research communications
H-carbazol-9-yl)ethyl]-1,3,4-oxadiazole-2(3H)-thione
of 5-[2-(9aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Chemistry, Faculty of Science, Assiut University, 71515 Assiut, Egypt, and eKirkuk University, College of Education, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com
The title compound, C16H13N3OS, comprises an oxadiazolethione ring bound to the N atom of an almost planar carbazole ring system (r.m.s. deviation = 0.0088 Å) through an ethylene chain. The oxadiazole ring is inclined to the the carbazole ring system by 40.71 (6)°. In the crystal, N—H⋯O, N—H⋯S, C—H⋯N and C—H⋯S hydrogen bonds combine with C—H⋯π(ring) and π–π contacts to stack the molecules along the b-axis direction.
Keywords: crystal structure; carbazole; oxadiazolethione; hydrogen bonds; C—H⋯π(ring) contacts; π–π stacking.
CCDC reference: 1557216
1. Chemical context
Carbazole derivatives have been shown to have several industrial applications including use in optoelectronic devices (Fitilis et al., 2007; Peng et al., 2011), dye-sensitized solar cells (Li et al., 2010) and photochromic dyes (Billah et al., 2008). Moreover, fused heterocycles with carbazole scaffolds are noted for their biological activities. They are found in drugs such as tubingensin A and B and have been shown to have both antiviral and cytotoxic activities (TePaske et al., 1989). The anti-inflammatory agents caprofen and etodolaca and the antipyretic agent nincazole (Ghoneim et al., 2006) are also carbazole based. The biological activity of so many carbazole-based heterocycles encouraged us to synthesize the title compound and its molecular is reported here.
2. Structural commentary
In the title compound C16H13N3OS, (I), the oxadiazolethione ring binds to the carbazole ring system through a C2–C3–C4–N3 ethylene chain with the ring systems inclined at an angle of 40.71 (6)°, Fig. 1. The carbazole ring system is almost planar with the outer C5–C10 and C11–C16 benzene rings subtending angles of 0.38 (13) and 0.64 (13)°, respectively, to the central N3/C5/C10/C11/C16 ring. Bond lengths and angles in both ring systems are normal and similar to those found in the numerous other carbazole structures (see, for example, Kimura et al., 1985) and those of the few known oxadiazolethione derivatives with alkane chains at C5 (Khan et al. 2014; Zheng et al. 2006).
3. Supramolecular features
In the crystal, classical N1—H1N⋯O1 and N1—H1N⋯S1 hydrogen bonds form C(4) chains of molecules linked in a head-to-head fashion along the b-axis direction, Fig. 2. These contacts are bolstered by the C4 atom acting as a bifurcated donor forming weaker C4—H4A⋯N2 hydrogen bonds and C4—H4B⋯Cg4 interactions, Table 1. In the chains, the mean plane of the oxadiazole ring is inclined at 10.7° to (101). The N—H⋯O and N—H⋯S hydrogen bonds also impose close O1⋯N2(x, y − 1, z) contacts of 2.9516 (18) Å. Adjacent chains are further linked by C3—H3B⋯S1 hydrogen bonds that form inversion dimers, enclosing R22(12) rings. This combination of contacts stacks molecules along the b-axis direction, Fig. 3. Adjacent oxadiazole rings form dimers through Cg1⋯Cg1vi π–π contacts with centroid-to-centroid separations of 3.3931 (9) Å Cg1 is the centroid of the O1/C2/N3/N4/C5 ring; symmetry code: (vi) 1 − x, 1 − y, 1 − z]. These dimers are linked by much weaker C12—H12⋯Cg4 interactions, Table 1, forming chains along the ac diagonal, Fig. 4. This substantial array of contacts combines to form a three-dimensional network structure, Fig. 5.
4. Database survey
Structures of carbazole derivatives abound in the Cambridge Structural Database (Version 5.38, November 2016 with one update; Groom et al., 2016) with 428 hits for solely organic molecules. Those with alkane chain substituents, at least two carbon atoms long on the pyrrole N atom, are less abundant with 47 hits for organic molecules alone. The simplest of these is N-ethyl carbazole itself (Kimura et al., 1985). This compound in fact appears in a number of manifestations as it seems to readily form co-crystals (Lee & Wallwork, 1978; Hosomi et al., 2000; Matsuoka et al., 1988; Zhu et al., 2014). No examples were found of oxadiazole rings at the end of the alkane chains; indeed, the only derivatives with simple five-membered rings in that position were dioxaborolane derivatives (Kalinin et al., 2003; Geier et al., 2009). In contrast, 1,3,4-oxadiazole-2-thiones are far less abundant with only 29 unique organic structures reported. Furthermore, crystal structures of compounds with a chain of two or more methylene units bound to the 5-carbon are rare, with only three such structures found: 5-[2-(2-methoxyphenyl)ethyl]-1,3,4-oxadiazole-2(3H)-thione and 5-[2-(4-methoxyphenyl)ethyl]-1,3,4-oxadiazole-2(3H)-thione (Khan et al. 2014) and 5-[3-(quinolin-8-yloxy)propyl]-1,3,4-oxadiazole-2(3H)-thione (Zheng et al. 2006)
5. Synthesis and crystallization
A mixture of 3-(9H-carbazol-9-yl)propanehydrazide (1.09 g, 4 mmol) and carbon disulfide (3 ml) in pyridine (15 mL) was heated under reflux on a water bath (333–343 K) overnight. The excess carbon disulfide was removed under reduced pressure and the reaction mixture was then poured into ice-cold water. The resulting precipitate was collected by filtration, washed with water, dried and recrystallized from mixed solvents of dioxane–water (1:1) to give (I) in 66% yield; m.p. 469–471 K. IR: NH, 3197, CH aromatic 3050, CH aliphatic 2940 cm−1. 1H NMR: δ (ppm) (DMSO-d6) 2.35 (t, 2H, CH2), 4.12 (t, 2H, CH2), 7.35–8.38 (m, 8H, Ar-H), 9.95 (s, 1H, NH). 13C NMR (100 MHz, DMSO-d6, DEPT) δ (ppm): 34.9, 51.4, 109.6, 119.9, 121.4, 122.8, 156.8, 188.9. ms: m/z 295 (M+) as molecular ion peak and base calculated for C16 H13 N3OS (295.4): C, 65.06; H, 4.44; N, 5.42. Found: C, 65.38; H, 4.65; N, 5.48.
6. Refinement
Crystal data, data collection and structure . The N-bound hydrogen atom was located in a difference-Fourier map and its coordinates refined with Uiso = 1.2Ueq (N). All H atoms bound to C were refined using a riding model with d(C—H) = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic, d(C—H) = 0.99 Å and Uiso(H) = 1.2Ueq(C) for CH2 H atoms.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1557216
https://doi.org/10.1107/S2056989017009252/mw2132sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017009252/mw2132Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017009252/mw2132Isup3.cml
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).C16H13N3OS | F(000) = 616 |
Mr = 295.35 | Dx = 1.430 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 16.6868 (5) Å | Cell parameters from 7352 reflections |
b = 4.9600 (1) Å | θ = 6.5–76.5° |
c = 17.2353 (6) Å | µ = 2.11 mm−1 |
β = 105.909 (3)° | T = 100 K |
V = 1371.87 (7) Å3 | Plate, colourless |
Z = 4 | 0.27 × 0.15 × 0.09 mm |
Agilent SuperNova, Dual, Cu at zero, Atlas diffractometer | 2849 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 2626 reflections with I > 2σ(I) |
Detector resolution: 5.1725 pixels mm-1 | Rint = 0.063 |
ω scans | θmax = 76.5°, θmin = 5.3° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | h = −20→20 |
Tmin = 0.763, Tmax = 1.000 | k = −4→6 |
11013 measured reflections | l = −20→21 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.045 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.125 | w = 1/[σ2(Fo2) + (0.079P)2 + 0.5548P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
2849 reflections | Δρmax = 0.43 e Å−3 |
193 parameters | Δρmin = −0.48 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.55153 (7) | 0.1963 (2) | 0.58574 (7) | 0.0155 (3) | |
C1 | 0.50674 (9) | 0.3454 (3) | 0.62638 (9) | 0.0151 (3) | |
S1 | 0.43636 (2) | 0.21061 (9) | 0.66526 (2) | 0.01955 (16) | |
N1 | 0.53275 (8) | 0.5979 (3) | 0.62294 (8) | 0.0158 (3) | |
H1N | 0.5152 (14) | 0.740 (5) | 0.6449 (14) | 0.019* | |
N2 | 0.59279 (8) | 0.6190 (3) | 0.58088 (8) | 0.0168 (3) | |
C2 | 0.60197 (9) | 0.3745 (3) | 0.56023 (9) | 0.0146 (3) | |
C3 | 0.66006 (10) | 0.2674 (3) | 0.51646 (10) | 0.0175 (3) | |
H6A | 0.6797 | 0.4173 | 0.4885 | 0.021* | |
H3B | 0.6301 | 0.1372 | 0.4751 | 0.021* | |
C4 | 0.73573 (9) | 0.1269 (3) | 0.57370 (10) | 0.0168 (3) | |
H4A | 0.7160 | −0.0214 | 0.6022 | 0.020* | |
H4B | 0.7707 | 0.0470 | 0.5416 | 0.020* | |
N3 | 0.78545 (8) | 0.3109 (3) | 0.63217 (8) | 0.0151 (3) | |
C5 | 0.77515 (9) | 0.3625 (3) | 0.70793 (9) | 0.0154 (3) | |
C6 | 0.72386 (10) | 0.2314 (4) | 0.74787 (10) | 0.0201 (4) | |
H6 | 0.6892 | 0.0851 | 0.7237 | 0.024* | |
C7 | 0.72578 (11) | 0.3239 (4) | 0.82431 (11) | 0.0273 (4) | |
H7 | 0.6917 | 0.2390 | 0.8531 | 0.033* | |
C8 | 0.77677 (13) | 0.5393 (4) | 0.85996 (10) | 0.0309 (4) | |
H8 | 0.7763 | 0.5987 | 0.9122 | 0.037* | |
C9 | 0.82767 (11) | 0.6669 (4) | 0.82050 (11) | 0.0262 (4) | |
H9 | 0.8621 | 0.8130 | 0.8452 | 0.031* | |
C10 | 0.82777 (9) | 0.5777 (3) | 0.74355 (10) | 0.0182 (3) | |
C11 | 0.87157 (9) | 0.6589 (3) | 0.68573 (10) | 0.0190 (3) | |
C12 | 0.93139 (10) | 0.8561 (4) | 0.68605 (12) | 0.0274 (4) | |
H12 | 0.9509 | 0.9717 | 0.7312 | 0.033* | |
C13 | 0.96158 (11) | 0.8797 (4) | 0.61920 (13) | 0.0327 (5) | |
H13 | 1.0023 | 1.0130 | 0.6188 | 0.039* | |
C14 | 0.93329 (11) | 0.7113 (4) | 0.55235 (13) | 0.0296 (4) | |
H14 | 0.9556 | 0.7320 | 0.5076 | 0.036* | |
C15 | 0.87311 (10) | 0.5133 (4) | 0.54963 (11) | 0.0223 (4) | |
H15 | 0.8535 | 0.3998 | 0.5040 | 0.027* | |
C16 | 0.84324 (9) | 0.4908 (3) | 0.61765 (10) | 0.0167 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0145 (5) | 0.0103 (5) | 0.0207 (6) | −0.0003 (4) | 0.0030 (4) | −0.0018 (4) |
C1 | 0.0127 (7) | 0.0132 (7) | 0.0162 (7) | 0.0011 (6) | −0.0014 (5) | −0.0011 (5) |
S1 | 0.0185 (2) | 0.0185 (3) | 0.0215 (2) | −0.00502 (14) | 0.00544 (16) | −0.00070 (14) |
N1 | 0.0149 (6) | 0.0108 (7) | 0.0222 (6) | −0.0002 (5) | 0.0057 (5) | −0.0018 (5) |
N2 | 0.0139 (6) | 0.0136 (7) | 0.0230 (7) | −0.0003 (5) | 0.0052 (5) | 0.0000 (5) |
C2 | 0.0116 (6) | 0.0129 (7) | 0.0166 (7) | −0.0004 (6) | −0.0006 (5) | 0.0005 (6) |
C3 | 0.0155 (7) | 0.0185 (8) | 0.0173 (7) | 0.0004 (6) | 0.0023 (6) | −0.0030 (6) |
C4 | 0.0136 (7) | 0.0144 (7) | 0.0217 (7) | 0.0006 (6) | 0.0035 (6) | −0.0029 (6) |
N3 | 0.0110 (6) | 0.0156 (7) | 0.0184 (7) | −0.0021 (5) | 0.0035 (5) | −0.0013 (5) |
C5 | 0.0114 (6) | 0.0162 (8) | 0.0167 (7) | 0.0050 (6) | 0.0006 (5) | 0.0015 (6) |
C6 | 0.0144 (7) | 0.0226 (8) | 0.0231 (8) | 0.0053 (6) | 0.0047 (6) | 0.0050 (6) |
C7 | 0.0261 (9) | 0.0351 (11) | 0.0225 (9) | 0.0143 (8) | 0.0097 (7) | 0.0099 (7) |
C8 | 0.0371 (10) | 0.0367 (11) | 0.0166 (8) | 0.0175 (8) | 0.0035 (7) | 0.0002 (7) |
C9 | 0.0254 (8) | 0.0242 (9) | 0.0215 (8) | 0.0089 (7) | −0.0061 (6) | −0.0032 (7) |
C10 | 0.0131 (7) | 0.0175 (8) | 0.0188 (7) | 0.0048 (6) | −0.0047 (5) | 0.0011 (6) |
C11 | 0.0098 (6) | 0.0157 (8) | 0.0259 (8) | 0.0017 (6) | −0.0048 (6) | 0.0030 (6) |
C12 | 0.0145 (7) | 0.0189 (9) | 0.0395 (10) | −0.0035 (7) | −0.0081 (7) | 0.0056 (8) |
C13 | 0.0122 (7) | 0.0283 (10) | 0.0525 (12) | −0.0042 (7) | −0.0001 (7) | 0.0169 (9) |
C14 | 0.0167 (8) | 0.0314 (11) | 0.0424 (11) | 0.0031 (7) | 0.0107 (7) | 0.0164 (8) |
C15 | 0.0173 (7) | 0.0217 (9) | 0.0295 (8) | 0.0040 (6) | 0.0090 (6) | 0.0063 (7) |
C16 | 0.0089 (6) | 0.0152 (8) | 0.0247 (8) | 0.0025 (5) | 0.0024 (5) | 0.0048 (6) |
O1—C1 | 1.3723 (18) | C6—C7 | 1.387 (3) |
O1—C2 | 1.3732 (18) | C6—H6 | 0.9500 |
C1—N1 | 1.332 (2) | C7—C8 | 1.399 (3) |
C1—S1 | 1.6452 (16) | C7—H7 | 0.9500 |
N1—N2 | 1.3922 (18) | C8—C9 | 1.379 (3) |
N1—H1N | 0.89 (2) | C8—H8 | 0.9500 |
N2—C2 | 1.285 (2) | C9—C10 | 1.398 (2) |
N2—O1i | 2.9516 (18) | C9—H9 | 0.9500 |
C2—C3 | 1.480 (2) | C10—C11 | 1.445 (2) |
C3—C4 | 1.540 (2) | C11—C12 | 1.396 (2) |
C3—H6A | 0.9900 | C11—C16 | 1.411 (2) |
C3—H3B | 0.9900 | C12—C13 | 1.383 (3) |
C4—N3 | 1.442 (2) | C12—H12 | 0.9500 |
C4—H4A | 0.9900 | C13—C14 | 1.396 (3) |
C4—H4B | 0.9900 | C13—H13 | 0.9500 |
N3—C16 | 1.386 (2) | C14—C15 | 1.396 (3) |
N3—C5 | 1.387 (2) | C14—H14 | 0.9500 |
C5—C6 | 1.397 (2) | C15—C16 | 1.398 (2) |
C5—C10 | 1.411 (2) | C15—H15 | 0.9500 |
C1—O1—C2 | 106.49 (12) | C7—C6—H6 | 121.4 |
N1—C1—O1 | 104.73 (13) | C5—C6—H6 | 121.4 |
N1—C1—S1 | 132.68 (13) | C6—C7—C8 | 121.53 (17) |
O1—C1—S1 | 122.56 (12) | C6—C7—H7 | 119.2 |
C1—N1—N2 | 112.56 (13) | C8—C7—H7 | 119.2 |
C1—N1—H1N | 125.4 (14) | C9—C8—C7 | 121.11 (17) |
N2—N1—H1N | 122.1 (14) | C9—C8—H8 | 119.4 |
C2—N2—N1 | 103.34 (13) | C7—C8—H8 | 119.4 |
C2—N2—O1i | 165.93 (11) | C8—C9—C10 | 118.93 (18) |
N1—N2—O1i | 81.45 (9) | C8—C9—H9 | 120.5 |
N2—C2—O1 | 112.87 (13) | C10—C9—H9 | 120.5 |
N2—C2—C3 | 128.62 (15) | C9—C10—C5 | 119.30 (16) |
O1—C2—C3 | 118.48 (14) | C9—C10—C11 | 134.28 (17) |
C2—C3—C4 | 111.86 (13) | C5—C10—C11 | 106.41 (14) |
C2—C3—H6A | 109.2 | C12—C11—C16 | 119.57 (17) |
C4—C3—H6A | 109.2 | C12—C11—C10 | 133.50 (17) |
C2—C3—H3B | 109.2 | C16—C11—C10 | 106.93 (14) |
C4—C3—H3B | 109.2 | C13—C12—C11 | 118.63 (19) |
H6A—C3—H3B | 107.9 | C13—C12—H12 | 120.7 |
N3—C4—C3 | 112.02 (13) | C11—C12—H12 | 120.7 |
N3—C4—H4A | 109.2 | C12—C13—C14 | 121.24 (17) |
C3—C4—H4A | 109.2 | C12—C13—H13 | 119.4 |
N3—C4—H4B | 109.2 | C14—C13—H13 | 119.4 |
C3—C4—H4B | 109.2 | C15—C14—C13 | 121.73 (18) |
H4A—C4—H4B | 107.9 | C15—C14—H14 | 119.1 |
C16—N3—C5 | 108.85 (13) | C13—C14—H14 | 119.1 |
C16—N3—C4 | 125.23 (14) | C14—C15—C16 | 116.51 (17) |
C5—N3—C4 | 125.38 (13) | C14—C15—H15 | 121.7 |
N3—C5—C6 | 128.95 (15) | C16—C15—H15 | 121.7 |
N3—C5—C10 | 109.05 (14) | N3—C16—C15 | 128.93 (16) |
C6—C5—C10 | 122.00 (15) | N3—C16—C11 | 108.74 (14) |
C7—C6—C5 | 117.12 (17) | C15—C16—C11 | 122.32 (16) |
C2—O1—C1—N1 | −0.16 (15) | C8—C9—C10—C5 | 0.8 (2) |
C2—O1—C1—S1 | 178.36 (11) | C8—C9—C10—C11 | −179.84 (17) |
O1—C1—N1—N2 | 0.37 (16) | N3—C5—C10—C9 | 179.65 (14) |
S1—C1—N1—N2 | −177.93 (12) | C6—C5—C10—C9 | −1.3 (2) |
C1—N1—N2—C2 | −0.44 (17) | N3—C5—C10—C11 | 0.15 (17) |
C1—N1—N2—O1i | 166.09 (12) | C6—C5—C10—C11 | 179.21 (14) |
N1—N2—C2—O1 | 0.32 (17) | C9—C10—C11—C12 | 1.0 (3) |
O1i—N2—C2—O1 | −108.2 (4) | C5—C10—C11—C12 | −179.56 (18) |
N1—N2—C2—C3 | −177.54 (14) | C9—C10—C11—C16 | −179.05 (17) |
O1i—N2—C2—C3 | 73.9 (5) | C5—C10—C11—C16 | 0.35 (17) |
C1—O1—C2—N2 | −0.11 (17) | C16—C11—C12—C13 | −0.3 (2) |
C1—O1—C2—C3 | 177.99 (13) | C10—C11—C12—C13 | 179.55 (17) |
N2—C2—C3—C4 | 102.47 (19) | C11—C12—C13—C14 | 0.1 (3) |
O1—C2—C3—C4 | −75.29 (17) | C12—C13—C14—C15 | 0.4 (3) |
C2—C3—C4—N3 | −62.96 (18) | C13—C14—C15—C16 | −0.6 (3) |
C3—C4—N3—C16 | −79.78 (18) | C5—N3—C16—C15 | 179.80 (15) |
C3—C4—N3—C5 | 90.85 (18) | C4—N3—C16—C15 | −8.3 (3) |
C16—N3—C5—C6 | −179.58 (15) | C5—N3—C16—C11 | 0.82 (17) |
C4—N3—C5—C6 | 8.5 (3) | C4—N3—C16—C11 | 172.75 (14) |
C16—N3—C5—C10 | −0.60 (17) | C14—C15—C16—N3 | −178.53 (16) |
C4—N3—C5—C10 | −172.52 (14) | C14—C15—C16—C11 | 0.3 (2) |
N3—C5—C6—C7 | 179.70 (15) | C12—C11—C16—N3 | 179.20 (14) |
C10—C5—C6—C7 | 0.8 (2) | C10—C11—C16—N3 | −0.72 (17) |
C5—C6—C7—C8 | 0.0 (2) | C12—C11—C16—C15 | 0.1 (2) |
C6—C7—C8—C9 | −0.5 (3) | C10—C11—C16—C15 | −179.78 (14) |
C7—C8—C9—C10 | 0.0 (3) |
Symmetry code: (i) x, y+1, z. |
Cg4 is the centroid of the C11–C16 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···S1i | 0.89 (2) | 2.75 (2) | 3.6053 (14) | 162.8 (19) |
N1—H1N···O1i | 0.89 (2) | 2.62 (2) | 3.0707 (18) | 112.5 (16) |
C3—H3B···S1ii | 0.99 | 2.93 | 3.9061 (16) | 169 |
C4—H4A···N2iii | 0.99 | 2.67 | 3.495 (2) | 141 |
C4—H4B···Cg4iii | 0.99 | 2.87 | 3.4577 (17) | 119 |
C12—H12···Cg4i | 0.95 | 3.22 | 4.073 (2) | 151 |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y, −z+1; (iii) x, y−1, z. |
Acknowledgements
We thank the University of Otago for purchase of the diffractometer and the Chemistry Department University of Otago for support of the work of JS.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Billah, S. M. R., Christie, R. M. & Shamey, R. (2008). Coloration Technol. 124, 223–228. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fitilis, I., Fakis, M., Polyzos, I., Giannetas, V., Persephonis, P., Vellis, P. & Mikroyannidis, J. (2007). Chem. Phys. Lett. 447, 300–304. Web of Science CrossRef CAS Google Scholar
Geier, M. J., Vogels, C. M., Decken, A. & Westcott, S. A. (2009). J. Organomet. Chem. 694, 3154–3159. Web of Science CSD CrossRef CAS Google Scholar
Ghoneim, O. M., Legere, J. A., Golbraikh, A., Tropsha, A. & Booth, R. G. (2006). Bioorg. Med. Chem. 14, 6640–6658. CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hosomi, H., Ohba, S. & Ito, Y. (2000). Acta Cryst. C56, e147–e148. CSD CrossRef CAS IUCr Journals Google Scholar
Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand. Google Scholar
Kalinin, A. V., Scherer, S. & Snieckus, V. (2003). Angew. Chem. Int. Ed. 42, 3399–3404. CSD CrossRef CAS Google Scholar
Khan, I., Ibrar, A. & Simpson, J. (2014). CrystEngComm, 16, 164–174. CSD CrossRef CAS Google Scholar
Kimura, T., Kai, Y., Yasuoka, N. & Kasai, N. (1985). Bull. Chem. Soc. Jpn, 58, 2268–2271. CSD CrossRef CAS Web of Science Google Scholar
Lee, D. & Wallwork, S. C. (1978). Acta Cryst. B34, 3604–3608. CSD CrossRef CAS IUCr Journals Google Scholar
Li, C., Liu, M., Pschirer, N. G., Baumgarten, M. & Müllen, K. (2010). Chem. Rev. 110, 6817–6855. CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Matsuoka, M., Han, L., Kitao, T., Mochizuki, S. & Nakatsu, K. (1988). Chem. Lett. 17, 905–908. CSD CrossRef Google Scholar
Peng, Q., Liu, X., Qin, Y., Xu, J., Li, M. & Dai, L. (2011). J. Mater. Chem. 21, 7714–7722. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
TePaske, M. R., Gloer, J. B., Wicklow, D. T. & Dowd, P. F. (1989). Tetrahedron Lett. 30, 5965–5968. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zheng, Z.-B., Wu, R.-T., Lu, J.-R. & Sun, Y.-F. (2006). Acta Cryst. E62, o4293–o4295. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhu, Q., Gao, Y. J., Gao, H. Y. & Jin, W. J. (2014). J. Photochem. Photobiol. Chem. 289, 31–38. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.