research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 5-[2-(9H-carbazol-9-yl)eth­yl]-1,3,4-oxa­diazole-2(3H)-thione

aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Chemistry, Faculty of Science, Assiut University, 71515 Assiut, Egypt, and eKirkuk University, College of Education, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by J. T. Mague, Tulane University, USA (Received 16 May 2017; accepted 20 June 2017; online 23 June 2017)

The title compound, C16H13N3OS, comprises an oxa­diazo­lethione ring bound to the N atom of an almost planar carbazole ring system (r.m.s. deviation = 0.0088 Å) through an ethyl­ene chain. The oxa­diazole ring is inclined to the the carbazole ring system by 40.71 (6)°. In the crystal, N—H⋯O, N—H⋯S, C—H⋯N and C—H⋯S hydrogen bonds combine with C—H⋯π(ring) and ππ contacts to stack the mol­ecules along the b-axis direction.

1. Chemical context

Carbazole derivatives have been shown to have several industrial applications including use in optoelectronic devices (Fitilis et al., 2007[Fitilis, I., Fakis, M., Polyzos, I., Giannetas, V., Persephonis, P., Vellis, P. & Mikroyannidis, J. (2007). Chem. Phys. Lett. 447, 300-304.]; Peng et al., 2011[Peng, Q., Liu, X., Qin, Y., Xu, J., Li, M. & Dai, L. (2011). J. Mater. Chem. 21, 7714-7722.]), dye-sensitized solar cells (Li et al., 2010[Li, C., Liu, M., Pschirer, N. G., Baumgarten, M. & Müllen, K. (2010). Chem. Rev. 110, 6817-6855.]) and photochromic dyes (Billah et al., 2008[Billah, S. M. R., Christie, R. M. & Shamey, R. (2008). Coloration Technol. 124, 223-228.]). Moreover, fused heterocycles with carbazole scaffolds are noted for their biological activities. They are found in drugs such as tubingensin A and B and have been shown to have both anti­viral and cytotoxic activities (TePaske et al., 1989[TePaske, M. R., Gloer, J. B., Wicklow, D. T. & Dowd, P. F. (1989). Tetrahedron Lett. 30, 5965-5968.]). The anti-inflammatory agents caprofen and etodolaca and the anti­pyretic agent nincazole (Ghoneim et al., 2006[Ghoneim, O. M., Legere, J. A., Golbraikh, A., Tropsha, A. & Booth, R. G. (2006). Bioorg. Med. Chem. 14, 6640-6658.]) are also carbazole based. The biological activity of so many carbazole-based heterocycles encouraged us to synthesize the title compound and its mol­ecular crystal structure is reported here.

[Scheme 1]

2. Structural commentary

In the title compound C16H13N3OS, (I)[link], the oxa­diazo­lethione ring binds to the carbazole ring system through a C2–C3–C4–N3 ethyl­ene chain with the ring systems inclined at an angle of 40.71 (6)°, Fig. 1[link]. The carbazole ring system is almost planar with the outer C5–C10 and C11–C16 benzene rings subtending angles of 0.38 (13) and 0.64 (13)°, respectively, to the central N3/C5/C10/C11/C16 ring. Bond lengths and angles in both ring systems are normal and similar to those found in the numerous other carbazole structures (see, for example, Kimura et al., 1985[Kimura, T., Kai, Y., Yasuoka, N. & Kasai, N. (1985). Bull. Chem. Soc. Jpn, 58, 2268-2271.]) and those of the few known oxa­diazo­lethione derivatives with alkane chains at C5 (Khan et al. 2014[Khan, I., Ibrar, A. & Simpson, J. (2014). CrystEngComm, 16, 164-174.]; Zheng et al. 2006[Zheng, Z.-B., Wu, R.-T., Lu, J.-R. & Sun, Y.-F. (2006). Acta Cryst. E62, o4293-o4295.]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] with ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, classical N1—H1N⋯O1 and N1—H1N⋯S1 hydrogen bonds form C(4) chains of mol­ecules linked in a head-to-head fashion along the b-axis direction, Fig. 2[link]. These contacts are bolstered by the C4 atom acting as a bifurcated donor forming weaker C4—H4A⋯N2 hydrogen bonds and C4—H4BCg4 inter­actions, Table 1[link]. In the chains, the mean plane of the oxa­diazole ring is inclined at 10.7° to (101). The N—H⋯O and N—H⋯S hydrogen bonds also impose close O1⋯N2(x, y − 1, z) contacts of 2.9516 (18) Å. Adjacent chains are further linked by C3—H3B⋯S1 hydrogen bonds that form inversion dimers, enclosing R22(12) rings. This combination of contacts stacks mol­ecules along the b-axis direction, Fig. 3[link]. Adjacent oxa­diazole rings form dimers through Cg1⋯Cg1vi ππ contacts with centroid-to-centroid separations of 3.3931 (9) Å Cg1 is the centroid of the O1/C2/N3/N4/C5 ring; symmetry code: (vi) 1 − x, 1 − y, 1 − z]. These dimers are linked by much weaker C12—H12⋯Cg4 inter­actions, Table 1[link], forming chains along the ac diagonal, Fig. 4[link]. This substantial array of contacts combines to form a three-dimensional network structure, Fig. 5[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯S1i 0.89 (2) 2.75 (2) 3.6053 (14) 162.8 (19)
N1—H1N⋯O1i 0.89 (2) 2.62 (2) 3.0707 (18) 112.5 (16)
C3—H3B⋯S1ii 0.99 2.93 3.9061 (16) 169
C4—H4A⋯N2iii 0.99 2.67 3.495 (2) 141
C4—H4BCg4iii 0.99 2.87 3.4577 (17) 119
C12—H12⋯Cg4i 0.95 3.22 4.073 (2) 151
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, -z+1; (iii) x, y-1, z.
[Figure 2]
Figure 2
Rows of mol­ecules of (I)[link] along b. In this and subsequent figures, N—H⋯S (orange), N—H⋯O (dark blue) and C—H⋯N (light blue) hydrogen bonds are drawn as coloured dashed lines. C—H⋯π contacts are shown as green dotted lines with ring centroids displayed as coloured spheres.
[Figure 3]
Figure 3
Inversion dimers formed by C—H⋯S hydrogen bonds (dashed yellow lines) stacking rows of mol­ecules of (I)[link] along b.
[Figure 4]
Figure 4
Chains of mol­ecules of (I)[link] along the ac diagonal. Centroid–centroid contacts are drawn as green dotted lines.
[Figure 5]
Figure 5
Overall packing of (I)[link] viewed along the b-axis direction. Representative C—H⋯π hydrogen bonds and ππ contacts are shown as green dotted lines.

4. Database survey

Structures of carbazole derivatives abound in the Cambridge Structural Database (Version 5.38, November 2016 with one update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with 428 hits for solely organic mol­ecules. Those with alkane chain substituents, at least two carbon atoms long on the pyrrole N atom, are less abundant with 47 hits for organic mol­ecules alone. The simplest of these is N-ethyl carbazole itself (Kimura et al., 1985[Kimura, T., Kai, Y., Yasuoka, N. & Kasai, N. (1985). Bull. Chem. Soc. Jpn, 58, 2268-2271.]). This compound in fact appears in a number of manifestations as it seems to readily form co-crystals (Lee & Wallwork, 1978[Lee, D. & Wallwork, S. C. (1978). Acta Cryst. B34, 3604-3608.]; Hosomi et al., 2000[Hosomi, H., Ohba, S. & Ito, Y. (2000). Acta Cryst. C56, e147-e148.]; Matsuoka et al., 1988[Matsuoka, M., Han, L., Kitao, T., Mochizuki, S. & Nakatsu, K. (1988). Chem. Lett. 17, 905-908.]; Zhu et al., 2014[Zhu, Q., Gao, Y. J., Gao, H. Y. & Jin, W. J. (2014). J. Photochem. Photobiol. Chem. 289, 31-38.]). No examples were found of oxa­diazole rings at the end of the alkane chains; indeed, the only derivatives with simple five-membered rings in that position were dioxaborolane derivatives (Kalinin et al., 2003[Kalinin, A. V., Scherer, S. & Snieckus, V. (2003). Angew. Chem. Int. Ed. 42, 3399-3404.]; Geier et al., 2009[Geier, M. J., Vogels, C. M., Decken, A. & Westcott, S. A. (2009). J. Organomet. Chem. 694, 3154-3159.]). In contrast, 1,3,4-oxa­diazole-2-thio­nes are far less abundant with only 29 unique organic structures reported. Furthermore, crystal structures of compounds with a chain of two or more methyl­ene units bound to the 5-carbon are rare, with only three such structures found: 5-[2-(2-meth­oxy­phen­yl)eth­yl]-1,3,4-oxa­diazole-2(3H)-thione and 5-[2-(4-meth­oxy­phen­yl)eth­yl]-1,3,4-oxa­diazole-2(3H)-thione (Khan et al. 2014[Khan, I., Ibrar, A. & Simpson, J. (2014). CrystEngComm, 16, 164-174.]) and 5-[3-(quinolin-8-yl­oxy)prop­yl]-1,3,4-oxa­diazole-2(3H)-thione (Zheng et al. 2006[Zheng, Z.-B., Wu, R.-T., Lu, J.-R. & Sun, Y.-F. (2006). Acta Cryst. E62, o4293-o4295.])

5. Synthesis and crystallization

A mixture of 3-(9H-carbazol-9-yl)propane­hydrazide (1.09 g, 4 mmol) and carbon di­sulfide (3 ml) in pyridine (15 mL) was heated under reflux on a water bath (333–343 K) overnight. The excess carbon di­sulfide was removed under reduced pressure and the reaction mixture was then poured into ice-cold water. The resulting precipitate was collected by filtration, washed with water, dried and recrystallized from mixed solvents of dioxane–water (1:1) to give (I)[link] in 66% yield; m.p. 469–471 K. IR: NH, 3197, CH aromatic 3050, CH aliphatic 2940 cm−1. 1H NMR: δ (ppm) (DMSO-d6) 2.35 (t, 2H, CH2), 4.12 (t, 2H, CH2), 7.35–8.38 (m, 8H, Ar-H), 9.95 (s, 1H, NH). 13C NMR (100 MHz, DMSO-d6, DEPT) δ (ppm): 34.9, 51.4, 109.6, 119.9, 121.4, 122.8, 156.8, 188.9. ms: m/z 295 (M+) as mol­ecular ion peak and base peak. Analysis calculated for C16 H13 N3OS (295.4): C, 65.06; H, 4.44; N, 5.42. Found: C, 65.38; H, 4.65; N, 5.48.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The N-bound hydrogen atom was located in a difference-Fourier map and its coordinates refined with Uiso = 1.2Ueq (N). All H atoms bound to C were refined using a riding model with d(C—H) = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic, d(C—H) = 0.99 Å and Uiso(H) = 1.2Ueq(C) for CH2 H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C16H13N3OS
Mr 295.35
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 16.6868 (5), 4.9600 (1), 17.2353 (6)
β (°) 105.909 (3)
V3) 1371.87 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.11
Crystal size (mm) 0.27 × 0.15 × 0.09
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at zero, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.763, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11013, 2849, 2626
Rint 0.063
(sin θ/λ)max−1) 0.631
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.125, 1.06
No. of reflections 2849
No. of parameters 193
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.43, −0.48
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

5-[2-(9H-carbazol-9-yl)ethyl]-1,3,4-oxadiazole-2(3H)-thione top
Crystal data top
C16H13N3OSF(000) = 616
Mr = 295.35Dx = 1.430 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 16.6868 (5) ÅCell parameters from 7352 reflections
b = 4.9600 (1) Åθ = 6.5–76.5°
c = 17.2353 (6) ŵ = 2.11 mm1
β = 105.909 (3)°T = 100 K
V = 1371.87 (7) Å3Plate, colourless
Z = 40.27 × 0.15 × 0.09 mm
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
2849 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2626 reflections with I > 2σ(I)
Detector resolution: 5.1725 pixels mm-1Rint = 0.063
ω scansθmax = 76.5°, θmin = 5.3°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 2020
Tmin = 0.763, Tmax = 1.000k = 46
11013 measured reflectionsl = 2021
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.079P)2 + 0.5548P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2849 reflectionsΔρmax = 0.43 e Å3
193 parametersΔρmin = 0.48 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.55153 (7)0.1963 (2)0.58574 (7)0.0155 (3)
C10.50674 (9)0.3454 (3)0.62638 (9)0.0151 (3)
S10.43636 (2)0.21061 (9)0.66526 (2)0.01955 (16)
N10.53275 (8)0.5979 (3)0.62294 (8)0.0158 (3)
H1N0.5152 (14)0.740 (5)0.6449 (14)0.019*
N20.59279 (8)0.6190 (3)0.58088 (8)0.0168 (3)
C20.60197 (9)0.3745 (3)0.56023 (9)0.0146 (3)
C30.66006 (10)0.2674 (3)0.51646 (10)0.0175 (3)
H6A0.67970.41730.48850.021*
H3B0.63010.13720.47510.021*
C40.73573 (9)0.1269 (3)0.57370 (10)0.0168 (3)
H4A0.71600.02140.60220.020*
H4B0.77070.04700.54160.020*
N30.78545 (8)0.3109 (3)0.63217 (8)0.0151 (3)
C50.77515 (9)0.3625 (3)0.70793 (9)0.0154 (3)
C60.72386 (10)0.2314 (4)0.74787 (10)0.0201 (4)
H60.68920.08510.72370.024*
C70.72578 (11)0.3239 (4)0.82431 (11)0.0273 (4)
H70.69170.23900.85310.033*
C80.77677 (13)0.5393 (4)0.85996 (10)0.0309 (4)
H80.77630.59870.91220.037*
C90.82767 (11)0.6669 (4)0.82050 (11)0.0262 (4)
H90.86210.81300.84520.031*
C100.82777 (9)0.5777 (3)0.74355 (10)0.0182 (3)
C110.87157 (9)0.6589 (3)0.68573 (10)0.0190 (3)
C120.93139 (10)0.8561 (4)0.68605 (12)0.0274 (4)
H120.95090.97170.73120.033*
C130.96158 (11)0.8797 (4)0.61920 (13)0.0327 (5)
H131.00231.01300.61880.039*
C140.93329 (11)0.7113 (4)0.55235 (13)0.0296 (4)
H140.95560.73200.50760.036*
C150.87311 (10)0.5133 (4)0.54963 (11)0.0223 (4)
H150.85350.39980.50400.027*
C160.84324 (9)0.4908 (3)0.61765 (10)0.0167 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0145 (5)0.0103 (5)0.0207 (6)0.0003 (4)0.0030 (4)0.0018 (4)
C10.0127 (7)0.0132 (7)0.0162 (7)0.0011 (6)0.0014 (5)0.0011 (5)
S10.0185 (2)0.0185 (3)0.0215 (2)0.00502 (14)0.00544 (16)0.00070 (14)
N10.0149 (6)0.0108 (7)0.0222 (6)0.0002 (5)0.0057 (5)0.0018 (5)
N20.0139 (6)0.0136 (7)0.0230 (7)0.0003 (5)0.0052 (5)0.0000 (5)
C20.0116 (6)0.0129 (7)0.0166 (7)0.0004 (6)0.0006 (5)0.0005 (6)
C30.0155 (7)0.0185 (8)0.0173 (7)0.0004 (6)0.0023 (6)0.0030 (6)
C40.0136 (7)0.0144 (7)0.0217 (7)0.0006 (6)0.0035 (6)0.0029 (6)
N30.0110 (6)0.0156 (7)0.0184 (7)0.0021 (5)0.0035 (5)0.0013 (5)
C50.0114 (6)0.0162 (8)0.0167 (7)0.0050 (6)0.0006 (5)0.0015 (6)
C60.0144 (7)0.0226 (8)0.0231 (8)0.0053 (6)0.0047 (6)0.0050 (6)
C70.0261 (9)0.0351 (11)0.0225 (9)0.0143 (8)0.0097 (7)0.0099 (7)
C80.0371 (10)0.0367 (11)0.0166 (8)0.0175 (8)0.0035 (7)0.0002 (7)
C90.0254 (8)0.0242 (9)0.0215 (8)0.0089 (7)0.0061 (6)0.0032 (7)
C100.0131 (7)0.0175 (8)0.0188 (7)0.0048 (6)0.0047 (5)0.0011 (6)
C110.0098 (6)0.0157 (8)0.0259 (8)0.0017 (6)0.0048 (6)0.0030 (6)
C120.0145 (7)0.0189 (9)0.0395 (10)0.0035 (7)0.0081 (7)0.0056 (8)
C130.0122 (7)0.0283 (10)0.0525 (12)0.0042 (7)0.0001 (7)0.0169 (9)
C140.0167 (8)0.0314 (11)0.0424 (11)0.0031 (7)0.0107 (7)0.0164 (8)
C150.0173 (7)0.0217 (9)0.0295 (8)0.0040 (6)0.0090 (6)0.0063 (7)
C160.0089 (6)0.0152 (8)0.0247 (8)0.0025 (5)0.0024 (5)0.0048 (6)
Geometric parameters (Å, º) top
O1—C11.3723 (18)C6—C71.387 (3)
O1—C21.3732 (18)C6—H60.9500
C1—N11.332 (2)C7—C81.399 (3)
C1—S11.6452 (16)C7—H70.9500
N1—N21.3922 (18)C8—C91.379 (3)
N1—H1N0.89 (2)C8—H80.9500
N2—C21.285 (2)C9—C101.398 (2)
N2—O1i2.9516 (18)C9—H90.9500
C2—C31.480 (2)C10—C111.445 (2)
C3—C41.540 (2)C11—C121.396 (2)
C3—H6A0.9900C11—C161.411 (2)
C3—H3B0.9900C12—C131.383 (3)
C4—N31.442 (2)C12—H120.9500
C4—H4A0.9900C13—C141.396 (3)
C4—H4B0.9900C13—H130.9500
N3—C161.386 (2)C14—C151.396 (3)
N3—C51.387 (2)C14—H140.9500
C5—C61.397 (2)C15—C161.398 (2)
C5—C101.411 (2)C15—H150.9500
C1—O1—C2106.49 (12)C7—C6—H6121.4
N1—C1—O1104.73 (13)C5—C6—H6121.4
N1—C1—S1132.68 (13)C6—C7—C8121.53 (17)
O1—C1—S1122.56 (12)C6—C7—H7119.2
C1—N1—N2112.56 (13)C8—C7—H7119.2
C1—N1—H1N125.4 (14)C9—C8—C7121.11 (17)
N2—N1—H1N122.1 (14)C9—C8—H8119.4
C2—N2—N1103.34 (13)C7—C8—H8119.4
C2—N2—O1i165.93 (11)C8—C9—C10118.93 (18)
N1—N2—O1i81.45 (9)C8—C9—H9120.5
N2—C2—O1112.87 (13)C10—C9—H9120.5
N2—C2—C3128.62 (15)C9—C10—C5119.30 (16)
O1—C2—C3118.48 (14)C9—C10—C11134.28 (17)
C2—C3—C4111.86 (13)C5—C10—C11106.41 (14)
C2—C3—H6A109.2C12—C11—C16119.57 (17)
C4—C3—H6A109.2C12—C11—C10133.50 (17)
C2—C3—H3B109.2C16—C11—C10106.93 (14)
C4—C3—H3B109.2C13—C12—C11118.63 (19)
H6A—C3—H3B107.9C13—C12—H12120.7
N3—C4—C3112.02 (13)C11—C12—H12120.7
N3—C4—H4A109.2C12—C13—C14121.24 (17)
C3—C4—H4A109.2C12—C13—H13119.4
N3—C4—H4B109.2C14—C13—H13119.4
C3—C4—H4B109.2C15—C14—C13121.73 (18)
H4A—C4—H4B107.9C15—C14—H14119.1
C16—N3—C5108.85 (13)C13—C14—H14119.1
C16—N3—C4125.23 (14)C14—C15—C16116.51 (17)
C5—N3—C4125.38 (13)C14—C15—H15121.7
N3—C5—C6128.95 (15)C16—C15—H15121.7
N3—C5—C10109.05 (14)N3—C16—C15128.93 (16)
C6—C5—C10122.00 (15)N3—C16—C11108.74 (14)
C7—C6—C5117.12 (17)C15—C16—C11122.32 (16)
C2—O1—C1—N10.16 (15)C8—C9—C10—C50.8 (2)
C2—O1—C1—S1178.36 (11)C8—C9—C10—C11179.84 (17)
O1—C1—N1—N20.37 (16)N3—C5—C10—C9179.65 (14)
S1—C1—N1—N2177.93 (12)C6—C5—C10—C91.3 (2)
C1—N1—N2—C20.44 (17)N3—C5—C10—C110.15 (17)
C1—N1—N2—O1i166.09 (12)C6—C5—C10—C11179.21 (14)
N1—N2—C2—O10.32 (17)C9—C10—C11—C121.0 (3)
O1i—N2—C2—O1108.2 (4)C5—C10—C11—C12179.56 (18)
N1—N2—C2—C3177.54 (14)C9—C10—C11—C16179.05 (17)
O1i—N2—C2—C373.9 (5)C5—C10—C11—C160.35 (17)
C1—O1—C2—N20.11 (17)C16—C11—C12—C130.3 (2)
C1—O1—C2—C3177.99 (13)C10—C11—C12—C13179.55 (17)
N2—C2—C3—C4102.47 (19)C11—C12—C13—C140.1 (3)
O1—C2—C3—C475.29 (17)C12—C13—C14—C150.4 (3)
C2—C3—C4—N362.96 (18)C13—C14—C15—C160.6 (3)
C3—C4—N3—C1679.78 (18)C5—N3—C16—C15179.80 (15)
C3—C4—N3—C590.85 (18)C4—N3—C16—C158.3 (3)
C16—N3—C5—C6179.58 (15)C5—N3—C16—C110.82 (17)
C4—N3—C5—C68.5 (3)C4—N3—C16—C11172.75 (14)
C16—N3—C5—C100.60 (17)C14—C15—C16—N3178.53 (16)
C4—N3—C5—C10172.52 (14)C14—C15—C16—C110.3 (2)
N3—C5—C6—C7179.70 (15)C12—C11—C16—N3179.20 (14)
C10—C5—C6—C70.8 (2)C10—C11—C16—N30.72 (17)
C5—C6—C7—C80.0 (2)C12—C11—C16—C150.1 (2)
C6—C7—C8—C90.5 (3)C10—C11—C16—C15179.78 (14)
C7—C8—C9—C100.0 (3)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···S1i0.89 (2)2.75 (2)3.6053 (14)162.8 (19)
N1—H1N···O1i0.89 (2)2.62 (2)3.0707 (18)112.5 (16)
C3—H3B···S1ii0.992.933.9061 (16)169
C4—H4A···N2iii0.992.673.495 (2)141
C4—H4B···Cg4iii0.992.873.4577 (17)119
C12—H12···Cg4i0.953.224.073 (2)151
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1; (iii) x, y1, z.
 

Acknowledgements

We thank the University of Otago for purchase of the diffractometer and the Chemistry Department University of Otago for support of the work of JS.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBillah, S. M. R., Christie, R. M. & Shamey, R. (2008). Coloration Technol. 124, 223–228.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFitilis, I., Fakis, M., Polyzos, I., Giannetas, V., Persephonis, P., Vellis, P. & Mikroyannidis, J. (2007). Chem. Phys. Lett. 447, 300–304.  Web of Science CrossRef CAS Google Scholar
First citationGeier, M. J., Vogels, C. M., Decken, A. & Westcott, S. A. (2009). J. Organomet. Chem. 694, 3154–3159.  Web of Science CSD CrossRef CAS Google Scholar
First citationGhoneim, O. M., Legere, J. A., Golbraikh, A., Tropsha, A. & Booth, R. G. (2006). Bioorg. Med. Chem. 14, 6640–6658.  CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHosomi, H., Ohba, S. & Ito, Y. (2000). Acta Cryst. C56, e147–e148.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationKalinin, A. V., Scherer, S. & Snieckus, V. (2003). Angew. Chem. Int. Ed. 42, 3399–3404.  CSD CrossRef CAS Google Scholar
First citationKhan, I., Ibrar, A. & Simpson, J. (2014). CrystEngComm, 16, 164–174.  CSD CrossRef CAS Google Scholar
First citationKimura, T., Kai, Y., Yasuoka, N. & Kasai, N. (1985). Bull. Chem. Soc. Jpn, 58, 2268–2271.  CSD CrossRef CAS Web of Science Google Scholar
First citationLee, D. & Wallwork, S. C. (1978). Acta Cryst. B34, 3604–3608.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, C., Liu, M., Pschirer, N. G., Baumgarten, M. & Müllen, K. (2010). Chem. Rev. 110, 6817–6855.  CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMatsuoka, M., Han, L., Kitao, T., Mochizuki, S. & Nakatsu, K. (1988). Chem. Lett. 17, 905–908.  CSD CrossRef Google Scholar
First citationPeng, Q., Liu, X., Qin, Y., Xu, J., Li, M. & Dai, L. (2011). J. Mater. Chem. 21, 7714–7722.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTePaske, M. R., Gloer, J. B., Wicklow, D. T. & Dowd, P. F. (1989). Tetrahedron Lett. 30, 5965–5968.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, Z.-B., Wu, R.-T., Lu, J.-R. & Sun, Y.-F. (2006). Acta Cryst. E62, o4293–o4295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, Q., Gao, Y. J., Gao, H. Y. & Jin, W. J. (2014). J. Photochem. Photobiol. Chem. 289, 31–38.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds