research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (5-{3-[(1,4,7,10,13-penta­oxa-16-aza­cyclo­octa­decan-16-yl)carbonyl­amino]­phen­yl}-10,15,20-tri­phenyl­porphyrinato)cobalt(II)

CROSSMARK_Color_square_no_text.svg

aCollege of Material Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing 101408, People's Republic of China
*Correspondence e-mail: jfli@ucas.ac.cn

Edited by P. McArdle, National University of Ireland, Ireland (Received 15 May 2017; accepted 24 May 2017; online 7 June 2017)

In the title compound, [Co(C57H52N6O6)], the central CoII atom is coordinated by four pyrrole N atoms of the porphyrin core and one O atom of the crown ether. The complex has a distorted porphyrin core, with mean absolute core-atom displacements of 0.14 (10) (Ca), 0.20 (10) (Cb), 0.24 (4) (Cm) and 0.18 (10) Å (Cav), respectively. The axial Co—O bond length is 2.3380 (15) and the average Co—Np bond length is 1.968 (5) Å. Intra­molecular N—H⋯O and inter­molecular C—H⋯π inter­actions are observed.

1. Chemical context

Crown ether-porphyrinates have been developed to mimic the active site of the cytochrome c oxidase. There have been some reports on the single-crystal structures of crown ether-porphyrinates, including chlorido­[52-N-(4-aza-18-crown-6)methyl-54,104,154,204-tetra-tert-butyl-56-methyl-5,10,15,20-tetra­phenyl­porphyrinato]iron(III) (Dürr et al., 2007[Dürr, K., Macpherson, B. P., Warratz, R., Hampel, F., Tuczek, F., Helmreich, M., Jux, N. & Ivanović-Burmazović, I. (2007). J. Am. Chem. Soc. 129, 4217-4228.]), 5,15-{2,2′-[3,3′-(1,4,10,13-tetra­oxa-7,16- di­aza­cyclo­octa­decan-7,16-di­yl)dipropionamido]­phen­yl}-2,8,12,18-tetra­ethyl-3,7,13,17-tetra­methyl­porphyrin and the corresponding zinc(II) compounds (Comte et al., 1998[Comte, C. P., Gros, C., Koeller, S., Guilard, R. J., Nurco, D. & Smith, M. (1998). New J. Chem. 22, 621-626.]), 1,4,10,13-tetra­oxa-7,16-di­aza-cyclo­octa­decane-7,16-di­carb­oxy­lic acid{2,20-[10,20-bis-(3,5-di­meth­oxy­phen­yl)porphyrin-α-5,15-di­yl]diphen­yl}di­amide and the corresponding zinc(II) and lead(II) compounds (Halime et al., 2007[Halime, Z., Lachkar, M., Toupet, L., Coutsolelos, A. G. & Boitrel, B. (2007). Dalton Trans. pp. 3684-3689.]), aqua­{5,15,10,20-bis­[bis­(2-(1,10-di­aza-18-crown-6-1,10-di­yl)carbonyl­amino­phen­yl]porphyrinato}zinc(II) (Michaudet et al., 2000[Michaudet, L., Richard, P. & Boitrel, B. (2000). Tetrahedron Lett. 41, 8289-8292.]). Herein, the crystal structure of a cobalt(II) porphyrin complex, (5-{3-[(1,4,7,10,13-penta­oxa-16-aza­cyclo­octa­decan-16-yl)carbonyl­amino]­phen­yl}-10,15,20-tri­phenyl­porphyrinato)cobalt(II), is reported.

[Scheme 1]

2. Structural commentary

In the crystal of the title compound (Fig. 1[link]), the asymmetric unit contains one five-coordinate single-crowned porphyrin in which the oxygen atom (O3) of the crown ether ligates to the central cobalt(II) atom. Additional qu­anti­tative information on the structure is given in Fig. 2[link], which displays the detailed displacement of each porphyrin core atom (in units of 0.01 Å) from the 24-atom mean plane. Averaged values of the chemically unique bond lengths (in Å) and angles (in °) are also shown. The average Co—Np (Np is the porphyrin nitro­gen atom) bond length is 1.968 (5), in the narrow range of 1.958 (2)–1.969 (2) Å reported by Dey & Rath (2014[Dey, S. & Rath, S. P. (2014). Dalton Trans. 43, 2301-2314.]). The axial Co—O (O is the crown ether oxygen atom) bond length is 2.3380 (15) Å, slightly longer than the values of 2.230 (5) and 2.2724 (7) Å found in the structures of [CoII(TDPMP)(CH3OH)] [TDPMP = 5,10,15,20-tetra­kis­(di­phenyl­meth­yl)porphyrin; Runge et al., 1999[Runge, S., Senge Mathias, O. & Ruhlandt-Senge, K. (1999). Z. Naturforsch. Teil B, 54, 662-666.]] and [CoII(amtpp)]2 (amtpp = 52-amidato-5,10,15,20-tetra­phenyl­porphyrin; Yamanishi et al., 2011[Yamanishi, K., Miyazawa, M., Yairi, T., Sakai, S., Nishina, N., Kobori, Y., Kondo, M. & Uchida, F. (2011). Angew. Chem. 123, 6713-6716.]), respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Diagrams of the porphyrin core of the title compound. Averaged values of the chemically unique bond lengths (in Å) and angles (in °) are shown. The numbers in parentheses are the s.u. values calculated on the assumption that the averaged values are all drawn from the same population. The perpendicular displacements (in units of 0.01 Å) of the porphyrin core atoms from the 24-atom mean plane are also displayed. Positive values of the displacements are towards the oxygen atom as the axial ligand.

The cobalt(II) cation is displaced slightly from the porphyrin core to the axial ligand, as illustrated by the displacement of the metal atom from the 24-atom mean plane (Δ24 = 0.06 Å). The title compound shows a distorted porphyrin core conformation. The mean absolute core-atom displacements Ca, Cb, Cm and Cav are 0.14 (10), 0.20 (10), 0.24 (4) and 0.18 (10) Å, respectively.

An intra­molecular N—H⋯O inter­action is found between one of the oxygen atoms (O2) of the crown ether and the nitro­gen atom (N5) of the amide linker. The distance between O2 and N5 is 2.886 (2) (Table 1[link]), consistent with the range (2.70–3.05 Å) suggested for the existence of N—H⋯O hydrogen bonding (Bertolasi et al., 1995[Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1995). Acta Cryst. B51, 1004-1015.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5B⋯O2 0.93 (3) 1.99 (3) 2.866 (2) 156 (2)

3. Supra­molecular features

In the title compound, as seen in Fig. 3[link], the distances between the hydrogen atoms (H30A, H31A, H32A, H33A) of the crown ether and the plane of the neighbouring porphyrin core are 2.52, 2.57, 2.71 and 2.34 Å, all of which are smaller than 2.9 Å, a limit suggested for the existence of C—H⋯π inter­actions (Takahashi et al., 2001[Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomoda, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421-2430.]). The molecular packing is shown in Fig. 4[link].

[Figure 3]
Figure 3
The C—H⋯π inter­actions in the title compound. Dashed lines show the distances between hydrogen atoms of the crown ether and the porphyrin core plane. Other atoms have been omitted for clarity.
[Figure 4]
Figure 4
A view of the mol­ecular packing of the title compound in the crystal structure. H atoms have been omitted for clarity.

4. Synthesis and crystallization

General procedure: All reactions were carried out using standard Schlenk techniques under argon unless otherwise noted. Tetra­hydro­furan (THF) was distilled over sodium/benzo­phenone, hexa­nes over potassium-sodium alloy and di­chloro­methane (CH2Cl2) over calcium hydride. 52-Amino­phenyl-5,10,15,20-tetra­phenyl­porphyrin was prepared according to the reported method (Lembo et al., 2009[Lembo, A., Tagliatesta, P., Cicero, D., Leoni, A. & Salvatori, A. (2009). Org. Biomol. Chem. 7, 1093-1096.]).

4.1. Synthesis of 5-{3-[(1,4,7,10,13-penta­oxa-16-aza­cyclo­octa­decan-16-yl)carbonyl­amino]­phen­yl}-10,15,20-tri­phenyl­porphyrin

5-{3-[(1,4,7,10,13-penta­oxa-16-aza­cyclo­octa­decan-16-yl)carb­onyl­amino]­phen­yl}-10,15,20-tri­phenyl­porphyrin was prepared according to a modification of the reported methods (Wu & Starnes, 2012[Wu, X. & Starnes, S. D. (2012). Org. Lett. 14, 3652-3655.]; Collman et al., 1998[Collman, J. P., Wang, Z. & Straumanis, A. (1998). J. Org. Chem. 63, 2424-2425.]).

Triphosgene (220 mg, 0.74 mmol) was added to a THF (150 mL) solution of 52-amino­phenyl-5,10,15,20-tetra­phenyl­porphyrin (1.472 g, 2.3 mmol) and tri­ethyl­amine (Et3N, 0.7 mL) at 273 K. The mixture was stirred for 1 h and evaporated to dryness under vacuum. A CH2Cl2 (150 mL) solution of 1-aza-18-crown-6 (0.66 g, 2.5 mmol) and Et3N (0.3 mL) was added to the resulting solid stepwise. After overnight stirring, the solution was evaporated. The porphyrin product (1.48 g, 70%) was obtained by chromatography on a silica gel column (CH2Cl2).

4.2. Synthesis of (5-{3-[(1,4,7,10,13-penta­oxa-16-aza­cyclo­octa­decan-16-yl)carbonyl­amino]­phen­yl}-10,15,20-tri­phenyl­porphyrinato)cobalt(II)

(5-{3-[(1,4,7,10,13-Penta­oxa-16-aza­cyclo­octa­decan-16-yl)carbonyl­amino]­phen­yl}-10,15,20-tri­phenyl­porphyrinato)cobalt(II) was prepared according to a modification of the reported method (Adler et al., 1970[Adler, A. D., Longo, F. R., Kampas, F. & Kim, J. (1970). J. Inorg. Nucl. Chem. 32, 2443-2445.]).

Dried CoCl2 (1.68 g, 12.9 mmol) was added to a THF (150 mL) solution of 52-N-(4-aza-18-crown-6)acyl­amino-5,10,15,20-tetra­phenyl­porphyrin (0.6 g, 0.65 mmol). The mixture was refluxed for 3 h until the reaction was complete (monitored by TLC). The solution was extracted with CH2Cl2, washed with distilled water 2–3 times. After drying over Na2SO4 and filtration, the solvent was removed by rotoevaporation. The cobalt porphyrin product (0.52 g, 92%) was obtained by chromatography on a silica gel column (chloro­form: methanol; 20:1). The title crystal was obtained in a THF solution with hexa­nes as non-solvent.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms attached to the nitro­gen atom (N5) of the amide linker and the carbon atoms (C30, C31, C32, C33) of the crown ether were placed in the locations derived from a difference map, while others were placed in calculated positions (C—H = 0.95, 0.99 Å for aryl and methine H atoms, respectively). Hydrogen atoms were refined using a riding model with fixed isotropic displacement parameters of Uiso(H) = 1.2Ueq(C). One outlier was omitted in the last cycles of refinement.

Table 2
Experimental details

Crystal data
Chemical formula [Co(C57H52N6O6)]
Mr 975.97
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 17.2445 (6), 14.1398 (5), 19.6452 (7)
β (°) 93.3307 (12)
V3) 4782.1 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.42
Crystal size (mm) 0.37 × 0.20 × 0.06
 
Data collection
Diffractometer Bruker D8 QUEST System
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.904, 0.975
No. of measured, independent and observed [I > 2σ(I)] reflections 70434, 10590, 8774
Rint 0.062
(sin θ/λ)max−1) 0.643
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.106, 1.06
No. of reflections 10590
No. of parameters 667
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.69, −0.43
Computer programs: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]),SAINT and XPREP (Bruker, 2013[Bruker (2013). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 and SHELXCIF2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: APEX2 and SAINT (Bruker, 2013); data reduction: SAINT and XPREP (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXCIF2014 (Sheldrick, 2015b) and enCIFer (Allen et al., 2004).

(5-{3-[(1,4,7,10,13-Pentaoxa-16-azacyclooctadecan-16-yl)carbonylamino]phenyl}- 10,15,20-triphenylporphyrinato)cobalt(II) top
Crystal data top
[Co(C57H52N6O6)]F(000) = 2044
Mr = 975.97Dx = 1.356 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 17.2445 (6) ÅCell parameters from 9294 reflections
b = 14.1398 (5) Åθ = 2.7–27.2°
c = 19.6452 (7) ŵ = 0.42 mm1
β = 93.3307 (12)°T = 100 K
V = 4782.1 (3) Å3Block, black
Z = 40.37 × 0.20 × 0.06 mm
Data collection top
Bruker D8 QUEST System
diffractometer
8774 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.062
φ and ω scansθmax = 27.2°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 2222
Tmin = 0.904, Tmax = 0.975k = 1818
70434 measured reflectionsl = 2525
10590 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: mixed
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0377P)2 + 5.0698P]
where P = (Fo2 + 2Fc2)/3
10590 reflections(Δ/σ)max = 0.001
667 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.43 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.77071 (2)0.20877 (2)0.81653 (2)0.01301 (7)
N10.82538 (9)0.21197 (11)0.90768 (8)0.0141 (3)
N20.67472 (9)0.16966 (11)0.85777 (8)0.0145 (3)
N30.71366 (9)0.21920 (11)0.72734 (8)0.0141 (3)
N40.86690 (9)0.24988 (11)0.77621 (8)0.0152 (3)
C1010.89945 (11)0.24414 (14)0.92504 (9)0.0166 (4)
C1020.79657 (11)0.18437 (14)0.96887 (9)0.0159 (4)
C1030.66772 (11)0.13693 (13)0.92345 (9)0.0151 (4)
C1040.60177 (11)0.15961 (13)0.82619 (9)0.0155 (4)
C1050.63444 (11)0.21165 (13)0.71265 (9)0.0154 (4)
C1060.74468 (11)0.23415 (13)0.66505 (9)0.0149 (4)
C1070.87938 (11)0.25847 (14)0.70782 (9)0.0161 (4)
C1080.93724 (11)0.27208 (14)0.80922 (10)0.0165 (4)
C2010.91561 (12)0.23959 (16)0.99755 (10)0.0217 (4)
H(BA0.96220.25891.02180.026*
C2020.85233 (12)0.20276 (15)1.02461 (10)0.0214 (4)
H(BB0.84570.19111.07160.026*
C2030.59031 (11)0.10269 (14)0.93144 (10)0.0189 (4)
H(BC0.57130.07530.97140.023*
C2040.54965 (11)0.11668 (14)0.87155 (10)0.0180 (4)
H(BD0.49670.10110.86130.022*
C2050.61636 (11)0.22583 (14)0.64096 (9)0.0183 (4)
H(BE0.56600.22660.61860.022*
C2060.68428 (11)0.23789 (14)0.61139 (9)0.0176 (4)
H(BF0.69100.24710.56420.021*
C2070.95868 (11)0.28399 (15)0.69821 (10)0.0218 (4)
H(BG0.98180.29180.65580.026*
C2080.99406 (12)0.29471 (16)0.76082 (10)0.0221 (4)
H(BH1.04630.31350.77100.027*
C3010.95317 (11)0.27274 (14)0.87929 (9)0.0166 (4)
C3020.72418 (11)0.14436 (13)0.97660 (9)0.0154 (4)
C3030.58063 (11)0.18478 (13)0.75899 (9)0.0156 (4)
C3040.82307 (11)0.24882 (13)0.65463 (9)0.0158 (4)
C11.03134 (11)0.30727 (15)0.90615 (9)0.0190 (4)
C21.03696 (12)0.39518 (16)0.93759 (10)0.0241 (4)
H2A0.99090.42970.94490.029*
C31.10865 (13)0.43372 (16)0.95862 (11)0.0265 (5)
H3A1.11160.49360.98060.032*
C41.17555 (12)0.38379 (16)0.94717 (11)0.0255 (5)
H4A1.22480.41070.95970.031*
C51.17140 (12)0.29514 (16)0.91776 (10)0.0228 (4)
H5A1.21770.26090.91120.027*
C61.09946 (11)0.25552 (15)0.89764 (10)0.0193 (4)
C70.70432 (11)0.11388 (15)1.04666 (9)0.0182 (4)
C80.67899 (13)0.18032 (17)1.09286 (11)0.0291 (5)
H8A0.67390.24481.07970.035*
C90.66109 (14)0.15283 (19)1.15802 (11)0.0335 (5)
H9A0.64510.19881.18960.040*
C100.66645 (13)0.05914 (19)1.17709 (11)0.0313 (5)
H10A0.65310.04051.22130.038*
C110.69126 (13)0.00749 (18)1.13190 (11)0.0299 (5)
H11A0.69500.07211.14500.036*
C120.71088 (12)0.02048 (16)1.06662 (10)0.0236 (4)
H12A0.72890.02531.03580.028*
C130.49628 (11)0.17977 (14)0.73654 (9)0.0173 (4)
C140.44431 (12)0.24220 (15)0.76426 (10)0.0213 (4)
H14A0.46300.28850.79620.026*
C150.36532 (12)0.23753 (16)0.74581 (11)0.0253 (5)
H15A0.33020.27940.76600.030*
C160.33789 (13)0.17188 (18)0.69811 (11)0.0290 (5)
H16A0.28420.16990.68430.035*
C170.38857 (13)0.10962 (19)0.67089 (12)0.0337 (5)
H17A0.36960.06390.63860.040*
C180.46763 (12)0.11270 (17)0.69006 (11)0.0271 (5)
H18A0.50210.06870.67120.033*
C190.84853 (11)0.25600 (14)0.58351 (9)0.0162 (4)
C200.87286 (12)0.34129 (15)0.55670 (10)0.0233 (4)
H20A0.87040.39770.58280.028*
C210.90072 (13)0.34417 (17)0.49178 (11)0.0277 (5)
H21A0.91800.40240.47390.033*
C220.90336 (13)0.26276 (17)0.45314 (11)0.0281 (5)
H22A0.92210.26520.40860.034*
C230.87903 (12)0.17848 (17)0.47881 (11)0.0273 (5)
H23A0.88080.12260.45210.033*
C240.85176 (12)0.17490 (15)0.54403 (10)0.0212 (4)
H24A0.83510.11620.56170.025*
N51.09580 (10)0.16211 (13)0.87059 (9)0.0219 (4)
H5B1.0535 (17)0.124 (2)0.8796 (14)0.043 (8)*
C251.13590 (11)0.13717 (15)0.81420 (10)0.0209 (4)
O11.17389 (8)0.19470 (11)0.78285 (8)0.0257 (3)
N61.12918 (10)0.04417 (13)0.79513 (9)0.0226 (4)
O20.98449 (8)0.01154 (11)0.87015 (8)0.0262 (3)
O30.79383 (8)0.05063 (10)0.78948 (8)0.0253 (3)
O40.76136 (9)0.07052 (11)0.66442 (8)0.0298 (4)
O50.87241 (9)0.04949 (11)0.55450 (8)0.0309 (4)
O61.04706 (9)0.02582 (11)0.66271 (8)0.0288 (3)
C261.11134 (12)0.03147 (15)0.84266 (11)0.0248 (4)
H26A1.12580.01000.88970.030*
H26B1.14380.08720.83330.030*
C271.02716 (12)0.06149 (15)0.83898 (12)0.0261 (5)
H27A1.00800.07010.79090.031*
H27B1.02120.12200.86340.031*
C280.90267 (12)0.00076 (16)0.86277 (11)0.0251 (5)
H28A0.87740.04330.89370.030*
H28B0.88940.06610.87600.030*
C290.87176 (12)0.01736 (16)0.78963 (11)0.0265 (5)
H29A0.90460.06500.76820.032*
H29B0.87360.04190.76290.032*
C300.73435 (13)0.02000 (16)0.77704 (13)0.0302 (5)
H30A0.7553 (14)0.0834 (19)0.7934 (12)0.031 (7)*
H30B0.6907 (16)0.0014 (19)0.8086 (14)0.040 (7)*
C310.70500 (14)0.02511 (17)0.70410 (14)0.0331 (5)
H31A0.6524 (17)0.067 (2)0.7009 (14)0.049 (8)*
H31B0.6940 (17)0.043 (2)0.6862 (14)0.046 (8)*
C320.74101 (14)0.06236 (17)0.59341 (13)0.0305 (5)
H32A0.6896 (15)0.0967 (19)0.5824 (13)0.034 (7)*
H32B0.7317 (14)0.0051 (19)0.5820 (13)0.031 (7)*
C330.80347 (15)0.10470 (17)0.55274 (12)0.0315 (5)
H33A0.8161 (14)0.1692 (19)0.5687 (12)0.030 (6)*
H33B0.7829 (16)0.105 (2)0.5014 (14)0.044 (8)*
C340.93009 (14)0.07851 (16)0.60548 (12)0.0294 (5)
H34A0.95540.13770.59150.035*
H34B0.90620.08960.64940.035*
C350.98875 (14)0.00081 (17)0.61245 (12)0.0316 (5)
H35A1.01210.01200.56830.038*
H35B0.96310.05990.62620.038*
C361.10801 (13)0.04208 (16)0.66854 (11)0.0287 (5)
H36A1.08600.10620.67360.034*
H36B1.13770.04120.62690.034*
C371.16125 (13)0.01862 (16)0.73010 (11)0.0262 (5)
H37A1.17220.05010.73010.031*
H37B1.21120.05220.72620.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01207 (12)0.01794 (13)0.00923 (12)0.00057 (10)0.00228 (9)0.00073 (10)
N10.0128 (7)0.0173 (8)0.0125 (7)0.0002 (6)0.0035 (6)0.0008 (6)
N20.0147 (8)0.0176 (8)0.0116 (7)0.0007 (6)0.0030 (6)0.0007 (6)
N30.0147 (7)0.0165 (8)0.0114 (7)0.0013 (6)0.0034 (6)0.0003 (6)
N40.0156 (8)0.0185 (8)0.0115 (7)0.0008 (6)0.0018 (6)0.0011 (6)
C1010.0145 (9)0.0210 (10)0.0142 (9)0.0012 (7)0.0006 (7)0.0012 (7)
C1020.0158 (9)0.0190 (9)0.0133 (8)0.0031 (7)0.0026 (7)0.0012 (7)
C1030.0156 (9)0.0174 (9)0.0129 (8)0.0006 (7)0.0049 (7)0.0008 (7)
C1040.0135 (9)0.0184 (9)0.0149 (9)0.0005 (7)0.0030 (7)0.0014 (7)
C1050.0158 (9)0.0170 (9)0.0132 (8)0.0003 (7)0.0010 (7)0.0012 (7)
C1060.0194 (9)0.0149 (9)0.0104 (8)0.0010 (7)0.0021 (7)0.0001 (7)
C1070.0156 (9)0.0191 (9)0.0139 (9)0.0012 (7)0.0044 (7)0.0011 (7)
C1080.0136 (9)0.0206 (10)0.0156 (9)0.0018 (7)0.0027 (7)0.0019 (7)
C2010.0181 (10)0.0327 (12)0.0138 (9)0.0012 (8)0.0026 (7)0.0020 (8)
C2020.0200 (10)0.0322 (11)0.0120 (9)0.0005 (8)0.0002 (7)0.0033 (8)
C2030.0174 (9)0.0234 (10)0.0162 (9)0.0008 (8)0.0051 (7)0.0042 (8)
C2040.0149 (9)0.0223 (10)0.0172 (9)0.0011 (8)0.0037 (7)0.0022 (8)
C2050.0184 (9)0.0226 (10)0.0137 (9)0.0001 (8)0.0002 (7)0.0003 (7)
C2060.0214 (10)0.0208 (10)0.0107 (8)0.0016 (8)0.0012 (7)0.0002 (7)
C2070.0187 (10)0.0310 (11)0.0161 (9)0.0029 (8)0.0047 (7)0.0039 (8)
C2080.0151 (9)0.0332 (12)0.0184 (9)0.0045 (8)0.0036 (7)0.0053 (9)
C3010.0138 (9)0.0205 (10)0.0156 (9)0.0005 (7)0.0003 (7)0.0008 (7)
C3020.0169 (9)0.0173 (9)0.0123 (8)0.0022 (7)0.0033 (7)0.0012 (7)
C3030.0140 (9)0.0175 (9)0.0155 (9)0.0002 (7)0.0015 (7)0.0012 (7)
C3040.0197 (9)0.0164 (9)0.0115 (8)0.0012 (7)0.0044 (7)0.0007 (7)
C10.0169 (9)0.0278 (11)0.0124 (9)0.0030 (8)0.0007 (7)0.0041 (8)
C20.0183 (10)0.0320 (12)0.0218 (10)0.0000 (9)0.0009 (8)0.0007 (9)
C30.0264 (11)0.0292 (12)0.0237 (10)0.0060 (9)0.0008 (9)0.0020 (9)
C40.0197 (10)0.0343 (12)0.0220 (10)0.0077 (9)0.0028 (8)0.0054 (9)
C50.0156 (9)0.0323 (12)0.0203 (10)0.0024 (8)0.0010 (8)0.0050 (9)
C60.0176 (9)0.0257 (10)0.0147 (9)0.0024 (8)0.0010 (7)0.0048 (8)
C70.0118 (9)0.0304 (11)0.0125 (9)0.0024 (8)0.0011 (7)0.0023 (8)
C80.0333 (12)0.0331 (12)0.0220 (11)0.0002 (10)0.0106 (9)0.0002 (9)
C90.0306 (12)0.0528 (16)0.0184 (10)0.0029 (11)0.0118 (9)0.0069 (10)
C100.0229 (11)0.0560 (16)0.0153 (10)0.0056 (10)0.0026 (8)0.0089 (10)
C110.0258 (11)0.0387 (13)0.0248 (11)0.0037 (10)0.0012 (9)0.0135 (10)
C120.0229 (10)0.0292 (11)0.0189 (10)0.0016 (9)0.0023 (8)0.0026 (8)
C130.0150 (9)0.0239 (10)0.0132 (9)0.0031 (7)0.0020 (7)0.0022 (7)
C140.0221 (10)0.0226 (10)0.0194 (10)0.0002 (8)0.0040 (8)0.0024 (8)
C150.0203 (10)0.0272 (11)0.0291 (11)0.0034 (8)0.0072 (8)0.0082 (9)
C160.0175 (10)0.0417 (13)0.0277 (11)0.0043 (9)0.0008 (8)0.0105 (10)
C170.0258 (12)0.0440 (14)0.0309 (12)0.0098 (10)0.0028 (9)0.0102 (11)
C180.0212 (10)0.0326 (12)0.0277 (11)0.0008 (9)0.0026 (8)0.0092 (9)
C190.0137 (9)0.0223 (10)0.0126 (9)0.0004 (7)0.0021 (7)0.0018 (7)
C200.0272 (11)0.0238 (11)0.0197 (10)0.0022 (9)0.0074 (8)0.0020 (8)
C210.0299 (12)0.0307 (12)0.0232 (11)0.0008 (9)0.0083 (9)0.0099 (9)
C220.0259 (11)0.0437 (14)0.0155 (10)0.0003 (10)0.0081 (8)0.0020 (9)
C230.0238 (11)0.0371 (13)0.0215 (10)0.0016 (9)0.0058 (8)0.0104 (9)
C240.0190 (10)0.0245 (10)0.0202 (10)0.0012 (8)0.0029 (8)0.0012 (8)
N50.0174 (8)0.0244 (9)0.0243 (9)0.0029 (7)0.0032 (7)0.0026 (7)
C250.0150 (9)0.0265 (11)0.0210 (10)0.0012 (8)0.0010 (8)0.0034 (8)
O10.0225 (7)0.0285 (8)0.0264 (8)0.0028 (6)0.0044 (6)0.0041 (6)
N60.0197 (9)0.0234 (9)0.0250 (9)0.0014 (7)0.0033 (7)0.0032 (7)
O20.0188 (7)0.0254 (8)0.0347 (8)0.0006 (6)0.0040 (6)0.0012 (7)
O30.0188 (7)0.0204 (7)0.0371 (9)0.0019 (6)0.0033 (6)0.0022 (6)
O40.0266 (8)0.0276 (8)0.0346 (9)0.0043 (7)0.0046 (7)0.0007 (7)
O50.0346 (9)0.0254 (8)0.0317 (8)0.0043 (7)0.0073 (7)0.0071 (7)
O60.0299 (8)0.0273 (8)0.0284 (8)0.0018 (7)0.0050 (7)0.0039 (7)
C260.0216 (10)0.0230 (11)0.0297 (11)0.0023 (8)0.0012 (8)0.0047 (9)
C270.0231 (11)0.0208 (10)0.0346 (12)0.0016 (8)0.0036 (9)0.0025 (9)
C280.0200 (10)0.0237 (11)0.0320 (12)0.0002 (8)0.0058 (9)0.0027 (9)
C290.0221 (10)0.0264 (11)0.0316 (12)0.0065 (9)0.0058 (9)0.0029 (9)
C300.0249 (11)0.0192 (11)0.0472 (14)0.0015 (9)0.0089 (10)0.0010 (10)
C310.0228 (11)0.0211 (11)0.0551 (16)0.0006 (9)0.0008 (10)0.0061 (11)
C320.0300 (12)0.0213 (11)0.0386 (13)0.0044 (9)0.0127 (10)0.0060 (10)
C330.0398 (13)0.0223 (12)0.0311 (12)0.0064 (10)0.0083 (10)0.0032 (9)
C340.0335 (12)0.0252 (11)0.0289 (12)0.0022 (9)0.0028 (9)0.0038 (9)
C350.0369 (13)0.0270 (12)0.0297 (12)0.0003 (10)0.0074 (10)0.0049 (9)
C360.0318 (12)0.0264 (11)0.0278 (11)0.0038 (9)0.0024 (9)0.0026 (9)
C370.0236 (11)0.0283 (11)0.0269 (11)0.0020 (9)0.0038 (9)0.0001 (9)
Geometric parameters (Å, º) top
Co1—N21.9641 (15)C13—C141.391 (3)
Co1—N31.9645 (15)C14—C151.391 (3)
Co1—N41.9671 (16)C14—H14A0.9500
Co1—N11.9751 (15)C15—C161.383 (3)
Co1—O32.3380 (15)C15—H15A0.9500
N1—C1011.380 (2)C16—C171.371 (3)
N1—C1021.383 (2)C16—H16A0.9500
N2—C1041.377 (2)C17—C181.394 (3)
N2—C1031.383 (2)C17—H17A0.9500
N3—C1061.380 (2)C18—H18A0.9500
N3—C1051.384 (2)C19—C241.387 (3)
N4—C1081.378 (2)C19—C201.391 (3)
N4—C1071.378 (2)C20—C211.389 (3)
C101—C3011.388 (3)C20—H20A0.9500
C101—C2011.437 (3)C21—C221.381 (3)
C102—C3021.387 (3)C21—H21A0.9500
C102—C2021.438 (3)C22—C231.369 (3)
C103—C3021.390 (3)C22—H22A0.9500
C103—C2031.437 (3)C23—C241.391 (3)
C104—C3031.395 (3)C23—H23A0.9500
C104—C2041.437 (3)C24—H24A0.9500
C105—C3031.390 (3)N5—C251.385 (3)
C105—C2051.439 (3)N5—H5B0.93 (3)
C106—C3041.394 (3)C25—O11.232 (2)
C106—C2061.439 (3)C25—N61.370 (3)
C107—C3041.391 (3)N6—C261.464 (3)
C107—C2071.437 (3)N6—C371.466 (3)
C108—C3011.388 (3)O2—C281.421 (2)
C108—C2081.440 (3)O2—C271.427 (3)
C201—C2021.346 (3)O3—C291.424 (2)
C201—H(BA0.9500O3—C301.442 (3)
C202—H(BB0.9500O4—C321.423 (3)
C203—C2041.349 (3)O4—C311.433 (3)
C203—H(BC0.9500O5—C331.421 (3)
C204—H(BD0.9500O5—C341.430 (3)
C205—C2061.348 (3)O6—C351.419 (3)
C205—H(BE0.9500O6—C361.423 (3)
C206—H(BF0.9500C26—C271.510 (3)
C207—C2081.349 (3)C26—H26A0.9900
C207—H(BG0.9500C26—H26B0.9900
C208—H(BH0.9500C27—H27A0.9900
C301—C11.500 (3)C27—H27B0.9900
C302—C71.501 (2)C28—C291.525 (3)
C303—C131.497 (3)C28—H28A0.9900
C304—C191.492 (2)C28—H28B0.9900
C1—C21.389 (3)C29—H29A0.9900
C1—C61.402 (3)C29—H29B0.9900
C2—C31.392 (3)C30—C311.494 (4)
C2—H2A0.9500C30—H30A1.01 (3)
C3—C41.382 (3)C30—H30B1.04 (3)
C3—H3A0.9500C31—H31A1.08 (3)
C4—C51.380 (3)C31—H31B1.04 (3)
C4—H4A0.9500C32—C331.502 (4)
C5—C61.397 (3)C32—H32A1.02 (3)
C5—H5A0.9500C32—H32B0.99 (3)
C6—N51.424 (3)C33—H33A0.98 (3)
C7—C121.380 (3)C33—H33B1.05 (3)
C7—C81.394 (3)C34—C351.511 (3)
C8—C91.390 (3)C34—H34A0.9900
C8—H8A0.9500C34—H34B0.9900
C9—C101.378 (4)C35—H35A0.9900
C9—H9A0.9500C35—H35B0.9900
C10—C111.379 (4)C36—C371.512 (3)
C10—H10A0.9500C36—H36A0.9900
C11—C121.402 (3)C36—H36B0.9900
C11—H11A0.9500C37—H37A0.9900
C12—H12A0.9500C37—H37B0.9900
C13—C181.387 (3)
N2—Co1—N389.92 (6)C15—C14—C13120.7 (2)
N2—Co1—N4179.03 (7)C15—C14—H14A119.6
N3—Co1—N490.51 (6)C13—C14—H14A119.6
N2—Co1—N190.11 (6)C16—C15—C14120.0 (2)
N3—Co1—N1174.16 (7)C16—C15—H15A120.0
N4—Co1—N189.37 (6)C14—C15—H15A120.0
N2—Co1—O389.05 (6)C17—C16—C15119.7 (2)
N3—Co1—O387.26 (6)C17—C16—H16A120.2
N4—Co1—O391.84 (6)C15—C16—H16A120.2
N1—Co1—O398.58 (6)C16—C17—C18120.7 (2)
C101—N1—C102104.61 (15)C16—C17—H17A119.7
C101—N1—Co1128.17 (12)C18—C17—H17A119.7
C102—N1—Co1127.21 (13)C13—C18—C17120.3 (2)
C104—N2—C103105.00 (15)C13—C18—H18A119.9
C104—N2—Co1127.80 (12)C17—C18—H18A119.9
C103—N2—Co1126.91 (12)C24—C19—C20118.83 (18)
C106—N3—C105104.82 (15)C24—C19—C304119.40 (17)
C106—N3—Co1127.06 (13)C20—C19—C304121.69 (18)
C105—N3—Co1128.11 (12)C21—C20—C19120.1 (2)
C108—N4—C107104.81 (15)C21—C20—H20A120.0
C108—N4—Co1128.14 (12)C19—C20—H20A120.0
C107—N4—Co1126.99 (13)C22—C21—C20120.3 (2)
N1—C101—C301125.38 (17)C22—C21—H21A119.9
N1—C101—C201110.72 (16)C20—C21—H21A119.9
C301—C101—C201123.83 (18)C23—C22—C21120.14 (19)
N1—C102—C302125.54 (17)C23—C22—H22A119.9
N1—C102—C202110.65 (16)C21—C22—H22A119.9
C302—C102—C202123.81 (17)C22—C23—C24119.9 (2)
N2—C103—C302125.49 (17)C22—C23—H23A120.1
N2—C103—C203110.29 (16)C24—C23—H23A120.1
C302—C103—C203123.92 (17)C19—C24—C23120.8 (2)
N2—C104—C303125.56 (17)C19—C24—H24A119.6
N2—C104—C204110.62 (16)C23—C24—H24A119.6
C303—C104—C204123.79 (17)C25—N5—C6121.42 (17)
N3—C105—C303124.96 (17)C25—N5—H5B116.2 (17)
N3—C105—C205110.39 (16)C6—N5—H5B118.6 (17)
C303—C105—C205124.36 (17)O1—C25—N6122.40 (19)
N3—C106—C304125.58 (17)O1—C25—N5122.4 (2)
N3—C106—C206110.73 (16)N6—C25—N5115.14 (18)
C304—C106—C206123.61 (17)C25—N6—C26122.96 (17)
N4—C107—C304125.58 (17)C25—N6—C37116.39 (17)
N4—C107—C207110.71 (16)C26—N6—C37118.65 (17)
C304—C107—C207123.64 (17)C28—O2—C27113.68 (16)
N4—C108—C301125.89 (17)C29—O3—C30115.69 (17)
N4—C108—C208110.73 (16)C29—O3—Co1119.28 (13)
C301—C108—C208123.38 (18)C30—O3—Co1124.87 (12)
C202—C201—C101107.08 (17)C32—O4—C31111.13 (18)
C202—C201—H(BA126.5C33—O5—C34113.97 (17)
C101—C201—H(BA126.5C35—O6—C36111.54 (17)
C201—C202—C102106.90 (17)N6—C26—C27114.33 (18)
C201—C202—H(BB126.6N6—C26—H26A108.7
C102—C202—H(BB126.6C27—C26—H26A108.7
C204—C203—C103107.12 (17)N6—C26—H26B108.7
C204—C203—H(BC126.4C27—C26—H26B108.7
C103—C203—H(BC126.4H26A—C26—H26B107.6
C203—C204—C104106.91 (17)O2—C27—C26107.12 (18)
C203—C204—H(BD126.5O2—C27—H27A110.3
C104—C204—H(BD126.5C26—C27—H27A110.3
C206—C205—C105107.17 (17)O2—C27—H27B110.3
C206—C205—H(BE126.4C26—C27—H27B110.3
C105—C205—H(BE126.4H27A—C27—H27B108.5
C205—C206—C106106.83 (16)O2—C28—C29111.49 (17)
C205—C206—H(BF126.6O2—C28—H28A109.3
C106—C206—H(BF126.6C29—C28—H28A109.3
C208—C207—C107106.97 (17)O2—C28—H28B109.3
C208—C207—H(BG126.5C29—C28—H28B109.3
C107—C207—H(BG126.5H28A—C28—H28B108.0
C207—C208—C108106.73 (17)O3—C29—C28109.62 (17)
C207—C208—H(BH126.6O3—C29—H29A109.7
C108—C208—H(BH126.6C28—C29—H29A109.7
C101—C301—C108122.64 (18)O3—C29—H29B109.7
C101—C301—C1119.14 (17)C28—C29—H29B109.7
C108—C301—C1118.22 (16)H29A—C29—H29B108.2
C102—C302—C103122.98 (17)O3—C30—C31113.2 (2)
C102—C302—C7118.19 (17)O3—C30—H30A108.8 (14)
C103—C302—C7118.70 (16)C31—C30—H30A110.9 (14)
C105—C303—C104122.80 (17)O3—C30—H30B104.9 (15)
C105—C303—C13119.61 (16)C31—C30—H30B111.6 (15)
C104—C303—C13117.57 (16)H30A—C30—H30B107 (2)
C107—C304—C106123.00 (17)O4—C31—C30109.93 (19)
C107—C304—C19117.78 (16)O4—C31—H31A108.5 (16)
C106—C304—C19119.21 (17)C30—C31—H31A108.6 (15)
C2—C1—C6118.86 (18)O4—C31—H31B110.4 (16)
C2—C1—C301119.05 (18)C30—C31—H31B108.9 (16)
C6—C1—C301122.02 (18)H31A—C31—H31B110 (2)
C1—C2—C3121.3 (2)O4—C32—C33110.20 (19)
C1—C2—H2A119.3O4—C32—H32A109.3 (14)
C3—C2—H2A119.3C33—C32—H32A109.7 (14)
C4—C3—C2119.2 (2)O4—C32—H32B109.1 (15)
C4—C3—H3A120.4C33—C32—H32B112.1 (15)
C2—C3—H3A120.4H32A—C32—H32B106 (2)
C5—C4—C3120.6 (2)O5—C33—C32113.13 (19)
C5—C4—H4A119.7O5—C33—H33A109.3 (15)
C3—C4—H4A119.7C32—C33—H33A110.6 (14)
C4—C5—C6120.4 (2)O5—C33—H33B105.1 (15)
C4—C5—H5A119.8C32—C33—H33B107.4 (15)
C6—C5—H5A119.8H33A—C33—H33B111 (2)
C5—C6—C1119.56 (19)O5—C34—C35106.57 (18)
C5—C6—N5119.80 (18)O5—C34—H34A110.4
C1—C6—N5120.61 (18)C35—C34—H34A110.4
C12—C7—C8118.91 (18)O5—C34—H34B110.4
C12—C7—C302121.05 (18)C35—C34—H34B110.4
C8—C7—C302120.03 (19)H34A—C34—H34B108.6
C9—C8—C7120.4 (2)O6—C35—C34108.04 (18)
C9—C8—H8A119.8O6—C35—H35A110.1
C7—C8—H8A119.8C34—C35—H35A110.1
C10—C9—C8120.3 (2)O6—C35—H35B110.1
C10—C9—H9A119.9C34—C35—H35B110.1
C8—C9—H9A119.9H35A—C35—H35B108.4
C9—C10—C11120.0 (2)O6—C36—C37109.12 (18)
C9—C10—H10A120.0O6—C36—H36A109.9
C11—C10—H10A120.0C37—C36—H36A109.9
C10—C11—C12119.8 (2)O6—C36—H36B109.9
C10—C11—H11A120.1C37—C36—H36B109.9
C12—C11—H11A120.1H36A—C36—H36B108.3
C7—C12—C11120.6 (2)N6—C37—C36113.61 (18)
C7—C12—H12A119.7N6—C37—H37A108.8
C11—C12—H12A119.7C36—C37—H37A108.8
C18—C13—C14118.59 (19)N6—C37—H37B108.8
C18—C13—C303121.95 (18)C36—C37—H37B108.8
C14—C13—C303119.44 (18)H37A—C37—H37B107.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5B···O20.93 (3)1.99 (3)2.866 (2)156 (2)
 

Acknowledgements

The authors thank the CAS Hundred Talent Program and the National Natural Science Foundation of China (grant No. 21371167, to JL).

References

First citationAdler, A. D., Longo, F. R., Kampas, F. & Kim, J. (1970). J. Inorg. Nucl. Chem. 32, 2443–2445.  CrossRef CAS Web of Science Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1995). Acta Cryst. B51, 1004–1015.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2013). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCollman, J. P., Wang, Z. & Straumanis, A. (1998). J. Org. Chem. 63, 2424–2425.  Web of Science CrossRef PubMed CAS Google Scholar
First citationComte, C. P., Gros, C., Koeller, S., Guilard, R. J., Nurco, D. & Smith, M. (1998). New J. Chem. 22, 621–626.  Web of Science CSD CrossRef CAS Google Scholar
First citationDey, S. & Rath, S. P. (2014). Dalton Trans. 43, 2301–2314.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDürr, K., Macpherson, B. P., Warratz, R., Hampel, F., Tuczek, F., Helmreich, M., Jux, N. & Ivanović-Burmazović, I. (2007). J. Am. Chem. Soc. 129, 4217–4228.  Web of Science PubMed Google Scholar
First citationHalime, Z., Lachkar, M., Toupet, L., Coutsolelos, A. G. & Boitrel, B. (2007). Dalton Trans. pp. 3684–3689.  Web of Science CSD CrossRef Google Scholar
First citationLembo, A., Tagliatesta, P., Cicero, D., Leoni, A. & Salvatori, A. (2009). Org. Biomol. Chem. 7, 1093–1096.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMichaudet, L., Richard, P. & Boitrel, B. (2000). Tetrahedron Lett. 41, 8289–8292.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomoda, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.  Web of Science CrossRef CAS Google Scholar
First citationRunge, S., Senge Mathias, O. & Ruhlandt-Senge, K. (1999). Z. Naturforsch. Teil B, 54, 662–666.  CAS Google Scholar
First citationWu, X. & Starnes, S. D. (2012). Org. Lett. 14, 3652–3655.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYamanishi, K., Miyazawa, M., Yairi, T., Sakai, S., Nishina, N., Kobori, Y., Kondo, M. & Uchida, F. (2011). Angew. Chem. 123, 6713–6716.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds