research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of N′-amino­pyridine-2-carboximidamide and N′-{[1-(pyridin-2-yl)ethyl­­idene]amino}­pyridine-2-carboximidamide

aDepartment of Pharmaceutical Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, PO Box 2701, Cameroon, bChemistry, School of Mathematics and Physical Sciences, University of Hull, HU6 7RX, England, and cDepartment of Chemistry, University of Douala, PO Box 24157, Cameroon
*Correspondence e-mail: mevae@daad-alumni.de

Edited by G. S. Nichol, University of Edinburgh, Scotland (Received 13 April 2017; accepted 6 June 2017; online 13 June 2017)

The crystal structures of N′-amino­pyridine-2-carboximidamide (C6H8N4), 1, and N′-{[1-(pyridin-2-yl)ethyl­idene]amino}­pyridine-2-carboximidamide (C13H13N5), 2, are described. The non-H atoms in compound 1 are nearly planar (r.m.s. deviation from planarity = 0.0108 Å), while 2 is twisted about the central N—N bond by 17.8 (2)°. Both mol­ecules are linked by inter­molecular N—H⋯N hydrogen-bonding inter­actions; 1 forms a two-dimensional hydrogen-bonding network and for 2 the network is a one-dimensional chain. The bond lengths of these mol­ecules are similar to those in other literature reports of azine and di­imine systems.

1. Chemical context

The preparation of hydrazidines with the general formula RC(=NH)NHNH2 is accomplished by the action of hydrazine on the corresponding thio­amide, imido ether or nitrile (Case, 1965[Case, F. H. (1965). J. Org. Chem. 30, 931-933.]). A pyridine-2-carboxamidrazide co-crystal form has previously been crystallized as a pyridine-2-carboxamidra­zonium hydrogenoxalate salt, obtained by the reaction of pyridine-2-carboxamidrazide with oxalic acid (Wang et al., 2007[Wang, M., Hu, B., Wang, X.-Y., Wang, C.-G. & Cao, M.-N. (2007). Acta Cryst. E63, o3215.]). Related mol­ecules with diazine (N—N) bridges, obtained by condensation of hydrazidines with ketones can bring two metal centres into close proximity and provide an intra­molecular exchange pathway for spin-exchange inter­actions via the p-orbital system (σ pathway) of the heterocyclic ligand (Xu et al., 1997[Xu, Z., Thompson, L. K. & Miller, D. O. (1997). Inorg. Chem. 36, 3985-3995.], 2000[Xu, Z., Thompson, L. K., Matthews, C. J., Miller, D. O., Goeta, A. E., Wilson, C., Howard, J. A. K., Ohba, M. & Ōkawa, H. (2000). J. Chem. Soc. Dalton Trans. pp. 69-77.]). The latter type of mol­ecules present an unusual arrangement of potential donor sites, with many possible mononucleating and dinucleating coordination modes (Xu et al., 1997[Xu, Z., Thompson, L. K. & Miller, D. O. (1997). Inorg. Chem. 36, 3985-3995.]). Semi-empirical structural calculations demonstrate that the N—N bond in these azines is rotationally soft, thereby allowing significant twisting at little energy cost (Kesslen et al., 1999[Kesslen, E. C., Euler, W. B. & Foxman, B. M. (1999). Chem. Mater. 11, 336-340.]). Copper azine and imine complexes possess a significant anti­malarial and anti­tumor action (Gokhale et al., 2001a[Gokhale, N. H., Padhye, S. S., Padhye, S. B., Anson, C. E. & Powell, A. K. (2001a). Inorg. Chim. Acta, 319, 90-94.],b[Gokhale, N. H., Padhye, S. S., Rathbone, D. L., Billington, D. C., Lowe, P., Schwalbe, C. & Newton, C. (2001b). Inorg. Chem. Commun. 4, 26-29.], 2003[Gokhale, N. H., Padhye, S. B., Billington, D. C., Rathbone, D. L., Croft, S. L., Kendrick, H. D., Anson, C. E. & Powell, A. K. (2003). Inorg. Chim. Acta, 349, 23-29.]). Coordination complexes of 2-acetyl­pyridine-pyridine-2-carboxamidrazone have been obtained with cadmium(II), copper(II), nickel(II) and manganese(II) ions. The organic mol­ecule behaves as a mono- and bis­(bidentate) chelator (Xu et al., 2000[Xu, Z., Thompson, L. K., Matthews, C. J., Miller, D. O., Goeta, A. E., Wilson, C., Howard, J. A. K., Ohba, M. & Ōkawa, H. (2000). J. Chem. Soc. Dalton Trans. pp. 69-77.]; Gokhale et al., 2001a[Gokhale, N. H., Padhye, S. S., Padhye, S. B., Anson, C. E. & Powell, A. K. (2001a). Inorg. Chim. Acta, 319, 90-94.]; Yue et al., 2004[Yue, Y.-F., Gao, E.-Q., Bai, S.-Q., He, Z. & Yan, C.-Y. (2004). CrystEngComm, 6, 549-555.], 2006[Yue, Y.-F., Gao, E.-Q., Fang, C.-J., He, Z., Bai, S.-Q. & Yan, C.-H. (2006). Polyhedron, 25, 2778-2784.]). A polymorph of 2-acetyl­pyridine-pyridine-2-carboxamidrazone as been obtained with two crystallographically independent mol­ecules included in the asymmetric unit (Yue et al., 2006[Yue, Y.-F., Gao, E.-Q., Fang, C.-J., He, Z., Bai, S.-Q. & Yan, C.-H. (2006). Polyhedron, 25, 2778-2784.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of 1 is shown in Fig. 1[link]. The mol­ecule is close to planar; the r.m.s. deviation of non-hydrogen atoms from planarity is 0.0108 Å with atom N2 displaying the largest deviation from the mean plane of 0.016 (3) Å. The geometry about N2 and N4 is not planar. H2A and H2B lie 0.12 (6) and 0.24 (6) Å out of the mean plane of non-hydrogen atoms. For H4A and H4B, the deviation is even greater at 0.37 (5) and 0.54 (5) Å from the mean plane. Rotation of the non-planar NH2 group, particularly for N4, facilitates hydrogen bonding to other mol­ecules. The N—N single bond length in 1 [1.424 (5) Å] is slightly shorter than that in the free hydrazine (1.449 Å).

[Figure 1]
Figure 1
ORTEP representation of the asymmetric unit of 1, with displacement ellipsoids drawn at the 50% probability level.

The mol­ecular structure of 2 is shown in Fig. 2[link]. The mol­ecule is not planar, perhaps as a result of conjunction of supra­molecular inter­actions and packing effects. Each of the two ring systems is essentially planar (r.m.s. deviations for the two six-membered rings are 0.0162 and 0.0057 Å for N1/C1–C5 and N5/C9–C13, respectively). The hydrazidine group N3/C8/N4 is rotated slightly away from the plane of the six-membered ring along the C8—C9 bond by 8.6 (3)°. The imine group N2/C6/C7 is rotated from the plane of the adjacent six-membered ring by rotation about C5—C6 by 14.5 (2)°. The mol­ecule is further distorted away from planarity by rotation of 17.8 (2)° about the central N2—N3 bond.

[Figure 2]
Figure 2
ORTEP representation of the asymmetric unit of 2, with displacement ellipsoids drawn at the 50% probability level.

The bond lengths indicate that within the central chain of the mol­ecule, the C6—N2 and C8—N3 linkages have largely double-bond character. The azine linkages are in the E,E conformation, suggesting conjugation throughout the π systems. The C6—N2—N3 and C8—N3—N2 angles of 115.5 (2)° and 110.57 (19)°, respectively are significantly below the ideal sp2 value of 120°, a consequence of the repulsion between the nitro­gen lone pair and the adjacent bonds. The C6—N2—N3—C8 torsion angle is −162.2 (2)°. This large deviation from planarity has two consequences. First, there is a loss of conjugation between the imine bonds across the azine bond, reflected in the shorter imine bond length. The torsion also leads to a shorter N2—N3 bond length [1.408 (3) Å] compared to that observed for 1 [1.424 (5) Å]. Finally, a short intra­molecular contact between N3i and H4B, 2.42 (3) Å, may add a favorable electrostatic contribution to the stability of this conformation. Notably, there is minimal change in the bond lengths within the ligands when a first row transition metal ion is bound. When the ligand chelates to a metal ion through both N3 and N5, only the bond length C8—N4 changes significantly, becoming shorter on binding.

3. Supra­molecular features

There are two mol­ecules of 1 in each unit cell and these are related by the screw axis. Curiously, N1 does not act as a hydrogen-bond acceptor. H2A is also not involved with the formation of any (short) classical hydrogen bonds. H2B forms a hydrogen bond to N4i [symmetry code: (i) 1 – x, y + [{1\over 2}], 1 – z]. This is augmented by the longer hydrogen bond N4—H4B⋯N4i. N4—H4A forms a hydrogen bond to N3ii [symmetry code: (ii) –x, y + [{1\over 2}], –z + 1]. These three sets of hydrogen bonds (Table 1[link]) are sufficient to hold pairs of mol­ecules together within the unit cell and to knit these dimers together to form sheets in the xy plane (see Fig. 3[link]). These sheets then stack parallel to the [001] direction, presumably held together by van der Waals inter­actions.

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N4i 0.95 (3) 2.16 (3) 3.106 (5) 174 (4)
N4—H4B⋯N4i 0.94 (3) 2.51 (3) 3.357 (6) 149 (4)
N4—H4A⋯N3ii 0.95 (3) 2.19 (4) 3.113 (5) 162 (4)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x, y+{\script{1\over 2}}, -z+1].
[Figure 3]
Figure 3
A portion of the hydrogen-bonded sheet present in 1. Hydrogen bonds are shown as dashed lines.

The classical hydrogen bonding (Table 2[link]) in 2 is more sparse than in 1. N1, N2, and N5 do not act as classical hydrogen-bond acceptors. A single symmetry-independent hydrogen bond [N4—H4B⋯N3i [symmetry code: (i) 1/2 – x, 1 – y, z – 1/2] is present and this knits the mol­ecules of 2 together to form hydrogen-bonded chains along the [001] direction, as shown in Fig. 4[link]. There are subsidiary short C—H⋯N(pyridine) distances suggestive of inter­molecular inter­actions.

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯N3i 0.88 2.42 3.206 (3) 149
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].
[Figure 4]
Figure 4
A portion of the hydrogen-bonded chain present in 2. Hydrogen bonds are shown as dashed lines. Symmetry codes: (i) x, y, z − 1; (ii) [{1\over 2}] − x, 1 − y, z − [{3\over 2}]; (iii) [{1\over 2}] − x, 1 − y, z − [{1\over 2}].

4. Database survey

For literature on N′-aminopyridine-2-carboximidamide and related mol­ecules, see Case et al. (1965[Case, F. H. (1965). J. Org. Chem. 30, 931-933.]). For the synthesis of N′-{[1-(pyridin-2-yl)ethylidene]amino}pyridine-2-carboximidamide and analogues, see Gokhale et al. (2001a[Gokhale, N. H., Padhye, S. S., Padhye, S. B., Anson, C. E. & Powell, A. K. (2001a). Inorg. Chim. Acta, 319, 90-94.],b[Gokhale, N. H., Padhye, S. S., Rathbone, D. L., Billington, D. C., Lowe, P., Schwalbe, C. & Newton, C. (2001b). Inorg. Chem. Commun. 4, 26-29.], 2003[Gokhale, N. H., Padhye, S. B., Billington, D. C., Rathbone, D. L., Croft, S. L., Kendrick, H. D., Anson, C. E. & Powell, A. K. (2003). Inorg. Chim. Acta, 349, 23-29.]) and Xu et al. (1997[Xu, Z., Thompson, L. K. & Miller, D. O. (1997). Inorg. Chem. 36, 3985-3995.], 2000[Xu, Z., Thompson, L. K., Matthews, C. J., Miller, D. O., Goeta, A. E., Wilson, C., Howard, J. A. K., Ohba, M. & Ōkawa, H. (2000). J. Chem. Soc. Dalton Trans. pp. 69-77.]). For the coordination chemistry of N′-aminopyridine-2-carboximidamide, see Xu et al. (2000[Xu, Z., Thompson, L. K., Matthews, C. J., Miller, D. O., Goeta, A. E., Wilson, C., Howard, J. A. K., Ohba, M. & Ōkawa, H. (2000). J. Chem. Soc. Dalton Trans. pp. 69-77.]), Gokhale et al. (2001a[Gokhale, N. H., Padhye, S. S., Padhye, S. B., Anson, C. E. & Powell, A. K. (2001a). Inorg. Chim. Acta, 319, 90-94.]) and Yue et al. (2004[Yue, Y.-F., Gao, E.-Q., Bai, S.-Q., He, Z. & Yan, C.-Y. (2004). CrystEngComm, 6, 549-555.], 2006[Yue, Y.-F., Gao, E.-Q., Fang, C.-J., He, Z., Bai, S.-Q. & Yan, C.-H. (2006). Polyhedron, 25, 2778-2784.]).

5. Synthesis and crystallization

The synthesis of N′-amino­pyridine-2-carboximidamide and N′-{[1-(pyridin-2-yl)ethyl­idene]amino}­pyridine-2-carboximid­amide is depicted in Fig. 5[link].

[Figure 5]
Figure 5
The synthesis of 1 and 2.

N′-Amino­pyridine-2-carboximidamide (1) was prepared by an analogy of the procedure published by Case (1965[Case, F. H. (1965). J. Org. Chem. 30, 931-933.]) with some modifications. A mixture of 2-cyano­pyridine (0.05 mol), absolute ethanol (9 ml), and 95% hydrazine (15 ml) was stirred at room temperature for 2 h. The solid product was then dried under vacuum and recrystallized from benzene. N′-{[1-(Pyridin-2-yl)ethyl­idene]amino}­pyridine-2-carboximid­amide (2) was synthesized by an analogy of the procedure published by Gokhale et al. (2001a[Gokhale, N. H., Padhye, S. S., Padhye, S. B., Anson, C. E. & Powell, A. K. (2001a). Inorg. Chim. Acta, 319, 90-94.]) by refluxing pyridine-2-carboxamidrazide (1) (0.5 g, 3.6 mmol) with excess 2-acetyl pyridine (0.5 g, 4.1 mmol) in absolute ethanol (20 ml) for 2 h. On cooling the product separates out in one week as yellow crystals which were filtered and dried.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

  1 2
Crystal data
Chemical formula C6H8N4 C13H13N5
Mr 136.16 239.28
Crystal system, space group Monoclinic, P21 Orthorhombic, P212121
Temperature (K) 150 150
a, b, c (Å) 5.6955 (14), 3.8408 (5), 14.592 (4) 6.6899 (5), 18.930 (2), 9.6561 (11)
α, β, γ (°) 90, 91.631 (19), 90 90, 90, 90
V3) 319.08 (12) 1222.8 (2)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.10 0.08
Crystal size (mm) 0.48 × 0.21 × 0.20 0.50 × 0.30 × 0.30
 
Data collection
Diffractometer Stoe IPDS2 Stoe IPDS2
Absorption correction Multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])
Tmin, Tmax 0.909, 0.963
No. of measured, independent and observed [I > 2σ(I)] reflections 2271, 1407, 806 4734, 3172, 1881
Rint 0.079 0.060
(sin θ/λ)max−1) 0.688 0.688
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.193, 0.87 0.040, 0.085, 0.83
No. of reflections 1407 3172
No. of parameters 109 164
No. of restraints 12 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.37 0.13, −0.17
Computer programs: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SORTAV (Blessing, 1987[Blessing, R. H. (1987). Crystallogr. Rev. 1, 3-58.], 1989[Blessing, R. H. (1989). J. Appl. Cryst. 22, 396-397.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) andSHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

There is no significant anomalous dispersion at this wavelength so the Flack parameter is meaningless and this is not reported.

For compound 1, hydrogen atoms of the aromatic ring were placed using a riding model with the C—H bond length allowed to refine subject to the restraint that all these bond lengths were equal within a estimated standard deviation of 0.02 Å. These C—H bond lengths lie in the range 0.97 (3) to 0.99 (3) Å. The other hydrogen atoms attached to formally single-bonded nitro­gen atoms were freely refined subject to sensible distance and angle restraints. The N—H distances lie in the range 0.94 (3)-0.95 (3) Å.

For compound 2, hydrogen atoms were placed using a riding model [N—H = 0.88, C—H = 0.95–0.98 Å; Uiso(H) = 1.2 or 1.5Ueq(C)].

Supporting information


Computing details top

For both compounds, data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005). Data reduction: scaled and merged with SORTAV (Blessing, 1987, 1989) for (1); X-AREA (Stoe & Cie, 2005) for (2). For both compounds, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

(1) N'-Aminopyridine-2-carboximidamide top
Crystal data top
C6H8N4F(000) = 144
Mr = 136.16Dx = 1.417 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.6955 (14) ÅCell parameters from 2199 reflections
b = 3.8408 (5) Åθ = 5.5–28.6°
c = 14.592 (4) ŵ = 0.10 mm1
β = 91.631 (19)°T = 150 K
V = 319.08 (12) Å3Block, colourless
Z = 20.48 × 0.21 × 0.20 mm
Data collection top
Stoe IPDS2
diffractometer
1407 independent reflections
Radiation source: fine-focus sealed tube806 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.079
ω–scanθmax = 29.3°, θmin = 2.8°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 76
Tmin = 0.909, Tmax = 0.963k = 45
2271 measured reflectionsl = 2019
Refinement top
Refinement on F212 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.072H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.193 w = 1/[σ2(Fo2) + (0.1122P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.87(Δ/σ)max < 0.001
1407 reflectionsΔρmax = 0.30 e Å3
109 parametersΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3776 (8)0.3892 (13)0.8928 (3)0.0457 (11)
H10.494 (4)0.4064 (14)0.9427 (17)0.055*
C20.1680 (8)0.2331 (13)0.9109 (3)0.0464 (11)
H20.1358 (13)0.143 (3)0.973 (2)0.056*
C30.0007 (9)0.2040 (13)0.8396 (3)0.0462 (11)
H30.152 (5)0.092 (4)0.8496 (4)0.055*
C40.0545 (8)0.3357 (12)0.7545 (3)0.0423 (11)
H40.060 (4)0.3176 (14)0.7027 (17)0.051*
C50.2711 (7)0.4937 (12)0.7426 (3)0.0391 (9)
C60.3370 (7)0.6479 (12)0.6539 (3)0.0369 (9)
N10.4337 (6)0.5206 (10)0.8109 (2)0.0435 (10)
N20.5525 (7)0.7974 (11)0.6517 (2)0.0443 (10)
N30.1844 (6)0.6252 (9)0.5862 (2)0.0389 (9)
N40.2585 (6)0.7713 (12)0.5022 (2)0.0422 (9)
H4A0.125 (7)0.840 (13)0.466 (3)0.063*
H2A0.637 (8)0.830 (16)0.708 (2)0.063*
H2B0.614 (7)0.954 (13)0.608 (2)0.063*
H4B0.353 (7)0.970 (12)0.512 (3)0.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.046 (3)0.041 (3)0.050 (2)0.002 (2)0.0008 (18)0.000 (2)
C20.050 (3)0.036 (3)0.053 (2)0.006 (2)0.0041 (19)0.0020 (19)
C30.042 (2)0.037 (3)0.060 (2)0.003 (2)0.0060 (18)0.0037 (18)
C40.035 (2)0.035 (3)0.056 (2)0.001 (2)0.0017 (18)0.0012 (19)
C50.035 (2)0.031 (2)0.051 (2)0.007 (2)0.0021 (16)0.0032 (17)
C60.030 (2)0.029 (2)0.052 (2)0.0006 (19)0.0007 (16)0.0010 (17)
N10.041 (2)0.037 (2)0.0518 (19)0.0003 (19)0.0005 (14)0.0001 (16)
N20.039 (2)0.041 (2)0.0528 (19)0.0051 (19)0.0004 (15)0.0007 (17)
N30.0346 (18)0.033 (2)0.0486 (18)0.0019 (17)0.0014 (14)0.0004 (16)
N40.041 (2)0.038 (2)0.0469 (17)0.0008 (19)0.0006 (14)0.0039 (16)
Geometric parameters (Å, º) top
C1—N11.345 (6)C5—N11.345 (5)
C1—C21.368 (7)C5—C61.481 (5)
C1—H10.97 (3)C6—N31.300 (5)
C2—C31.395 (7)C6—N21.357 (6)
C2—H20.99 (3)N2—H2A0.95 (3)
C3—C41.383 (6)N2—H2B0.95 (3)
C3—H30.98 (3)N3—N41.424 (5)
C4—C51.390 (6)N4—H4A0.95 (3)
C4—H40.99 (3)N4—H4B0.94 (3)
N1—C1—C2124.5 (4)N1—C5—C6115.5 (4)
N1—C1—H1117.8C4—C5—C6122.1 (4)
C2—C1—H1117.8N3—C6—N2126.6 (4)
C1—C2—C3118.2 (4)N3—C6—C5117.2 (4)
C1—C2—H2120.9N2—C6—C5116.2 (3)
C3—C2—H2120.9C1—N1—C5117.0 (4)
C4—C3—C2118.4 (4)C6—N2—H2A118 (3)
C4—C3—H3120.8C6—N2—H2B129 (2)
C2—C3—H3120.8H2A—N2—H2B108 (3)
C3—C4—C5119.5 (4)C6—N3—N4114.8 (4)
C3—C4—H4120.3N3—N4—H4A110 (3)
C5—C4—H4120.3N3—N4—H4B111 (3)
N1—C5—C4122.4 (4)H4A—N4—H4B108 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N4i0.95 (3)2.16 (3)3.106 (5)174 (4)
N4—H4B···N4i0.94 (3)2.51 (3)3.357 (6)149 (4)
N4—H4A···N3ii0.95 (3)2.19 (4)3.113 (5)162 (4)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y+1/2, z+1.
(2) N'-{[1-(Pyridin-2-yl)ethylidene]amino}pyridine-2-carboximidamide top
Crystal data top
C13H13N5Dx = 1.300 Mg m3
Mr = 239.28Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3070 reflections
a = 6.6899 (5) Åθ = 2.2–27.9°
b = 18.930 (2) ŵ = 0.08 mm1
c = 9.6561 (11) ÅT = 150 K
V = 1222.8 (2) Å3Block, yellow
Z = 40.50 × 0.30 × 0.30 mm
F(000) = 504
Data collection top
Stoe IPDS2
diffractometer
1881 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.060
Detector resolution: 6.67 pixels mm-1θmax = 29.3°, θmin = 2.2°
ω–scanh = 79
4734 measured reflectionsk = 2225
3172 independent reflectionsl = 139
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0355P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.83(Δ/σ)max < 0.001
3172 reflectionsΔρmax = 0.13 e Å3
164 parametersΔρmin = 0.17 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8155 (4)0.19604 (14)0.7310 (3)0.0423 (6)
H10.83110.14960.76660.051*
C20.9604 (4)0.22137 (15)0.6439 (3)0.0410 (6)
H21.07160.19290.61890.049*
C30.9409 (4)0.28972 (15)0.5928 (3)0.0399 (6)
H31.03930.30920.53310.048*
C40.7756 (4)0.32843 (13)0.6309 (3)0.0338 (6)
H40.75960.37540.59810.041*
C50.6314 (4)0.29863 (12)0.7179 (2)0.0294 (5)
C60.4460 (4)0.33685 (11)0.7576 (2)0.0292 (5)
C70.3185 (4)0.30756 (13)0.8722 (3)0.0352 (6)
H7A0.23030.34470.90760.053*
H7B0.40450.29040.94720.053*
H7C0.23770.26840.83650.053*
C80.1767 (4)0.47107 (12)0.6220 (3)0.0289 (5)
C90.0076 (4)0.51400 (12)0.6439 (2)0.0287 (5)
C100.1320 (4)0.50366 (13)0.7570 (3)0.0350 (6)
H100.10220.46850.82400.042*
C110.3006 (4)0.54571 (14)0.7701 (3)0.0405 (6)
H110.38770.54010.84700.049*
C120.3401 (4)0.59572 (14)0.6701 (3)0.0390 (6)
H120.45440.62530.67670.047*
C130.2093 (4)0.60183 (14)0.5600 (3)0.0382 (6)
H130.23710.63650.49150.046*
N10.6516 (3)0.23293 (11)0.7696 (2)0.0361 (5)
N20.4076 (3)0.39235 (11)0.6850 (2)0.0312 (5)
N30.2326 (3)0.42907 (10)0.7220 (2)0.0312 (5)
N40.2661 (3)0.47642 (11)0.4976 (2)0.0396 (5)
H4A0.37120.45030.47860.048*
H4B0.21930.50610.43540.048*
N50.0458 (3)0.56182 (11)0.5440 (2)0.0344 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0446 (16)0.0378 (13)0.0444 (15)0.0104 (13)0.0050 (13)0.0018 (12)
C20.0358 (15)0.0472 (15)0.0399 (15)0.0085 (13)0.0000 (13)0.0054 (13)
C30.0345 (15)0.0476 (16)0.0376 (15)0.0026 (13)0.0011 (12)0.0038 (12)
C40.0354 (14)0.0309 (13)0.0349 (14)0.0025 (11)0.0012 (12)0.0004 (11)
C50.0322 (13)0.0266 (12)0.0295 (12)0.0028 (11)0.0045 (11)0.0015 (10)
C60.0309 (13)0.0251 (11)0.0315 (13)0.0016 (10)0.0029 (11)0.0024 (10)
C70.0347 (14)0.0327 (13)0.0382 (14)0.0020 (12)0.0027 (12)0.0026 (11)
C80.0290 (12)0.0251 (12)0.0326 (13)0.0034 (10)0.0001 (11)0.0021 (10)
C90.0293 (12)0.0258 (11)0.0310 (12)0.0028 (10)0.0023 (10)0.0008 (10)
C100.0350 (13)0.0334 (13)0.0368 (14)0.0022 (11)0.0006 (12)0.0019 (11)
C110.0336 (14)0.0454 (15)0.0424 (14)0.0003 (12)0.0072 (13)0.0018 (12)
C120.0354 (15)0.0344 (14)0.0472 (16)0.0053 (12)0.0009 (13)0.0013 (12)
C130.0397 (15)0.0313 (13)0.0437 (15)0.0032 (13)0.0015 (12)0.0036 (12)
N10.0361 (12)0.0324 (11)0.0398 (12)0.0037 (10)0.0019 (10)0.0045 (9)
N20.0327 (11)0.0281 (11)0.0326 (11)0.0016 (10)0.0001 (9)0.0009 (9)
N30.0296 (11)0.0301 (11)0.0341 (11)0.0013 (9)0.0028 (9)0.0009 (9)
N40.0389 (13)0.0462 (13)0.0338 (11)0.0138 (11)0.0048 (10)0.0074 (10)
N50.0340 (12)0.0299 (11)0.0392 (12)0.0025 (10)0.0003 (10)0.0023 (9)
Geometric parameters (Å, º) top
C1—N11.352 (3)C8—N31.305 (3)
C1—C21.371 (4)C8—N41.346 (3)
C1—H10.9500C8—C91.492 (3)
C2—C31.391 (4)C9—N51.347 (3)
C2—H20.9500C9—C101.386 (4)
C3—C41.377 (4)C10—C111.387 (3)
C3—H30.9500C10—H100.9500
C4—C51.398 (3)C11—C121.378 (4)
C4—H40.9500C11—H110.9500
C5—N11.347 (3)C12—C131.381 (4)
C5—C61.487 (3)C12—H120.9500
C6—N21.289 (3)C13—N51.340 (3)
C6—C71.503 (3)C13—H130.9500
C7—H7A0.9800N2—N31.408 (3)
C7—H7B0.9800N4—H4A0.8800
C7—H7C0.9800N4—H4B0.8800
N1—C1—C2124.2 (3)N3—C8—C9117.6 (2)
N1—C1—H1117.9N4—C8—C9116.9 (2)
C2—C1—H1117.9N5—C9—C10123.0 (2)
C1—C2—C3118.5 (3)N5—C9—C8114.9 (2)
C1—C2—H2120.8C10—C9—C8122.0 (2)
C3—C2—H2120.8C9—C10—C11118.6 (2)
C4—C3—C2118.4 (3)C9—C10—H10120.7
C4—C3—H3120.8C11—C10—H10120.7
C2—C3—H3120.8C12—C11—C10119.1 (3)
C3—C4—C5120.0 (2)C12—C11—H11120.5
C3—C4—H4120.0C10—C11—H11120.5
C5—C4—H4120.0C11—C12—C13118.4 (3)
N1—C5—C4121.7 (2)C11—C12—H12120.8
N1—C5—C6116.0 (2)C13—C12—H12120.8
C4—C5—C6122.3 (2)N5—C13—C12124.0 (2)
N2—C6—C5115.0 (2)N5—C13—H13118.0
N2—C6—C7126.0 (2)C12—C13—H13118.0
C5—C6—C7118.9 (2)C5—N1—C1117.2 (2)
C6—C7—H7A109.5C6—N2—N3115.5 (2)
C6—C7—H7B109.5C8—N3—N2110.57 (19)
H7A—C7—H7B109.5C8—N4—H4A120.0
C6—C7—H7C109.5C8—N4—H4B120.0
H7A—C7—H7C109.5H4A—N4—H4B120.0
H7B—C7—H7C109.5C13—N5—C9116.9 (2)
N3—C8—N4125.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···N3i0.882.423.206 (3)149
Symmetry code: (i) x+1/2, y+1, z1/2.
 

Acknowledgements

FEM thanks the Commonwealth Scholarship Commission in the United Kingdom for the generous Academic Fellowship CMCF-2015–3.

Funding information

Funding for this research was provided by: Commonwealth Scholarship Commission (award No. Academic Fellowship CMCF-2015-3).

References

First citationBlessing, R. H. (1987). Crystallogr. Rev. 1, 3–58.  CrossRef Google Scholar
First citationBlessing, R. H. (1989). J. Appl. Cryst. 22, 396–397.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCase, F. H. (1965). J. Org. Chem. 30, 931–933.  CrossRef CAS Web of Science Google Scholar
First citationGokhale, N. H., Padhye, S. B., Billington, D. C., Rathbone, D. L., Croft, S. L., Kendrick, H. D., Anson, C. E. & Powell, A. K. (2003). Inorg. Chim. Acta, 349, 23–29.  Web of Science CSD CrossRef CAS Google Scholar
First citationGokhale, N. H., Padhye, S. S., Padhye, S. B., Anson, C. E. & Powell, A. K. (2001a). Inorg. Chim. Acta, 319, 90–94.  Web of Science CSD CrossRef CAS Google Scholar
First citationGokhale, N. H., Padhye, S. S., Rathbone, D. L., Billington, D. C., Lowe, P., Schwalbe, C. & Newton, C. (2001b). Inorg. Chem. Commun. 4, 26–29.  Web of Science CSD CrossRef CAS Google Scholar
First citationKesslen, E. C., Euler, W. B. & Foxman, B. M. (1999). Chem. Mater. 11, 336–340.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWang, M., Hu, B., Wang, X.-Y., Wang, C.-G. & Cao, M.-N. (2007). Acta Cryst. E63, o3215.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, Z., Thompson, L. K., Matthews, C. J., Miller, D. O., Goeta, A. E., Wilson, C., Howard, J. A. K., Ohba, M. & Ōkawa, H. (2000). J. Chem. Soc. Dalton Trans. pp. 69–77.  Web of Science CrossRef CAS Google Scholar
First citationXu, Z., Thompson, L. K. & Miller, D. O. (1997). Inorg. Chem. 36, 3985–3995.  CSD CrossRef CAS Web of Science Google Scholar
First citationYue, Y.-F., Gao, E.-Q., Bai, S.-Q., He, Z. & Yan, C.-Y. (2004). CrystEngComm, 6, 549–555.  Web of Science CSD CrossRef CAS Google Scholar
First citationYue, Y.-F., Gao, E.-Q., Fang, C.-J., He, Z., Bai, S.-Q. & Yan, C.-H. (2006). Polyhedron, 25, 2778–2784.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds