 0.53058 (8) | 0.0343 (2) | |
N13 | 0.79270 (14) | −0.32036 (13) | 0.41982 (8) | 0.03096 (19) | |
N14 | 0.65021 (12) | 0.26410 (12) | 0.27363 (7) | 0.02663 (17) | |
O15 | 0.52737 (13) | 0.37956 (11) | 0.20606 (7) | 0.03769 (19) | |
O16 | 0.71072 (13) | 0.31354 (12) | 0.35853 (7) | 0.03772 (19) | |
O1S | 0.02418 (14) | 0.53216 (13) | −0.20467 (7) | 0.0398 (2) | |
H1SA | 0.086 (3) | 0.482 (3) | −0.2719 (18) | 0.060* | |
H1SB | −0.028 (3) | 0.650 (3) | −0.2242 (18) | 0.060* | |
N1A | 0.36192 (14) | 0.69706 (13) | 0.37735 (8) | 0.02941 (18) | |
H1A | 0.317 (2) | 0.615 (2) | 0.4054 (13) | 0.035* | |
H1B | 0.484 (2) | 0.643 (2) | 0.3830 (13) | 0.035* | |
H1C | 0.336 (2) | 0.730 (2) | 0.3016 (14) | 0.035* | |
H1D | 0.318 (2) | 0.807 (2) | 0.4177 (13) | 0.035* | |
N2A | 0.24096 (13) | 0.50259 (13) | 0.00386 (9) | 0.03122 (19) | |
H2A | 0.184 (2) | 0.504 (2) | −0.0618 (14) | 0.037* | |
H2B | 0.267 (2) | 0.601 (2) | 0.0049 (14) | 0.037* | |
H2C | 0.181 (2) | 0.493 (2) | 0.0693 (15) | 0.037* | |
H2D | 0.356 (2) | 0.399 (2) | −0.0029 (13) | 0.037* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0331 (4) | 0.0229 (4) | 0.0194 (3) | −0.0083 (3) | −0.0005 (3) | 0.0001 (3) |
N2 | 0.0362 (4) | 0.0283 (4) | 0.0188 (3) | −0.0141 (3) | 0.0003 (3) | −0.0004 (3) |
N3 | 0.0396 (4) | 0.0297 (4) | 0.0238 (4) | −0.0096 (3) | 0.0059 (3) | −0.0034 (3) |
N4 | 0.0401 (4) | 0.0235 (4) | 0.0250 (4) | −0.0057 (3) | 0.0027 (3) | −0.0005 (3) |
C5 | 0.0251 (4) | 0.0211 (4) | 0.0183 (4) | −0.0112 (3) | −0.0024 (3) | −0.0011 (3) |
C6 | 0.0331 (4) | 0.0290 (4) | 0.0186 (4) | −0.0181 (4) | 0.0001 (3) | −0.0009 (3) |
N7 | 0.0336 (4) | 0.0236 (4) | 0.0188 (3) | −0.0122 (3) | −0.0026 (3) | −0.0015 (3) |
C8 | 0.0245 (4) | 0.0294 (4) | 0.0217 (4) | −0.0103 (3) | 0.0015 (3) | −0.0005 (3) |
C9 | 0.0242 (4) | 0.0232 (4) | 0.0196 (4) | −0.0082 (3) | −0.0023 (3) | −0.0009 (3) |
N10 | 0.0513 (5) | 0.0298 (4) | 0.0210 (4) | −0.0194 (4) | 0.0034 (3) | −0.0031 (3) |
N11 | 0.0540 (6) | 0.0349 (5) | 0.0256 (4) | −0.0203 (4) | 0.0061 (4) | 0.0008 (3) |
N12 | 0.0430 (5) | 0.0329 (4) | 0.0302 (4) | −0.0197 (4) | −0.0012 (3) | 0.0038 (3) |
N13 | 0.0420 (5) | 0.0293 (4) | 0.0251 (4) | −0.0181 (3) | −0.0024 (3) | −0.0016 (3) |
N14 | 0.0365 (4) | 0.0257 (4) | 0.0188 (3) | −0.0147 (3) | 0.0027 (3) | −0.0019 (3) |
O15 | 0.0502 (5) | 0.0281 (4) | 0.0272 (4) | −0.0092 (3) | −0.0055 (3) | 0.0028 (3) |
O16 | 0.0533 (5) | 0.0357 (4) | 0.0295 (4) | −0.0222 (4) | −0.0043 (3) | −0.0086 (3) |
O1S | 0.0512 (5) | 0.0321 (4) | 0.0275 (4) | −0.0099 (3) | 0.0021 (3) | 0.0005 (3) |
N1A | 0.0372 (4) | 0.0266 (4) | 0.0222 (4) | −0.0108 (3) | −0.0040 (3) | −0.0008 (3) |
N2A | 0.0307 (4) | 0.0263 (4) | 0.0381 (5) | −0.0132 (3) | −0.0010 (4) | −0.0022 (3) |
N1—C5 | 1.3325 (11) | N10—N11 | 1.3475 (13) |
N1—N2 | 1.3480 (11) | N11—N12 | 1.3095 (14) |
N2—N3 | 1.3051 (12) | N12—N13 | 1.3485 (12) |
N3—N4 | 1.3488 (12) | N14—O16 | 1.2373 (11) |
N4—C5 | 1.3312 (12) | N14—O15 | 1.2375 (11) |
C5—C6 | 1.4948 (12) | O1S—H1SA | 0.88 (2) |
C6—N7 | 1.4611 (12) | O1S—H1SB | 0.83 (2) |
C6—H6A | 0.9700 | N1A—H1A | 0.859 (16) |
C6—H6B | 0.9700 | N1A—H1B | 0.847 (16) |
N7—N14 | 1.3334 (11) | N1A—H1C | 0.882 (16) |
N7—C8 | 1.4593 (12) | N1A—H1D | 0.906 (16) |
C8—C9 | 1.4935 (12) | N2A—H2A | 0.880 (16) |
C8—H8A | 0.9700 | N2A—H2B | 0.854 (16) |
C8—H8B | 0.9700 | N2A—H2C | 0.849 (17) |
C9—N13 | 1.3284 (12) | N2A—H2D | 0.896 (16) |
C9—N10 | 1.3315 (12) | ||
C5—N1—N2 | 104.67 (7) | N13—C9—C8 | 123.16 (8) |
N3—N2—N1 | 109.51 (7) | N10—C9—C8 | 124.72 (8) |
N2—N3—N4 | 109.43 (8) | C9—N10—N11 | 104.58 (8) |
C5—N4—N3 | 104.71 (8) | N12—N11—N10 | 109.26 (8) |
N4—C5—N1 | 111.67 (8) | N11—N12—N13 | 109.62 (8) |
N4—C5—C6 | 124.00 (8) | C9—N13—N12 | 104.41 (8) |
N1—C5—C6 | 124.32 (8) | O16—N14—O15 | 123.83 (8) |
N7—C6—C5 | 113.19 (7) | O16—N14—N7 | 118.24 (8) |
N7—C6—H6A | 108.9 | O15—N14—N7 | 117.93 (8) |
C5—C6—H6A | 108.9 | H1SA—O1S—H1SB | 102.1 (18) |
N7—C6—H6B | 108.9 | H1A—N1A—H1B | 107.3 (14) |
C5—C6—H6B | 108.9 | H1A—N1A—H1C | 111.5 (14) |
H6A—C6—H6B | 107.8 | H1B—N1A—H1C | 108.9 (14) |
N14—N7—C8 | 119.43 (8) | H1A—N1A—H1D | 114.4 (14) |
N14—N7—C6 | 118.69 (8) | H1B—N1A—H1D | 106.7 (14) |
C8—N7—C6 | 121.50 (8) | H1C—N1A—H1D | 107.9 (13) |
N7—C8—C9 | 112.80 (7) | H2A—N2A—H2B | 111.5 (14) |
N7—C8—H8A | 109.0 | H2A—N2A—H2C | 116.2 (14) |
C9—C8—H8A | 109.0 | H2B—N2A—H2C | 108.9 (15) |
N7—C8—H8B | 109.0 | H2A—N2A—H2D | 103.5 (13) |
C9—C8—H8B | 109.0 | H2B—N2A—H2D | 106.1 (14) |
H8A—C8—H8B | 107.8 | H2C—N2A—H2D | 110.1 (14) |
N13—C9—N10 | 112.13 (8) | ||
C5—N1—N2—N3 | 0.47 (10) | N7—C8—C9—N13 | 90.37 (11) |
N1—N2—N3—N4 | −0.27 (12) | N7—C8—C9—N10 | −89.46 (11) |
N2—N3—N4—C5 | −0.06 (12) | N13—C9—N10—N11 | −0.21 (12) |
N3—N4—C5—N1 | 0.37 (11) | C8—C9—N10—N11 | 179.64 (9) |
N3—N4—C5—C6 | 179.15 (8) | C9—N10—N11—N12 | 0.43 (12) |
N2—N1—C5—N4 | −0.52 (11) | N10—N11—N12—N13 | −0.50 (13) |
N2—N1—C5—C6 | −179.30 (8) | N10—C9—N13—N12 | −0.08 (11) |
N4—C5—C6—N7 | 95.25 (11) | C8—C9—N13—N12 | −179.93 (8) |
N1—C5—C6—N7 | −86.12 (11) | N11—N12—N13—C9 | 0.35 (11) |
C5—C6—N7—N14 | 88.66 (10) | C8—N7—N14—O16 | −5.08 (12) |
C5—C6—N7—C8 | −98.39 (9) | C6—N7—N14—O16 | 168.02 (8) |
N14—N7—C8—C9 | 96.03 (10) | C8—N7—N14—O15 | 174.04 (8) |
C6—N7—C8—C9 | −76.87 (10) | C6—N7—N14—O15 | −12.86 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1S—H1SA···N13i | 0.88 (2) | 2.06 (2) | 2.9253 (12) | 168.0 (18) |
O1S—H1SB···N3ii | 0.83 (2) | 2.31 (2) | 2.9498 (13) | 134.8 (17) |
N1A—H1A···N12iii | 0.859 (16) | 2.211 (16) | 3.0533 (13) | 166.7 (14) |
N1A—H1B···O16 | 0.847 (16) | 2.388 (16) | 3.0079 (13) | 130.5 (13) |
N1A—H1B···N13iv | 0.847 (16) | 2.540 (15) | 3.2862 (14) | 147.6 (13) |
N1A—H1B···N12iv | 0.847 (16) | 2.585 (15) | 3.2472 (14) | 136.0 (13) |
N2A—H2A···O1S | 0.880 (16) | 2.030 (16) | 2.9062 (14) | 173.2 (14) |
N2A—H2B···N1v | 0.854 (16) | 2.179 (16) | 3.0243 (13) | 170.3 (14) |
N1A—H1C···N2v | 0.882 (16) | 2.107 (16) | 2.9654 (12) | 164.2 (14) |
N2A—H2C···O1Svi | 0.849 (17) | 2.147 (17) | 2.9766 (13) | 165.2 (14) |
N2A—H2D···N1 | 0.896 (16) | 2.117 (16) | 3.0096 (13) | 174.0 (13) |
N1A—H1D···N10vii | 0.906 (16) | 2.045 (16) | 2.9273 (13) | 164.2 (13) |
Symmetry codes: (i) −x+1, −y, −z; (ii) x−1, y+1, z; (iii) −x+1, −y, −z+1; (iv) x, y+1, z; (v) −x+1, −y+1, −z; (vi) −x, −y+1, −z; (vii) −x+1, −y+1, −z+1. |
Funding information
Studies were supported in by the Office of Naval Research (ONR) (Award No. N00014–15-WX-0–0149), the Naval Research Laboratory (NRL), and the American Society for Engineering Education (ASEE). Synthesis funding provided by the Department of Defense (DOD) at Los Alamos National Laboratory (LANL).
References
Allen, F. H., Bird, C. M., Rowland, R. S., Harris, S. E. & Schwalbe, C. H. (1995). Acta Cryst. B51, 1068–1081. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Bruker (2008). APEX2, SADABS, SAINT, and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jaidann, M., Roy, S., Abou-Rachid, H. & Lussier, L.-S. (2010). J. Hazard. Mater. 176, 165–173. CrossRef PubMed CAS Google Scholar
Klapötke, T. M., Mayer, P., Sabaté, C. M., Welch, J. M. & Wiegand, N. (2008). Inorg. Chem. 47, 6014–6027. PubMed Google Scholar
Klapötke, T. M., Sabaté, C. M. & Stierstorfer, J. (2009). New J. Chem. 33, 136–147. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Talawar, M. B., Sivabalan, R., Mukundan, T., Muthurajan, H., Sikder, A. K., Gandhe, B. R. & Rao, A. S. (2009). J. Hazard. Mater. 161, 589–607. CrossRef PubMed CAS Google Scholar
Wei, H., Zhang, J., He, C. & Shreeve, J. M. (2015). Chem. Eur. J. 21, 8607–8612. CSD CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, Q., Zhu, W. & Xiao, H. (2014). J. Mater. Chem. A, 2, 13006–13015. CrossRef CAS Google Scholar
Zhurov, V. V., Zhurova, E. A., Stash, A. I. & Pinkerton, A. A. (2011). Acta Cryst. A67, 160–173. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.