research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of the three closely related compounds: bis­­[(1H-tetra­zol-5-yl)meth­yl]nitramide, tri­amino­guanidinium 5-({[(1H-tetra­zol-5-yl)meth­yl](nitro)­amino}­meth­yl)tetra­zol-1-ide, and di­ammonium bis­­[(tetra­zol-1-id-5-yl)meth­yl]nitramide monohydrate

CROSSMARK_Color_square_no_text.svg

aCenter for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA, and bLos Alamos National Laboratory, Los Alamos, NM 87545, USA
*Correspondence e-mail: damon.parrish@nrl.navy.mil

Edited by A. J. Lough, University of Toronto, Canada (Received 29 March 2017; accepted 13 June 2017; online 20 June 2017)

In the mol­ecule of neutral bis­[(1H-tetra­zol-5-yl)meth­yl]nitramide, (I), C4H6N10O2, there are two intra­molecular N—H⋯O hydrogen bonds. In the crystal, N—H⋯N hydrogen bonds link mol­ecules, forming a two-dimensional network parallel to (-201) and weak C—H⋯O, C—H⋯N hydrogen bonds, and inter­molecular ππ stacking completes the three-dimensional network. The anion in the molecular salt, tri­amino­guanidinium 5-({[(1H-tetra­zol-5-yl)meth­yl](nitro)­amino}­meth­yl)tetra­zol-1-ide, (II), CH9N6+·C4H5N10O2, displays intra­molecular ππ stacking and in the crystal, N—H⋯N and N—H⋯O hydrogen bonds link the components of the structure, forming a three-dimensional network. In the crystal of di­ammonium bis­[(tetra­zol-1-id-5-yl)meth­yl]nitramide monohydrate, (III), 2NH4+·C4H4N10O22−·H2O, O—H⋯N, N—H⋯N, and N—H⋯O hydrogen bonds link the components of the structure into a three-dimensional network. In addition, there is inter­molecular ππ stacking. In all three structures, the central N atom of the nitramide is mainly sp2-hybridized. Bond lengths indicate delocalization of charges on the tetra­zole rings for all three compounds. Compound (II) was found to be a non-merohedral twin and was solved and refined in the major component.

1. Chemical context

Materials which release large amount of energy during chemical transformations are characterized as energetic materials. Inter­est is high in improving energetics to reduce environmental impact and to improve safety and performance (Talawar et al., 2009[Talawar, M. B., Sivabalan, R., Mukundan, T., Muthurajan, H., Sikder, A. K., Gandhe, B. R. & Rao, A. S. (2009). J. Hazard. Mater. 161, 589-607.]). These materials can pose a hazard if they have high sensitivities to friction, heat, electrostatic discharge or impact. Compounds containing both tetra­zole and nitro groups have frequently been used in the development of energetic materials (Klapötke et al., 2009[Klapötke, T. M., Sabaté, C. M. & Stierstorfer, J. (2009). New J. Chem. 33, 136-147.]; Wei et al., 2015[Wei, H., Zhang, J., He, C. & Shreeve, J. M. (2015). Chem. Eur. J. 21, 8607-8612.]). Tetra­zoles have been of special inter­est because of their high nitro­gen content, which lead to high heats of formation and to more environmentally benign decomposition products like N2 (Jaidann et al., 2010[Jaidann, M., Roy, S., Abou-Rachid, H. & Lussier, L.-S. (2010). J. Hazard. Mater. 176, 165-173.]). Nitro groups have been commonly utilized to achieve an optimum oxygen balance (Wu et al., 2014[Wu, Q., Zhu, W. & Xiao, H. (2014). J. Mater. Chem. A, 2, 13006-13015.]). Herein is a discussion of the X-ray crystal structures of three nitro-containing tetra­zole complexes. Structure (I)[link], bis­[(1H-tetra­zol-5-yl)meth­yl]nitramide, is the neutral form, structure (II)[link], tri­amino­guanidinium 5-({[(1H-tetra­zol-5-yl)meth­yl](nitro)­amino}­meth­yl)tetra­zol-1-ide, has one deprotonated tetra­zole ring with a tri­amino­guandidinium counter-ion, and structure (III)[link], di­ammonium bis­[(tetra­zol-1-id-5-yl)meth­yl]nitramide monohydrate, has both tetra­zole rings deprotonated with ammonium counter-ions.

[Scheme 1]

2. Structural commentary

In the mol­ecule of complex (I)[link], two intra­molecular hydrogen bonds, N4—H4⋯O15 and N10—H10⋯O16, both between tetra­zole donors and nitro acceptors are present (Fig. 1[link]). This mol­ecule adopts a chair-like conformation where the tetra­zole rings are trans to one another. Mol­ecule (III)[link] adopts a similar conformation, despite not having any similar intra­molecular hydrogen bonds (Fig. 2[link]). Surprisingly, while structures (I)[link] and (III)[link] are both in a chair conformation, with respect to the tetra­zole rings, structure (II)[link] is bent into a boat where the tetra­zole rings are cis to one another (Fig. 3[link]).

[Figure 1]
Figure 1
The mol­ecular structure of structure (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. (a) Front view, dashed lines indicate intra­molecular hydrogen bonds. (b) Side view, H atoms omitted for clarity.
[Figure 2]
Figure 2
The mol­ecular structure of structure (III)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. (a) Front view. (b) Side view, H atoms, cations, and solvent omitted for clarity.
[Figure 3]
Figure 3
The mol­ecular structure of structure (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. (a) Front view. (b) Side view, H atoms and cation omitted for clarity.

This unusual conformation is likely due to the intra­molecular ππ stacking inter­actions observed between the tetra­zole rings [centroid–centroid distance = 3.4978 (10) Å]. Both tetra­zole rings are nearly planar with an r.m.s. deviation of 0.0007 for the protonated ring and 0.00004 Å for the deprotonated ring.

For all three compounds, the C—N (ranging from 1.321 to 1.338 Å) and N—N (ranging from 1.301 to 1.362 Å) bond lengths for the tetra­zole rings were found to match more closely with bonds of multiple character than of discrete single and double bonds, signifying a delocalized aromatic system (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

In structure (II)[link], the N18—C17, N20—C17, and N22—C17 bond lengths for the tri­amino­guandidinium cation were all found to be relatively equal (maximum difference 0.006 Å), indicating delocalization of the charge over all three branches.

The pyramidality of the amine functionality for the central tertiary amine was examined for all three structures by examining χn, the angle between the Namine—Nnitro vector and the Cmethyl­ene1/Namine/Cmethyl­ene2 plane, described by Allen et al. (1995[Allen, F. H., Bird, C. M., Rowland, R. S., Harris, S. E. & Schwalbe, C. H. (1995). Acta Cryst. B51, 1068-1081.]). Structure (I)[link] has a χn of 13.1 (5)° for vector N2–N1 and plane C11/C5/N1, structure (II)[link] has a χn of 26.11 (18)° for vector N14–N7 and plane C6/N7/C8, and structure (III)[link] has a χn of 6.21 (11)° for vector N7A–N7 and plane C6/N7/C8. This indicated the hybridization of the central nitro­gen atom is mainly sp2 hybridized for all three structures (sp2 χn ≃ 0°, sp3 χn ≃ 60°).

3. Supra­molecular features

The packing and inter­molecular hydrogen bonding vary greatly between the three structures. Structure (I)[link] has four inter­molecular hydrogen bonds (Table 1[link]). The tetra­zole rings of adjacent mol­ecules are linked via N—H⋯N bonds, forming a two-dimensional network parallel to ([\overline{2}]01). These inter­actions cause the tetra­zole rings to lie in the same plane, resulting in the alignment of the tetra­zole rings seen when viewed along the b axis (Fig. 4[link]). Additionally, there is one weak C—H⋯N and one weak C—H⋯O hydrogen bond linking the mol­ecules into a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N2i 0.80 (6) 2.19 (6) 2.957 (5) 160 (4)
N4—H4⋯O15 0.80 (6) 2.45 (5) 2.924 (5) 119 (4)
C6—H6B⋯O15ii 0.99 2.37 3.264 (5) 150
C8—H8B⋯N11iii 0.99 2.44 3.316 (5) 147
N10—H10⋯N13iv 0.87 (1) 1.99 (3) 2.770 (5) 149 (4)
N10—H10⋯O16 0.87 (1) 2.28 (4) 2.796 (4) 118 (4)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z]; (ii) [-x, y-{\script{1\over 2}}, -z+1]; (iii) [-x+1, y-{\script{1\over 2}}, -z+2]; (iv) [-x+1, y+{\script{1\over 2}}, -z+2].
[Figure 4]
Figure 4
Packing diagram for structure (I)[link] viewed along the b axis. Dashed lines indicate inter­molecular hydrogen bonds.

Structure (II)[link] does not have any non-classical inter­molecular hydrogen bonds (Table 2[link]). There are twelve N—H⋯N bonds and three N—H⋯O bonds, with the majority of the inter­actions between the main residue and the tri­amino-guandidinium counter-ion. The additional hydrogen bonds link the mol­ecules into a three-dimensional network. The compound packs into columns of alternating anions and cations along the c axis (Fig. 5[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N10i 0.929 (19) 1.804 (19) 2.713 (2) 165.6 (17)
N1—H1⋯N11i 0.929 (19) 2.673 (19) 3.422 (2) 138.2 (14)
N1—H1⋯O16i 0.929 (19) 2.596 (18) 2.9952 (18) 106.5 (13)
N18—H18⋯O15 0.84 (2) 2.569 (19) 3.1451 (18) 126.4 (16)
N18—H18⋯N21 0.84 (2) 2.292 (19) 2.650 (2) 105.9 (15)
N19—H19A⋯N4 0.92 (2) 2.29 (2) 3.026 (2) 137.3 (17)
N19—H19B⋯N13ii 0.91 (2) 2.54 (2) 3.275 (2) 138.5 (16)
N20—H20⋯N13iii 0.86 (2) 2.09 (2) 2.867 (2) 149.0 (17)
N20—H20⋯N23 0.86 (2) 2.358 (18) 2.660 (2) 100.9 (14)
N21—H21A⋯N11ii 0.89 (2) 2.46 (2) 3.143 (2) 134.4 (16)
N21—H21B⋯O15iv 0.89 (2) 2.31 (2) 3.090 (2) 146.3 (18)
N22—H22⋯N2v 0.86 (2) 2.40 (2) 3.118 (2) 142.3 (17)
N22—H22⋯N19 0.86 (2) 2.325 (19) 2.650 (2) 102.9 (15)
N23—H23A⋯N11vi 0.89 (2) 2.22 (2) 3.087 (2) 166.5 (18)
N23—H23B⋯N3vi 0.92 (2) 2.38 (2) 3.091 (2) 133.9 (17)
Symmetry codes: (i) x+1, y, z; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) x-1, y, z; (v) -x+1, -y+1, -z+1; (vi) -x, -y+1, -z+1.
[Figure 5]
Figure 5
Packing diagram for structure (II)[link] viewed along the a axis. Dashed lined indicate inter­molecular hydrogen bonds.

Structure (III)[link] contains several inter­molecular hydrogen bonds, which also form a three-dimensional network (Table 3[link]). There are seven N—H⋯N bonds between ammonium donors and tetra­zole acceptors, two O—H⋯N bonds between water donors and tetra­zole acceptors, two N—H⋯O bonds between ammonium donors and water acceptors, and one N—H⋯O bond between an ammonium donor and a nitro acceptor. The ions and mol­ecules pack into columns along the b axis (Fig. 6[link]).

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1S—H1SA⋯N13i 0.88 (2) 2.06 (2) 2.9253 (12) 168.0 (18)
O1S—H1SB⋯N3ii 0.83 (2) 2.31 (2) 2.9498 (13) 134.8 (17)
N1A—H1A⋯N12iii 0.859 (16) 2.211 (16) 3.0533 (13) 166.7 (14)
N1A—H1B⋯O16 0.847 (16) 2.388 (16) 3.0079 (13) 130.5 (13)
N1A—H1B⋯N13iv 0.847 (16) 2.540 (15) 3.2862 (14) 147.6 (13)
N1A—H1B⋯N12iv 0.847 (16) 2.585 (15) 3.2472 (14) 136.0 (13)
N2A—H2A⋯O1S 0.880 (16) 2.030 (16) 2.9062 (14) 173.2 (14)
N2A—H2B⋯N1v 0.854 (16) 2.179 (16) 3.0243 (13) 170.3 (14)
N1A—H1C⋯N2v 0.882 (16) 2.107 (16) 2.9654 (12) 164.2 (14)
N2A—H2C⋯O1Svi 0.849 (17) 2.147 (17) 2.9766 (13) 165.2 (14)
N2A—H2D⋯N1 0.896 (16) 2.117 (16) 3.0096 (13) 174.0 (13)
N1A—H1D⋯N10vii 0.906 (16) 2.045 (16) 2.9273 (13) 164.2 (13)
Symmetry codes: (i) -x+1, -y, -z; (ii) x-1, y+1, z; (iii) -x+1, -y, -z+1; (iv) x, y+1, z; (v) -x+1, -y+1, -z; (vi) -x, -y+1, -z; (vii) -x+1, -y+1, -z+1.
[Figure 6]
Figure 6
Packing diagram for structure (III)[link] viewed along the b axis. Dashed lined indicate inter­molecular hydrogen bonds.

Although compounds (I)[link] and (III)[link] do not exhibit any intra­molecular ππ stacking, inter­molecular ππ stacking is present between tetra­zole rings of adjacent mol­ecules. Compound (I)[link] displays head-to-tail stacking inter­actions with a centroid–centroid distance of 3.627 (2) Å. Compound (II)[link] displays head-to-head and tail-to-tail stacking with a centroid–centroid distance of 3.8472 (10) Å for plane N1/N2/N3/N4/C5 to N1/N2/N3/N4/C5 and 4.0025 (8) Å for plane C9/N10/N11/N12/N13 to C9/N10/N11/N12/N13. There is no inter­molecular ππ stacking for compound (II)[link], which contains the larger counter-ion, tri­amino­guandidinium.

The neutral complex, compound (I)[link], has a density of 1.825 g cm−3 (173 K). This is similar to the density, determined by X-ray crystallography, of the well known energetics RDX (α-hexa­hydro-1,3,5-tri­nitro-1,3,5-triazine) and HMX (1,3,5,7-tetra- nitro-1,3,5,7-tetra­aza­cyclo­octa­ne) at 1.794 g cm−3 (298 K) and 1.948 g cm−3 (120 K) respectively (Zhurov et al., 2011[Zhurov, V. V., Zhurova, E. A., Stash, A. I. & Pinkerton, A. A. (2011). Acta Cryst. A67, 160-173.]). The ionic compounds have much lower densities. The density of compound (II)[link] is 1.611 g cm−3 (293 K), and the density of compound (III)[link] is 1.579 g cm−3 (296 K).

4. Database survey

A search of the Cambridge Structural Database (version 5.36, last updated May 2015; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found 392 complexes that contained both tetra­zole and nitro groups. The most similar compounds were 5-nitro-2H-tetra­zole (Klapötke et al., 2009[Klapötke, T. M., Sabaté, C. M. & Stierstorfer, J. (2009). New J. Chem. 33, 136-147.]), ammonium 5-nitro­tetra­zolate (Klapötke et al., 2008[Klapötke, T. M., Mayer, P., Sabaté, C. M., Welch, J. M. & Wiegand, N. (2008). Inorg. Chem. 47, 6014-6027.]), and tri­amino­guanidinium 5-nitro­tetra­zolate (Klapötke et al., 2008[Klapötke, T. M., Mayer, P., Sabaté, C. M., Welch, J. M. & Wiegand, N. (2008). Inorg. Chem. 47, 6014-6027.]). A search for tri­amino­guandidinium containing compounds found 47 hits. The compounds from the CSD had similar bond lengths and angles to the tri­amino­guandidinium cation in complex (II)[link]. The average difference in C—N bond lengths for the tri­amino­guandidinium complexes in the CSD was found to be 0.015 Å, indicating a high level of charge delocalization, similar to that seen in complex (II)[link].

5. Synthesis and crystallization

Compound (I)[link]:

A 100 ml round-bottom flask was charged with N,N-bis(cyano­meth­yl)nitramide (2.5 g, 18 mmol), zinc bromide (3.9 g, 17 mmol), 30 ml water, and a magnetic stirbar. The reaction was heated to 323 K with stirring. Sodium azide (2.5 g, 38 mmol) was dissolved in 30 ml water and added to the heated reaction. A reflux condenser was fitted to the flask and the reaction was heated to 363 K for 1 h causing a gradual color change to light brown and the formation of a precipitate. The reaction was allowed to cool to room temperature, then 37% HCl (5 ml) was added and the mixture was allowed to stir for 30 min. The product was collected by vacuum filtration using a Buchner funnel and recrystallized from hot water. Yield 95%, 4 g. Melting point 475–477 K (dec.). CHN: Expected: C, 21.24; H, 2.67; N, 61.93. Found: C, 21.82(0.08); H, 2.96(0.08); N, 62.20(0.30). 1H NMR (DMSO-d6): 4.15 (2, s), 5.49 (4, s) ppm. 13C NMR (DMSO-d6): 40.33, 152.74 ppm. IR: 637, 685, 765, 875, 933, 1042, 1088, 1111, 1246, 1284, 1408, 1481, 1524, 1557, 2864, 3022 cm−1.

Compound (II)[link]:

A 50 ml round-bottom flask was charged with a stir bar, barium hydroxide octa­hydrate (3.2 g, 10 mmol) and 20 mmol water. The base was stirred until fully dissolved. Compound (I)[link] (4.5 g, 20 mmol) was added to the basic solution, dissolved, and the mixture was stirred 30 min as the color darkened to brown. The brown mixture was filtered to remove insoluble material, the filtrate was returned to the 50 ml round-bottom flask and stirred. Tri­amino­guanidinium sulfate (3.06 g, 10 mmol) was added to the stirring solution, causing immediate precipitation of barium sulfate. The mixture was stirred for 30 min and then allowed to stand for 10 min. Barium sulfate was removed by Buchner filtration and the filtrate was rotovapped until a precipitate formed. After isolating the product by filtration, it was recrystallized from water/ethanol solution. Yield 34%, 1.35 g. Melting point 428–430 K (dec.). 1H NMR (DMSO-d6): 4.65 (8, s), 5.20 (4, s), 8.6 (1, s) ppm. 13C NMR (DMSO-d6): 46.95, 157.60, 159.64 ppm. IR: 637, 685, 765, 875, 933, 1042, 1088, 1111, 1246, 1284, 1408, 1481, 1524, 1557, 2864, 3022 cm−1.

Compound (III)[link]:

A 50 ml round-bottom flask was charged with (I)[link] (2.5 g, 11 mmol), 10 ml water, and a magnetic stir bar and then stirred. An ammonium hydroxide solution (30%, 3 ml) was added to the reaction. After stirring for 1 h at 298 K, 10 ml ethanol was added and the resulting precipitate was collected by Buchner filtration. The product was recrystallized from water/methanol solution. Yield 80%, 2.3 g. Melting point 389–393 K (dec.). 1H NMR (DMSO-d6): 5.13 (4, s), 3.70 (broad) ppm. 13C NMR (DMSO-d6): 40.05; 155.80 ppm. IR: 2908; 2149; 1869; 1844; 1717; 1700; 1684; 1676; 1653; 1636; 1617; 1540; 1521; 1456; 1419; 1364; 1270; 1209; 1159; 1140; 1113; 1076; 920; 877; 809; 706; 612 cm−1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The methyl­ene H atoms were positioned geometrically and refined using a riding model, with C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C). All other H atoms were located in a difference Fourier map using. Compound (II)[link] was found to be a non-merohedral twin and was solved and refined in the major component. The N10—H10 bond length in structure (I)[link] was restrained.

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C4H6N10O2 CH9N6+·C4H5N10O2 2NH4+·C4H4N10O22−·H2O
Mr 226.19 330.32 278.27
Crystal system, space group Monoclinic, P21 Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 173 100 296
a, b, c (Å) 6.3640 (17), 9.627 (3), 6.8627 (18) 6.5312 (11), 12.682 (2), 16.183 (3) 7.5893 (11), 7.6077 (11), 11.2319 (15)
α, β, γ (°) 90, 101.805 (4), 90 90, 97.118 (3), 90 85.564 (4), 85.555 (4), 65.007 (4)
V3) 411.57 (19) 1330.0 (4) 585.29 (14)
Z 2 4 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.15 0.13 0.13
Crystal size (mm) 0.36 × 0.32 × 0.01 0.52 × 0.06 × 0.02 0.75 × 0.63 × 0.24
 
Data collection
Diffractometer Bruker SMART APEXII CCD Bruker SMART APEXII CCD Bruker SMART APEXII CCD
Absorption correction Multi-scan (TWINABS; Bruker, 2008[Bruker (2008). APEX2, SADABS, SAINT, and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS, SAINT, and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS, SAINT, and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.615, 0.745 0.674, 0.745 0.687, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 889, 889, 835 11821, 2733, 2141 38379, 3178, 3000
Rint 0.038 0.037 0.057
(sin θ/λ)max−1) 0.625 0.628 0.688
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.102, 1.14 0.037, 0.093, 1.00 0.036, 0.106, 1.12
No. of reflections 889 2733 3178
No. of parameters 151 238 202
No. of restraints 2 0 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.32 0.23, −0.25 0.29, −0.27
Computer programs: APEX2, SAINT and XPREP (Bruker, 2008[Bruker (2008). APEX2, SADABS, SAINT, and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) within WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all compounds, data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: SAINT (Bruker, 2008) and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) within WinGX (Farrugia, 2012); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

(I) Bis[(1H-tetrazol-5-yl)methyl]nitramide top
Crystal data top
C4H6N10O2F(000) = 232
Mr = 226.19Dx = 1.825 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 6.3640 (17) ÅCell parameters from 2717 reflections
b = 9.627 (3) Åθ = 3.0–26.2°
c = 6.8627 (18) ŵ = 0.15 mm1
β = 101.805 (4)°T = 173 K
V = 411.57 (19) Å3Thin plate, colorless
Z = 20.36 × 0.32 × 0.01 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
889 independent reflections
Radiation source: fine focus sealed tube835 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan
(TWINABS; Bruker, 2008)
h = 77
Tmin = 0.615, Tmax = 0.745k = 012
889 measured reflectionsl = 08
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0513P)2 + 0.4169P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
889 reflectionsΔρmax = 0.25 e Å3
151 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0174 (5)0.3550 (3)0.2473 (5)0.0132 (7)
N20.0013 (5)0.3439 (4)0.0467 (5)0.0133 (7)
N30.0000 (5)0.4659 (4)0.0356 (5)0.0124 (7)
N40.0208 (5)0.5581 (4)0.1139 (5)0.0117 (7)
H40.028 (7)0.640 (7)0.099 (6)0.014*
C50.0317 (6)0.4901 (4)0.2851 (5)0.0108 (7)
C60.0466 (6)0.5533 (4)0.4880 (5)0.0125 (7)
H6A0.05420.63260.47690.015*
H6B0.00090.48340.57680.015*
N70.2620 (5)0.6017 (3)0.5783 (5)0.0122 (7)
C80.4251 (6)0.5139 (4)0.6986 (5)0.0129 (8)
H8A0.55730.51780.64380.015*
H8B0.37380.41650.68890.015*
C90.4788 (5)0.5559 (5)0.9148 (5)0.0113 (7)
N100.5184 (5)0.6848 (3)0.9857 (5)0.0118 (7)
H100.510 (7)0.764 (3)0.924 (6)0.014*
N110.5665 (5)0.6792 (3)1.1860 (5)0.0128 (7)
N120.5574 (5)0.5489 (4)1.2341 (4)0.0127 (7)
N130.5023 (5)0.4701 (4)1.0666 (4)0.0110 (7)
N140.3273 (5)0.7226 (3)0.5122 (4)0.0112 (7)
O150.2034 (4)0.7844 (3)0.3794 (4)0.0142 (6)
O160.5086 (4)0.7636 (3)0.5919 (4)0.0154 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0148 (14)0.0102 (17)0.0139 (15)0.0015 (13)0.0011 (12)0.0015 (13)
N20.0141 (15)0.0093 (18)0.0164 (17)0.0004 (13)0.0029 (12)0.0010 (13)
N30.0141 (14)0.0082 (17)0.0144 (16)0.0017 (13)0.0017 (12)0.0040 (13)
N40.0139 (15)0.0074 (16)0.0135 (15)0.0021 (13)0.0021 (11)0.0019 (14)
C50.0104 (16)0.0071 (18)0.0139 (17)0.0023 (14)0.0003 (13)0.0004 (15)
C60.0139 (18)0.0113 (18)0.0122 (16)0.0044 (16)0.0020 (13)0.0004 (16)
N70.0152 (16)0.0061 (15)0.0142 (15)0.0045 (13)0.0003 (12)0.0008 (13)
C80.022 (2)0.0062 (18)0.0093 (16)0.0041 (14)0.0013 (14)0.0004 (13)
C90.0091 (16)0.0115 (18)0.0130 (17)0.0008 (15)0.0015 (13)0.0036 (16)
N100.0171 (16)0.0060 (17)0.0131 (15)0.0011 (13)0.0049 (12)0.0014 (13)
N110.0155 (16)0.0101 (17)0.0122 (14)0.0020 (13)0.0013 (11)0.0001 (13)
N120.0136 (15)0.0112 (15)0.0131 (15)0.0003 (14)0.0019 (11)0.0003 (15)
N130.0131 (15)0.0079 (18)0.0112 (15)0.0010 (13)0.0007 (11)0.0005 (13)
N140.0147 (15)0.0078 (15)0.0115 (14)0.0016 (12)0.0037 (12)0.0003 (12)
O150.0182 (13)0.0099 (13)0.0136 (12)0.0031 (12)0.0012 (10)0.0029 (11)
O160.0165 (13)0.0148 (14)0.0144 (12)0.0052 (10)0.0021 (10)0.0007 (11)
Geometric parameters (Å, º) top
N1—C51.326 (5)C8—C91.508 (5)
N1—N21.361 (4)C8—H8A0.9900
N2—N31.304 (5)C8—H8B0.9900
N3—N41.343 (5)C9—N131.314 (5)
N4—C51.334 (5)C9—N101.338 (5)
N4—H40.80 (6)N10—N111.347 (4)
C5—C61.505 (5)N10—H100.867 (11)
C6—N71.460 (5)N11—N121.301 (5)
C6—H6A0.9900N12—N131.362 (5)
C6—H6B0.9900N14—O151.230 (4)
N7—N141.346 (4)N14—O161.236 (4)
N7—C81.457 (5)
C5—N1—N2105.2 (3)N7—C8—C9113.2 (3)
N3—N2—N1111.1 (3)N7—C8—H8A108.9
N2—N3—N4105.8 (3)C9—C8—H8A108.9
C5—N4—N3109.1 (4)N7—C8—H8B108.9
C5—N4—H4127 (3)C9—C8—H8B108.9
N3—N4—H4124 (3)H8A—C8—H8B107.8
N1—C5—N4108.7 (4)N13—C9—N10108.2 (3)
N1—C5—C6124.5 (3)N13—C9—C8125.3 (4)
N4—C5—C6126.7 (3)N10—C9—C8126.5 (4)
N7—C6—C5113.4 (3)C9—N10—N11108.7 (3)
N7—C6—H6A108.9C9—N10—H10130 (3)
C5—C6—H6A108.9N11—N10—H10121 (3)
N7—C6—H6B108.9N12—N11—N10106.6 (3)
C5—C6—H6B108.9N11—N12—N13109.9 (3)
H6A—C6—H6B107.7C9—N13—N12106.7 (3)
N14—N7—C8117.4 (3)O15—N14—O16124.9 (3)
N14—N7—C6117.4 (3)O15—N14—N7118.2 (3)
C8—N7—C6123.6 (3)O16—N14—N7116.9 (3)
C5—N1—N2—N30.4 (4)N7—C8—C9—N13135.9 (4)
N1—N2—N3—N40.3 (4)N7—C8—C9—N1046.8 (5)
N2—N3—N4—C50.0 (4)N13—C9—N10—N110.4 (4)
N2—N1—C5—N40.3 (4)C8—C9—N10—N11178.1 (3)
N2—N1—C5—C6177.6 (3)C9—N10—N11—N120.5 (4)
N3—N4—C5—N10.2 (4)N10—N11—N12—N130.4 (4)
N3—N4—C5—C6177.4 (3)N10—C9—N13—N120.1 (4)
N1—C5—C6—N7104.7 (4)C8—C9—N13—N12177.8 (3)
N4—C5—C6—N778.6 (5)N11—N12—N13—C90.2 (4)
C5—C6—N7—N1477.3 (4)C8—N7—N14—O15165.5 (3)
C5—C6—N7—C887.9 (4)C6—N7—N14—O150.6 (5)
N14—N7—C8—C982.6 (4)C8—N7—N14—O1615.0 (4)
C6—N7—C8—C9112.2 (4)C6—N7—N14—O16178.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N2i0.80 (6)2.19 (6)2.957 (5)160 (4)
N4—H4···O150.80 (6)2.45 (5)2.924 (5)119 (4)
C6—H6B···O15ii0.992.373.264 (5)150
C8—H8B···N11iii0.992.443.316 (5)147
N10—H10···N13iv0.87 (1)1.99 (3)2.770 (5)149 (4)
N10—H10···O160.87 (1)2.28 (4)2.796 (4)118 (4)
Symmetry codes: (i) x, y+1/2, z; (ii) x, y1/2, z+1; (iii) x+1, y1/2, z+2; (iv) x+1, y+1/2, z+2.
(II) Triaminoguanidinium 5-({[(1H-tetrazol-5-yl)methyl](nitro)amino}methyl)tetrazol-1-ide top
Crystal data top
CH9N6+·C4H5N10O2F(000) = 688
Mr = 330.32Dx = 1.650 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.5312 (11) ÅCell parameters from 2664 reflections
b = 12.682 (2) Åθ = 3.0–25.8°
c = 16.183 (3) ŵ = 0.13 mm1
β = 97.118 (3)°T = 100 K
V = 1330.0 (4) Å3Thin plate, colorless
Z = 40.52 × 0.06 × 0.02 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2733 independent reflections
Radiation source: fine focus sealed tube2141 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 26.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 88
Tmin = 0.674, Tmax = 0.745k = 1515
11821 measured reflectionsl = 2017
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.044P)2 + 0.6423P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2733 reflectionsΔρmax = 0.23 e Å3
238 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8295 (2)0.71404 (10)0.35827 (9)0.0141 (3)
H10.937 (3)0.7311 (14)0.3283 (12)0.017*
N20.8025 (2)0.61115 (11)0.37468 (9)0.0181 (3)
N30.6329 (2)0.60429 (11)0.40878 (9)0.0178 (3)
N40.5480 (2)0.70155 (10)0.41515 (9)0.0162 (3)
C50.6732 (2)0.76797 (12)0.38346 (10)0.0128 (3)
C60.6426 (2)0.88578 (12)0.37832 (11)0.0142 (3)
H6A0.6970880.9180490.4322990.017*
H6B0.7215870.9147930.3350950.017*
N70.42480 (19)0.91361 (10)0.35817 (9)0.0132 (3)
C80.3282 (2)0.90418 (12)0.27155 (10)0.0151 (3)
H8A0.4162010.9396480.2343790.018*
H8B0.1928150.9403170.2654720.018*
C90.2981 (2)0.79121 (12)0.24561 (10)0.0128 (3)
N100.1481 (2)0.72878 (10)0.26607 (9)0.0152 (3)
N110.1891 (2)0.63274 (11)0.23517 (9)0.0164 (3)
N120.3573 (2)0.63861 (11)0.19785 (9)0.0176 (3)
N130.4297 (2)0.73864 (11)0.20361 (9)0.0165 (3)
N140.3000 (2)0.89963 (10)0.41915 (9)0.0140 (3)
O150.38074 (18)0.89379 (9)0.49195 (7)0.0185 (3)
O160.11190 (17)0.89812 (9)0.39797 (8)0.0189 (3)
C170.0806 (2)0.68873 (12)0.58804 (10)0.0133 (3)
N180.0711 (2)0.72677 (11)0.54903 (9)0.0170 (3)
H180.086 (3)0.7929 (16)0.5481 (12)0.020*
N190.2228 (2)0.65585 (12)0.52819 (11)0.0209 (3)
H19A0.255 (3)0.6740 (16)0.4767 (14)0.027*
H19B0.337 (3)0.6698 (16)0.5647 (14)0.027*
N200.2213 (2)0.75296 (10)0.61240 (9)0.0145 (3)
H200.311 (3)0.7310 (14)0.6435 (12)0.017*
N210.1977 (2)0.86203 (11)0.59874 (10)0.0181 (3)
H21A0.139 (3)0.8920 (16)0.6454 (14)0.024*
H21B0.324 (3)0.8875 (15)0.5871 (13)0.024*
N220.0899 (2)0.58573 (11)0.60267 (9)0.0160 (3)
H220.002 (3)0.5432 (15)0.5856 (12)0.019*
N230.2648 (2)0.54700 (12)0.63607 (11)0.0212 (3)
H23A0.221 (3)0.4982 (17)0.6733 (14)0.028*
H23B0.346 (3)0.5116 (16)0.5941 (14)0.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0119 (6)0.0132 (7)0.0177 (8)0.0008 (5)0.0036 (6)0.0010 (6)
N20.0145 (7)0.0147 (7)0.0253 (9)0.0003 (5)0.0024 (6)0.0011 (6)
N30.0144 (7)0.0140 (7)0.0249 (8)0.0012 (5)0.0026 (6)0.0029 (6)
N40.0144 (7)0.0144 (7)0.0202 (8)0.0007 (5)0.0036 (6)0.0001 (6)
C50.0110 (7)0.0148 (8)0.0122 (8)0.0010 (6)0.0002 (6)0.0010 (6)
C60.0097 (7)0.0134 (8)0.0195 (9)0.0002 (6)0.0017 (6)0.0005 (7)
N70.0112 (6)0.0136 (7)0.0151 (7)0.0000 (5)0.0031 (5)0.0009 (5)
C80.0158 (8)0.0152 (8)0.0140 (9)0.0002 (6)0.0012 (6)0.0019 (6)
C90.0130 (7)0.0153 (8)0.0095 (8)0.0007 (6)0.0015 (6)0.0007 (6)
N100.0145 (7)0.0145 (7)0.0163 (8)0.0004 (5)0.0010 (6)0.0007 (6)
N110.0171 (7)0.0158 (7)0.0161 (8)0.0004 (5)0.0015 (6)0.0013 (6)
N120.0167 (7)0.0168 (7)0.0196 (8)0.0012 (5)0.0038 (6)0.0020 (6)
N130.0168 (7)0.0169 (7)0.0159 (8)0.0007 (6)0.0029 (6)0.0002 (6)
N140.0144 (7)0.0103 (6)0.0180 (8)0.0004 (5)0.0042 (6)0.0007 (5)
O150.0210 (6)0.0207 (6)0.0135 (6)0.0011 (5)0.0013 (5)0.0004 (5)
O160.0098 (6)0.0205 (6)0.0267 (7)0.0007 (4)0.0032 (5)0.0027 (5)
C170.0137 (8)0.0148 (8)0.0104 (8)0.0011 (6)0.0021 (6)0.0000 (6)
N180.0167 (7)0.0125 (7)0.0233 (8)0.0000 (5)0.0082 (6)0.0006 (6)
N190.0184 (8)0.0223 (8)0.0240 (9)0.0020 (6)0.0104 (7)0.0017 (7)
N200.0141 (7)0.0115 (7)0.0186 (8)0.0001 (5)0.0049 (6)0.0020 (6)
N210.0183 (7)0.0113 (7)0.0237 (9)0.0015 (6)0.0016 (6)0.0005 (6)
N220.0142 (7)0.0127 (7)0.0226 (8)0.0013 (5)0.0081 (6)0.0014 (6)
N230.0197 (8)0.0147 (7)0.0312 (10)0.0033 (6)0.0112 (7)0.0024 (7)
Geometric parameters (Å, º) top
N1—C51.334 (2)N12—N131.3530 (19)
N1—N21.3475 (19)N14—O151.2319 (18)
N1—H10.929 (19)N14—O161.2337 (17)
N2—N31.300 (2)C17—N201.324 (2)
N3—N41.3614 (19)C17—N181.330 (2)
N4—C51.321 (2)C17—N221.330 (2)
C5—C61.508 (2)N18—N191.410 (2)
C6—N71.463 (2)N18—H180.84 (2)
C6—H6A0.9900N19—H19A0.92 (2)
C6—H6B0.9900N19—H19B0.91 (2)
N7—N141.3673 (19)N20—N211.4123 (19)
N7—C81.469 (2)N20—H200.86 (2)
C8—C91.499 (2)N21—H21A0.89 (2)
C8—H8A0.9900N21—H21B0.89 (2)
C8—H8B0.9900N22—N231.4112 (19)
C9—N101.333 (2)N22—H220.86 (2)
C9—N131.338 (2)N23—H23A0.89 (2)
N10—N111.3558 (19)N23—H23B0.92 (2)
N11—N121.3196 (19)
C5—N1—N2108.22 (13)N12—N11—N10109.37 (13)
C5—N1—H1134.4 (11)N11—N12—N13108.97 (13)
N2—N1—H1117.0 (11)C9—N13—N12105.14 (13)
N3—N2—N1106.71 (13)O15—N14—O16123.94 (14)
N2—N3—N4110.36 (13)O15—N14—N7118.36 (13)
C5—N4—N3105.71 (13)O16—N14—N7117.62 (14)
N4—C5—N1109.01 (14)N20—C17—N18120.25 (15)
N4—C5—C6124.68 (14)N20—C17—N22120.16 (15)
N1—C5—C6126.31 (14)N18—C17—N22119.59 (15)
N7—C6—C5111.70 (12)C17—N18—N19117.99 (14)
N7—C6—H6A109.3C17—N18—H18117.6 (13)
C5—C6—H6A109.3N19—N18—H18122.9 (13)
N7—C6—H6B109.3N18—N19—H19A107.8 (13)
C5—C6—H6B109.3N18—N19—H19B105.4 (13)
H6A—C6—H6B107.9H19A—N19—H19B106.1 (18)
N14—N7—C6117.27 (13)C17—N20—N21117.55 (14)
N14—N7—C8117.01 (13)C17—N20—H20121.3 (12)
C6—N7—C8118.94 (13)N21—N20—H20120.1 (12)
N7—C8—C9111.78 (13)N20—N21—H21A109.3 (13)
N7—C8—H8A109.3N20—N21—H21B105.9 (13)
C9—C8—H8A109.3H21A—N21—H21B108.4 (19)
N7—C8—H8B109.3C17—N22—N23117.82 (14)
C9—C8—H8B109.3C17—N22—H22120.9 (13)
H8A—C8—H8B107.9N23—N22—H22120.6 (13)
N10—C9—N13111.61 (14)N22—N23—H23A107.1 (13)
N10—C9—C8124.97 (14)N22—N23—H23B107.8 (13)
N13—C9—C8123.25 (14)H23A—N23—H23B105.5 (19)
C9—N10—N11104.91 (13)
C5—N1—N2—N30.17 (18)C8—C9—N10—N11175.43 (14)
N1—N2—N3—N40.10 (18)C9—N10—N11—N120.01 (17)
N2—N3—N4—C50.01 (18)N10—N11—N12—N130.01 (18)
N3—N4—C5—N10.11 (18)N10—C9—N13—N120.00 (18)
N3—N4—C5—C6179.14 (15)C8—C9—N13—N12175.53 (14)
N2—N1—C5—N40.18 (19)N11—N12—N13—C90.00 (17)
N2—N1—C5—C6179.06 (15)C6—N7—N14—O1520.04 (19)
N4—C5—C6—N738.1 (2)C8—N7—N14—O15170.96 (13)
N1—C5—C6—N7142.82 (16)C6—N7—N14—O16162.96 (13)
C5—C6—N7—N1472.31 (18)C8—N7—N14—O1612.05 (19)
C5—C6—N7—C878.03 (17)N20—C17—N18—N19176.83 (15)
N14—N7—C8—C978.88 (16)N22—C17—N18—N193.0 (2)
C6—N7—C8—C971.53 (17)N18—C17—N20—N212.8 (2)
N7—C8—C9—N1077.91 (19)N22—C17—N20—N21177.00 (15)
N7—C8—C9—N1397.02 (18)N20—C17—N22—N236.8 (2)
N13—C9—N10—N110.01 (18)N18—C17—N22—N23173.34 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N10i0.929 (19)1.804 (19)2.713 (2)165.6 (17)
N1—H1···N11i0.929 (19)2.673 (19)3.422 (2)138.2 (14)
N1—H1···O16i0.929 (19)2.596 (18)2.9952 (18)106.5 (13)
N18—H18···O150.84 (2)2.569 (19)3.1451 (18)126.4 (16)
N18—H18···N210.84 (2)2.292 (19)2.650 (2)105.9 (15)
N19—H19A···N40.92 (2)2.29 (2)3.026 (2)137.3 (17)
N19—H19B···N13ii0.91 (2)2.54 (2)3.275 (2)138.5 (16)
N20—H20···N13iii0.86 (2)2.09 (2)2.867 (2)149.0 (17)
N20—H20···N230.86 (2)2.358 (18)2.660 (2)100.9 (14)
N21—H21A···N11ii0.89 (2)2.46 (2)3.143 (2)134.4 (16)
N21—H21B···O15iv0.89 (2)2.31 (2)3.090 (2)146.3 (18)
N22—H22···N2v0.86 (2)2.40 (2)3.118 (2)142.3 (17)
N22—H22···N190.86 (2)2.325 (19)2.650 (2)102.9 (15)
N23—H23A···N11vi0.89 (2)2.22 (2)3.087 (2)166.5 (18)
N23—H23B···N3vi0.92 (2)2.38 (2)3.091 (2)133.9 (17)
Symmetry codes: (i) x+1, y, z; (ii) x, y+3/2, z+1/2; (iii) x1, y+3/2, z+1/2; (iv) x1, y, z; (v) x+1, y+1, z+1; (vi) x, y+1, z+1.
(III) Diammonium bis[(tetrazol-1-id-5-yl)methyl]nitramide monohydrate top
Crystal data top
2NH4+·C4H4N10O22·H2OZ = 2
Mr = 278.27F(000) = 292
Triclinic, P1Dx = 1.579 Mg m3
a = 7.5893 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.6077 (11) ÅCell parameters from 9690 reflections
c = 11.2319 (15) Åθ = 3.0–29.3°
α = 85.564 (4)°µ = 0.13 mm1
β = 85.555 (4)°T = 296 K
γ = 65.007 (4)°Irregular, colorless
V = 585.29 (14) Å30.75 × 0.63 × 0.24 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3178 independent reflections
Radiation source: fine-focus sealed tube3000 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω and φ scansθmax = 29.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.687, Tmax = 0.746k = 1010
38379 measured reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.0988P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
3178 reflectionsΔρmax = 0.29 e Å3
202 parametersΔρmin = 0.27 e Å3
Special details top

Experimental. Output from intergration and final cell refinement: A B C Alpha Beta Gamma Vol 7.59208 7.60543 11.22509 85.5941 85.5165 64.9686 584.79 0.00008 0.00008 0.00012 0.0004 0.0004 0.0004 0.01 Corrected for goodness of fit: 0.00040 0.00041 0.00058 0.0020 0.0022 0.0019 0.07

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.63637 (12)0.17356 (11)0.03243 (7)0.02642 (17)
N20.74077 (12)0.11482 (12)0.13592 (7)0.02770 (18)
N30.86114 (14)0.06786 (13)0.12320 (8)0.0330 (2)
N40.84018 (14)0.13474 (12)0.01067 (8)0.03243 (19)
C50.70207 (12)0.01714 (12)0.04216 (7)0.02088 (17)
C60.62734 (14)0.01115 (14)0.16882 (8)0.02520 (18)
H6A0.48870.09290.17390.030*
H6B0.64590.12070.19230.030*
N70.72326 (12)0.07574 (11)0.25251 (7)0.02516 (17)
C80.88186 (13)0.06259 (14)0.32289 (8)0.02571 (18)
H8A0.95280.00410.35230.031*
H8B0.97120.16260.27170.031*
C90.81243 (12)0.15606 (13)0.42648 (8)0.02285 (17)
N100.76291 (15)0.08633 (13)0.53514 (7)0.0334 (2)
N110.70900 (16)0.21454 (14)0.59893 (8)0.0382 (2)
N120.72763 (14)0.35383 (13)0.53058 (8)0.0343 (2)
N130.79270 (14)0.32036 (13)0.41982 (8)0.03096 (19)
N140.65021 (12)0.26410 (12)0.27363 (7)0.02663 (17)
O150.52737 (13)0.37956 (11)0.20606 (7)0.03769 (19)
O160.71072 (13)0.31354 (12)0.35853 (7)0.03772 (19)
O1S0.02418 (14)0.53216 (13)0.20467 (7)0.0398 (2)
H1SA0.086 (3)0.482 (3)0.2719 (18)0.060*
H1SB0.028 (3)0.650 (3)0.2242 (18)0.060*
N1A0.36192 (14)0.69706 (13)0.37735 (8)0.02941 (18)
H1A0.317 (2)0.615 (2)0.4054 (13)0.035*
H1B0.484 (2)0.643 (2)0.3830 (13)0.035*
H1C0.336 (2)0.730 (2)0.3016 (14)0.035*
H1D0.318 (2)0.807 (2)0.4177 (13)0.035*
N2A0.24096 (13)0.50259 (13)0.00386 (9)0.03122 (19)
H2A0.184 (2)0.504 (2)0.0618 (14)0.037*
H2B0.267 (2)0.601 (2)0.0049 (14)0.037*
H2C0.181 (2)0.493 (2)0.0693 (15)0.037*
H2D0.356 (2)0.399 (2)0.0029 (13)0.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0331 (4)0.0229 (4)0.0194 (3)0.0083 (3)0.0005 (3)0.0001 (3)
N20.0362 (4)0.0283 (4)0.0188 (3)0.0141 (3)0.0003 (3)0.0004 (3)
N30.0396 (4)0.0297 (4)0.0238 (4)0.0096 (3)0.0059 (3)0.0034 (3)
N40.0401 (4)0.0235 (4)0.0250 (4)0.0057 (3)0.0027 (3)0.0005 (3)
C50.0251 (4)0.0211 (4)0.0183 (4)0.0112 (3)0.0024 (3)0.0011 (3)
C60.0331 (4)0.0290 (4)0.0186 (4)0.0181 (4)0.0001 (3)0.0009 (3)
N70.0336 (4)0.0236 (4)0.0188 (3)0.0122 (3)0.0026 (3)0.0015 (3)
C80.0245 (4)0.0294 (4)0.0217 (4)0.0103 (3)0.0015 (3)0.0005 (3)
C90.0242 (4)0.0232 (4)0.0196 (4)0.0082 (3)0.0023 (3)0.0009 (3)
N100.0513 (5)0.0298 (4)0.0210 (4)0.0194 (4)0.0034 (3)0.0031 (3)
N110.0540 (6)0.0349 (5)0.0256 (4)0.0203 (4)0.0061 (4)0.0008 (3)
N120.0430 (5)0.0329 (4)0.0302 (4)0.0197 (4)0.0012 (3)0.0038 (3)
N130.0420 (5)0.0293 (4)0.0251 (4)0.0181 (3)0.0024 (3)0.0016 (3)
N140.0365 (4)0.0257 (4)0.0188 (3)0.0147 (3)0.0027 (3)0.0019 (3)
O150.0502 (5)0.0281 (4)0.0272 (4)0.0092 (3)0.0055 (3)0.0028 (3)
O160.0533 (5)0.0357 (4)0.0295 (4)0.0222 (4)0.0043 (3)0.0086 (3)
O1S0.0512 (5)0.0321 (4)0.0275 (4)0.0099 (3)0.0021 (3)0.0005 (3)
N1A0.0372 (4)0.0266 (4)0.0222 (4)0.0108 (3)0.0040 (3)0.0008 (3)
N2A0.0307 (4)0.0263 (4)0.0381 (5)0.0132 (3)0.0010 (4)0.0022 (3)
Geometric parameters (Å, º) top
N1—C51.3325 (11)N10—N111.3475 (13)
N1—N21.3480 (11)N11—N121.3095 (14)
N2—N31.3051 (12)N12—N131.3485 (12)
N3—N41.3488 (12)N14—O161.2373 (11)
N4—C51.3312 (12)N14—O151.2375 (11)
C5—C61.4948 (12)O1S—H1SA0.88 (2)
C6—N71.4611 (12)O1S—H1SB0.83 (2)
C6—H6A0.9700N1A—H1A0.859 (16)
C6—H6B0.9700N1A—H1B0.847 (16)
N7—N141.3334 (11)N1A—H1C0.882 (16)
N7—C81.4593 (12)N1A—H1D0.906 (16)
C8—C91.4935 (12)N2A—H2A0.880 (16)
C8—H8A0.9700N2A—H2B0.854 (16)
C8—H8B0.9700N2A—H2C0.849 (17)
C9—N131.3284 (12)N2A—H2D0.896 (16)
C9—N101.3315 (12)
C5—N1—N2104.67 (7)N13—C9—C8123.16 (8)
N3—N2—N1109.51 (7)N10—C9—C8124.72 (8)
N2—N3—N4109.43 (8)C9—N10—N11104.58 (8)
C5—N4—N3104.71 (8)N12—N11—N10109.26 (8)
N4—C5—N1111.67 (8)N11—N12—N13109.62 (8)
N4—C5—C6124.00 (8)C9—N13—N12104.41 (8)
N1—C5—C6124.32 (8)O16—N14—O15123.83 (8)
N7—C6—C5113.19 (7)O16—N14—N7118.24 (8)
N7—C6—H6A108.9O15—N14—N7117.93 (8)
C5—C6—H6A108.9H1SA—O1S—H1SB102.1 (18)
N7—C6—H6B108.9H1A—N1A—H1B107.3 (14)
C5—C6—H6B108.9H1A—N1A—H1C111.5 (14)
H6A—C6—H6B107.8H1B—N1A—H1C108.9 (14)
N14—N7—C8119.43 (8)H1A—N1A—H1D114.4 (14)
N14—N7—C6118.69 (8)H1B—N1A—H1D106.7 (14)
C8—N7—C6121.50 (8)H1C—N1A—H1D107.9 (13)
N7—C8—C9112.80 (7)H2A—N2A—H2B111.5 (14)
N7—C8—H8A109.0H2A—N2A—H2C116.2 (14)
C9—C8—H8A109.0H2B—N2A—H2C108.9 (15)
N7—C8—H8B109.0H2A—N2A—H2D103.5 (13)
C9—C8—H8B109.0H2B—N2A—H2D106.1 (14)
H8A—C8—H8B107.8H2C—N2A—H2D110.1 (14)
N13—C9—N10112.13 (8)
C5—N1—N2—N30.47 (10)N7—C8—C9—N1390.37 (11)
N1—N2—N3—N40.27 (12)N7—C8—C9—N1089.46 (11)
N2—N3—N4—C50.06 (12)N13—C9—N10—N110.21 (12)
N3—N4—C5—N10.37 (11)C8—C9—N10—N11179.64 (9)
N3—N4—C5—C6179.15 (8)C9—N10—N11—N120.43 (12)
N2—N1—C5—N40.52 (11)N10—N11—N12—N130.50 (13)
N2—N1—C5—C6179.30 (8)N10—C9—N13—N120.08 (11)
N4—C5—C6—N795.25 (11)C8—C9—N13—N12179.93 (8)
N1—C5—C6—N786.12 (11)N11—N12—N13—C90.35 (11)
C5—C6—N7—N1488.66 (10)C8—N7—N14—O165.08 (12)
C5—C6—N7—C898.39 (9)C6—N7—N14—O16168.02 (8)
N14—N7—C8—C996.03 (10)C8—N7—N14—O15174.04 (8)
C6—N7—C8—C976.87 (10)C6—N7—N14—O1512.86 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1SA···N13i0.88 (2)2.06 (2)2.9253 (12)168.0 (18)
O1S—H1SB···N3ii0.83 (2)2.31 (2)2.9498 (13)134.8 (17)
N1A—H1A···N12iii0.859 (16)2.211 (16)3.0533 (13)166.7 (14)
N1A—H1B···O160.847 (16)2.388 (16)3.0079 (13)130.5 (13)
N1A—H1B···N13iv0.847 (16)2.540 (15)3.2862 (14)147.6 (13)
N1A—H1B···N12iv0.847 (16)2.585 (15)3.2472 (14)136.0 (13)
N2A—H2A···O1S0.880 (16)2.030 (16)2.9062 (14)173.2 (14)
N2A—H2B···N1v0.854 (16)2.179 (16)3.0243 (13)170.3 (14)
N1A—H1C···N2v0.882 (16)2.107 (16)2.9654 (12)164.2 (14)
N2A—H2C···O1Svi0.849 (17)2.147 (17)2.9766 (13)165.2 (14)
N2A—H2D···N10.896 (16)2.117 (16)3.0096 (13)174.0 (13)
N1A—H1D···N10vii0.906 (16)2.045 (16)2.9273 (13)164.2 (13)
Symmetry codes: (i) x+1, y, z; (ii) x1, y+1, z; (iii) x+1, y, z+1; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x, y+1, z; (vii) x+1, y+1, z+1.
 

Funding information

Studies were supported in by the Office of Naval Research (ONR) (Award No. N00014–15-WX-0–0149), the Naval Research Laboratory (NRL), and the American Society for Engineering Education (ASEE). Synthesis funding provided by the Department of Defense (DOD) at Los Alamos National Laboratory (LANL).

References

First citationAllen, F. H., Bird, C. M., Rowland, R. S., Harris, S. E. & Schwalbe, C. H. (1995). Acta Cryst. B51, 1068–1081.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2008). APEX2, SADABS, SAINT, and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJaidann, M., Roy, S., Abou-Rachid, H. & Lussier, L.-S. (2010). J. Hazard. Mater. 176, 165–173.  CrossRef PubMed CAS Google Scholar
First citationKlapötke, T. M., Mayer, P., Sabaté, C. M., Welch, J. M. & Wiegand, N. (2008). Inorg. Chem. 47, 6014–6027.  PubMed Google Scholar
First citationKlapötke, T. M., Sabaté, C. M. & Stierstorfer, J. (2009). New J. Chem. 33, 136–147.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTalawar, M. B., Sivabalan, R., Mukundan, T., Muthurajan, H., Sikder, A. K., Gandhe, B. R. & Rao, A. S. (2009). J. Hazard. Mater. 161, 589–607.  CrossRef PubMed CAS Google Scholar
First citationWei, H., Zhang, J., He, C. & Shreeve, J. M. (2015). Chem. Eur. J. 21, 8607–8612.  CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, Q., Zhu, W. & Xiao, H. (2014). J. Mater. Chem. A, 2, 13006–13015.  CrossRef CAS Google Scholar
First citationZhurov, V. V., Zhurova, E. A., Stash, A. I. & Pinkerton, A. A. (2011). Acta Cryst. A67, 160–173.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds