research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-benzyl­carbamoyl-1-methyl­pyridin-1-ium iodide: an efficient multimodal anti­viral drug

CROSSMARK_Color_square_no_text.svg

aInstitute of Solid State Chemistry and Mechanochemistry, SB RAS, ul. Kutateladze 18, Novosibirsk 630128, Russian Federation, bNovosibirsk State University, ul. Pirogova 2, Novosibirsk 630090, Russian Federation, and cInstitute for the Problems of the Technology of Energetic Materials, SB RAS, ul. Socialisticheskaia 1, Biisk 659322, Russian Federation
*Correspondence e-mail: tanya@xray.nsu.ru

Edited by V. Rybakov, Moscow State University, Russia (Received 17 May 2017; accepted 1 June 2017; online 7 June 2017)

In the title compound, [MeC5H4NCONHCH2C6H5]I or C14H15N2O+·I, a cation and an anion form an ionic pair linked by a strong N—H⋯I hydrogen bond. In the crystal, ionic pairs linked by weak C—H⋯I hydrogen bonds form infinite ribbons along the crystallographic a axis. Polymorphism screening varying crystallization solvents (water, acetone 90%–water, ethanol 90%–water, 2-propanol 90%–water, DMF, DMSO, methanol, aceto­nitrile) and conditions (solution temperature, heating and cooling protocols) did not reveal any other polymorphs than the one reported in this work.

1. Chemical context

4-Benzyl­carbamoyl-1-methyl­pyridin-1-ium iodide, [MeC5H4NCONHCH2C6H5]I, is a multimodal anti­viral drug (Buhtiarova et al., 2003[Buhtiarova, T. A., Danilenko, V. P., Homenko, V. S., Shatyrkina, T. V. & Yadlovsky, O. E. (2003). Ukrainian Med. J. 33, 72-74.]; Frolov et al., 2004[Frolov, A. F., Frolov, V. M., Buhtiarova, T. A. & Danilenko, V. P. (2004). Ukrainian Med. J. 39, 69-74.]). For pharmaceutical applications, it is of utmost importance to identify possible polymorphs (Bernstein, 2002[Bernstein, J. (2002). In Polymorphism in Molecular Crystals. New York: Oxford University Press Inc.]; Brittain, 1999[Brittain, H. G. (1999). In Polymorphism in Pharmaceutical Solids: London: Taylor & Francis.]; Hilfiker, 2006[Hilfiker, R. (2006). Pharm. Ind. 1st ed. London: Wiley-VCH.]), see also https://www.fda.gov/downloads/Drugs/Guidances/UCM072866.pdf; https://newdrugapprovals.org/2014/02/12/fda-guidance-on-polymorphic-compounds-in-generic-drugs/. Polymorphism screening varying crystallization solvents (water, acetone 90%–water, ethanol 90%–water, iso­propanol 90%–water, DMF, DMSO, MeOH, CH3CN) and conditions (solution temperature, heating and cooling protocols) did not reveal any other polymorphs than the one reported in this work as has been confirmed by DSC (METTLER TOLEDO DSC 822e, 5° min−1 in N2, samples 1/6–3/5 mg), IR spectroscopy (IR–FT spectrometer FT–801, spectroscopic resolution 0.5 cm−1 and systematic error ±0,05 cm−1; samples studied in KBr discs, 1.0 mg of substance in 200 mg of KBr; 4000–600 cm−1, and FTIR ATR spectrometer DigiLab Excalibur 3100, Varian spectrometer equipped with a MIRacle ATR accessory in the range 4000–600 cm−1 with resolution of 2 cm−1 without addition of KBr) and X-ray powder diffraction (STOE STADI MP diffractometer, CuKα1 radiation, curved Ge monochromator, transmission mode). The same thermal effect at the DSC curves related to sample melting at 464 K has been observed for all the samples. The position and relative intensities of the bands in the IR spectra were also the same (see section 5, Fig. 1[link]). There were no differences between the IR spectra recorded with and without addition of KBr. The X-ray diffraction patterns were also the same for all the samples (Fig. 2[link]) and matched the pattern calculated for the structural model based on single-crystal diffraction data (see next sections). WinXPOW (Stoe & Cie, 2011[Stoe & Cie (2011). WinXPOW. Stoe & Cie GmbH, Darmstadt, Germany.]) was used to analyze the diffraction patterns.

[Scheme 1]
[Figure 1]
Figure 1
IR spectra of the title compound.
[Figure 2]
Figure 2
Powder diffraction patterns of the samples recrystallized from different solvents (an overlay) (a) and the diffraction pattern calculated for the structural model obtained based on single-crystal X-ray diffraction data in this work (b).

2. Structural commentary

The asymmetric unit of the title compound contains a [MeC5H4NCONHCH2C6H5]+ cation and an I anion (Fig. 3[link]). All the bond lengths and angles are within normal ranges. A cation and an anion form an ionic pair linked by a strong N2—H2⋯I1 hydrogen bond (Table 1[link]). The central part of the mol­ecule (N2/C8/O1) and the pyridyl ring are located practically in the same plane [the average deviation of the atoms from the N1/N2/O1/C8–C13 plane is 0.015 (3) Å and the maximum deviation is 0.025 (3) Å]. The I anion is also close to this plane [at a distance of 0.504 (3) Å]. The dihedral angle between the pyridyl and benzene rings is 62.8 (1)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯I1 0.98 (6) 2.68 (6) 3.563 (3) 150 (5)
C14—H14A⋯I1i 0.96 3.08 4.018 (5) 168
C14—H14C⋯I1ii 0.96 3.06 3.919 (5) 150
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) x+1, y, z.
[Figure 3]
Figure 3
The mol­ecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. The dotted line indicates the N—H⋯I hydrogen bond.

3. Supra­molecular features

In addition to the strong NH⋯I hydrogen bond, two weak C—H⋯I hydrogen bonds are present in the crystal structure (Table 1[link], Fig. 4[link]). Ionic pairs linked by these hydrogen bonds form infinite ribbons along the crystallographic a axis (Fig. 4[link]). No hydrogen bonds link the ribbons with each other.

[Figure 4]
Figure 4
Crystal packing of the title compound, viewed (a) along the b axis and (b) along the a axis. The dotted lines indicate the hydrogen bonds, N—H⋯I (blue) and C—H⋯I (olive).

4. Database survey

No crystal structures containing the [MeC5H4NCONHCH2C6H5]+ cation could be found in the Cambridge Structural Database (CSD, Version 5.38, update November 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). A crystal structure of 4-benzoyl­amino-1-methyl­pyridinium iodide (CSD refcode ESESUS; Navarro et al., 2016[Navarro, M., Li, M., Müller-Bunz, H., Bernhard, S. & Albrecht, M. (2016). Chem. Eur. J. 22, 6740-6745.]) is also formed by ionic pairs linked by a strong N—H⋯I hydrogen bond [the donor–acceptor distance is 3.675 (1) Å]. Similarly to the compound studied in this work, the organic cation of ESESUS also contains a benzene and an N-methyl­pyridine ring, with the N atom forming an N—H⋯I hydrogen bond in the centre of the cation (Fig. 5[link]). Since the central part of the cation in the case of ESESUS is shorter than that of the title compound, the mol­ecular conformation is very different, as is the mol­ecular packing (Fig. 5[link]).

[Figure 5]
Figure 5
The mol­ecular structure and crystal packing of 4-benzoyl­amino-1-methyl­pyridinium iodide (a) and of the title compound (b).

5. Synthesis and crystallization

The title compound can be synthesized from N-benzyl­amide 4-pyridine­carb­oxy­lic acid C5H4NCONHCH2C6H5 and methyl iodide MeI in a 1:2 (Trinus et al., 1994[Trinus, F. P., Danilenko, V. F., Buhtiarova, T. A., Rybalko, S. L., Arkad'ev, V. G., Klebanov, B. M. & Maksimov, Yu. N. (1994). Patent 6752, Ukraine, 29.08.1994, Bull. `Promyslova vlasnist' 8-1.]) or 1:1.2 (Buhtiarova et al., 1997[Buhtiarova, T. A., Trinus, F. P., Danilenko, V. F., Danilenko, G. I., Ovrutskiy, V. M. & Sharykina, N. I. (1997). Khim. Farm. Zh. 31, 30-32.]) molar ratio. N-Benzyl­amide 4-pyridine­carb­oxy­lic acid, in turn, was synthesized by the condensation of iso­nico­tinic acid C5H4NCOOH with benzyl­amine C6H5CH2NH2 taken in a 1:2 molar ratio (Trinus et al., 1994[Trinus, F. P., Danilenko, V. F., Buhtiarova, T. A., Rybalko, S. L., Arkad'ev, V. G., Klebanov, B. M. & Maksimov, Yu. N. (1994). Patent 6752, Ukraine, 29.08.1994, Bull. `Promyslova vlasnist' 8-1.]).

12.31 g (0.1 mol) of isonicotinic acid were added with constant stirring over a period of one hour to 12.86 g (0.12 mol) of benzyl­amine heated to 413 K. After all of the isonicotinic acid had been added, the mixture was heated steadily to 493–503 K. After water and the excess of benzamine had been distilled, the residue was cooled to 373–383 K and added on stirring to 100 ml of toluene. The hot solution was filtered and cooled to 288 K. After cooling, the precipitate was filtered, washed on the filter with 20 ml of toluene and dried in the air at ambient temperature. The yield was 18.57 g (0.0875 mol; 87.5%) (Sysoljatin et al., 2011[Sysoljatin, S. V., Sakovich, G. V., Kryukov, Yu. A., Rogov, A. I., Bubelo, V. D. & Chernov, A. I. (2011). Patent 2429230, RF, 20.09.2011, Bull. 26.]).

18.57 g (0.0875 mol) of N-benzyl­amide 4-pyridine­carb­oxy­lic acid were added to 110 ml of acetone with stirring. After the dissolution was complete, 14.9 g (0.105 mol) of methyl iodide MeI were added and the reaction mixture kept at 323 K for five h after which it was cooled to 283–288 K and filtered. The precipitate was washed on the filter with 50 ml of acetone and dried in the air. The yield was 24.65 g (0.0696 mol; 79.5%) (Sysoljatin et al., 2011[Sysoljatin, S. V., Sakovich, G. V., Kryukov, Yu. A., Rogov, A. I., Bubelo, V. D. & Chernov, A. I. (2011). Patent 2429230, RF, 20.09.2011, Bull. 26.]).

Calculated for C14H15N2OI: C, 47.46; H, 4.21: N, 7.91; O, 4.52. Found: C, 47.31; H, 4.13: N, 7.62; O, 4.35. Tmelt. 464 K. IR spectrum (cm−1): 611.27, 631.44, 703.72, 777.41, 759.32, 860.4, 920.77, 960.85, 1020.8, 1078.2, 1147.6, 1187.8, 1218.8, 1285.4, 1329.8, 1416.4, 1452.5, 1505.1, 1541.1, 1571.6, 1663.7, 1641.4, 1828.1, 1950.9, 2828.6, 2936.6, 3040.4, 3237.6. 1H NMR (400 MHz, DMSO-d6, p.p.m.): δ = 4.40 (s, 3H, CH3), 4.55 (d, 2H, CH2), 7.22–7.45 (m, 5H, Ar), 8.44 (d, 2H, Py), 9.19 (d, 2H, Py), 9.78 (s, H, NH). 13C–1H NMR (100 MHz, DMSO-d6, p.p.m.): δ = 43.89 (CH2), 49.00 (CH3), 125.95, 147.06, 148.20 (Py), 127.65, 128.01, 128.92, 139.18 (Ar), 162.63 (C=O).

The pharmaceutical substance was obtained by recrystal­lization from an aqueous solution with activated carbon (Sysoljatin et al., 2011[Sysoljatin, S. V., Sakovich, G. V., Kryukov, Yu. A., Rogov, A. I., Bubelo, V. D. & Chernov, A. I. (2011). Patent 2429230, RF, 20.09.2011, Bull. 26.]). 5.0 g (0.014 mol) of N-methyl-4-benzyl­carbamido­pyridinium iodide were dissolved in 6 ml of water at 363 K and 0.15 g (3.0%) of activated carbon added. After the complete dissolution of the compound, the activated carbon was removed by filtering, and the solution was cooled to 283 K. After stirring for one hour, the precipitate formed was filtered through a paper filter (white band), washed with 10 ml of acetone and dried at 373 K. Yield 4.71 g (0.0133 mol; 94.3%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The amine hydrogen atom bound to N2 was located in the difference maps and refined isotropically. All other hydrogen atoms were positioned geom­etrically and refined with a riding model [C—H = 0.93–0.97 Å; Uiso(H) = 1.2–1.5Ueq(C)].

Table 2
Experimental details

Crystal data
Chemical formula C14H15N2O+·I
Mr 354.18
Crystal system, space group Orthorhombic, P212121
Temperature (K) 295
a, b, c (Å) 9.2867 (2), 10.8741 (2), 14.3038 (3)
V3) 1444.46 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.21
Crystal size (mm) 0.25 × 0.17 × 0.07
 
Data collection
Diffractometer Rigaku OD Xcalibur, Ruby, Gemini ultra
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.910, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18978, 3388, 3115
Rint 0.033
(sin θ/λ)max−1) 0.666
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.053, 1.08
No. of reflections 3388
No. of parameters 168
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.53, −0.35
Absolute structure Flack x determined using 1207 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.033 (11)
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

4-Benzylcarbamoyl-1-methylpyridin-1-ium iodide top
Crystal data top
C14H15N2O+·IDx = 1.629 Mg m3
Mr = 354.18Melting point: 464(2) K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 9.2867 (2) ÅCell parameters from 9574 reflections
b = 10.8741 (2) Åθ = 2.4–26.3°
c = 14.3038 (3) ŵ = 2.21 mm1
V = 1444.46 (5) Å3T = 295 K
Z = 4Block, yellow
F(000) = 6960.25 × 0.17 × 0.07 mm
Data collection top
Rigaku OD Xcalibur, Ruby, Gemini ultra
diffractometer
3388 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source3115 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.3457 pixels mm-1θmax = 28.3°, θmin = 2.4°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 1413
Tmin = 0.910, Tmax = 1.000l = 1818
18978 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.053 w = 1/[σ2(Fo2) + (0.0267P)2 + 0.0479P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3388 reflectionsΔρmax = 0.53 e Å3
168 parametersΔρmin = 0.35 e Å3
0 restraintsAbsolute structure: Flack x determined using 1207 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.033 (11)
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1886 (4)0.0803 (3)0.9728 (2)0.0423 (8)
C20.2939 (4)0.0665 (4)1.0407 (3)0.0475 (9)
H10.36310.00541.03380.057*
C30.2982 (5)0.1404 (4)1.1172 (3)0.0583 (11)
H30.37020.12961.16170.070*
C40.1975 (6)0.2307 (5)1.1293 (3)0.0739 (13)
H40.20120.28171.18140.089*
C50.0909 (6)0.2452 (5)1.0639 (4)0.0805 (16)
H50.02100.30541.07230.097*
C60.0869 (5)0.1713 (4)0.9858 (3)0.0654 (12)
H60.01490.18270.94140.078*
C70.1838 (5)0.0028 (4)0.8892 (3)0.0555 (10)
H7A0.20080.08680.90930.067*
H7B0.08820.00060.86190.067*
C80.4168 (4)0.0275 (3)0.8098 (3)0.0456 (8)
C90.5104 (4)0.0078 (3)0.7283 (3)0.0407 (8)
C100.4765 (4)0.0948 (4)0.6614 (3)0.0477 (9)
H100.39060.13850.66560.057*
C110.5694 (5)0.1168 (4)0.5888 (3)0.0504 (9)
H110.54550.17510.54390.060*
C120.7303 (5)0.0274 (5)0.6477 (3)0.0677 (13)
H120.81770.06860.64320.081*
C130.6423 (5)0.0514 (5)0.7198 (3)0.0627 (12)
H130.67000.10840.76480.075*
C140.7913 (5)0.0782 (5)0.5020 (3)0.0705 (13)
H14A0.74770.13640.46020.106*
H14B0.80870.00250.46940.106*
H14C0.88100.11070.52460.106*
N10.6942 (4)0.0555 (3)0.5815 (2)0.0494 (8)
N20.2902 (3)0.0295 (3)0.8172 (2)0.0475 (7)
H20.262 (7)0.085 (6)0.766 (4)0.12 (2)*
O10.4598 (4)0.1053 (3)0.86557 (19)0.0634 (8)
I10.06127 (3)0.22276 (3)0.68164 (2)0.05375 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0396 (19)0.0438 (18)0.0435 (18)0.0051 (15)0.0082 (17)0.0088 (16)
C20.0350 (19)0.057 (2)0.050 (2)0.0010 (16)0.0021 (18)0.0085 (19)
C30.055 (3)0.075 (3)0.044 (2)0.014 (2)0.002 (2)0.003 (2)
C40.103 (4)0.069 (3)0.050 (2)0.011 (3)0.018 (3)0.011 (2)
C50.096 (4)0.069 (3)0.076 (3)0.033 (3)0.016 (3)0.000 (2)
C60.059 (3)0.078 (3)0.059 (3)0.023 (2)0.002 (2)0.015 (2)
C70.052 (2)0.063 (3)0.051 (2)0.015 (2)0.002 (2)0.0028 (19)
C80.051 (2)0.0456 (19)0.0401 (18)0.0024 (16)0.011 (2)0.0033 (16)
C90.0420 (19)0.042 (2)0.0382 (19)0.0002 (15)0.0065 (16)0.0043 (15)
C100.048 (2)0.047 (2)0.048 (2)0.0084 (16)0.0015 (17)0.0013 (16)
C110.054 (2)0.048 (2)0.049 (2)0.002 (2)0.004 (2)0.0057 (16)
C120.046 (3)0.087 (4)0.070 (3)0.020 (2)0.002 (2)0.012 (3)
C130.056 (3)0.076 (3)0.055 (2)0.021 (2)0.002 (2)0.018 (2)
C140.058 (3)0.097 (4)0.057 (3)0.001 (3)0.010 (2)0.004 (3)
N10.0408 (17)0.061 (2)0.0463 (17)0.0012 (15)0.0045 (15)0.0002 (15)
N20.0472 (18)0.0553 (19)0.0400 (16)0.0010 (14)0.0006 (18)0.0012 (17)
O10.068 (2)0.0664 (18)0.0562 (15)0.0077 (17)0.0044 (16)0.0181 (15)
I10.05146 (14)0.05593 (15)0.05386 (14)0.01142 (12)0.00363 (13)0.00252 (12)
Geometric parameters (Å, º) top
C1—C61.381 (6)C8—C91.504 (5)
C1—C21.387 (5)C9—C101.383 (5)
C1—C71.500 (5)C9—C131.389 (6)
C2—C31.358 (6)C10—C111.371 (5)
C2—H10.9300C10—H100.9300
C3—C41.367 (7)C11—N11.341 (5)
C3—H30.9300C11—H110.9300
C4—C51.371 (7)C12—C131.342 (6)
C4—H40.9300C12—N11.349 (5)
C5—C61.376 (7)C12—H120.9300
C5—H50.9300C13—H130.9300
C6—H60.9300C14—N11.472 (5)
C7—N21.469 (5)C14—H14A0.9600
C7—H7A0.9700C14—H14B0.9600
C7—H7B0.9700C14—H14C0.9600
C8—O11.229 (4)N2—H20.98 (6)
C8—N21.334 (5)
C6—C1—C2117.7 (4)C10—C9—C13117.2 (4)
C6—C1—C7121.3 (4)C10—C9—C8125.5 (3)
C2—C1—C7121.0 (4)C13—C9—C8117.3 (4)
C3—C2—C1121.4 (4)C11—C10—C9120.0 (4)
C3—C2—H1119.3C11—C10—H10120.0
C1—C2—H1119.3C9—C10—H10120.0
C2—C3—C4120.4 (4)N1—C11—C10121.1 (4)
C2—C3—H3119.8N1—C11—H11119.4
C4—C3—H3119.8C10—C11—H11119.4
C3—C4—C5119.4 (4)C13—C12—N1121.2 (4)
C3—C4—H4120.3C13—C12—H12119.4
C5—C4—H4120.3N1—C12—H12119.4
C4—C5—C6120.4 (4)C12—C13—C9120.9 (4)
C4—C5—H5119.8C12—C13—H13119.5
C6—C5—H5119.8C9—C13—H13119.5
C5—C6—C1120.6 (4)N1—C14—H14A109.5
C5—C6—H6119.7N1—C14—H14B109.5
C1—C6—H6119.7H14A—C14—H14B109.5
N2—C7—C1113.2 (3)N1—C14—H14C109.5
N2—C7—H7A108.9H14A—C14—H14C109.5
C1—C7—H7A108.9H14B—C14—H14C109.5
N2—C7—H7B108.9C11—N1—C12119.4 (4)
C1—C7—H7B108.9C11—N1—C14120.4 (3)
H7A—C7—H7B107.8C12—N1—C14120.2 (4)
O1—C8—N2123.7 (4)C8—N2—C7122.5 (4)
O1—C8—C9119.4 (4)C8—N2—H2118 (4)
N2—C8—C9116.9 (3)C7—N2—H2119 (4)
C6—C1—C2—C30.6 (6)C13—C9—C10—C112.1 (6)
C7—C1—C2—C3179.3 (4)C8—C9—C10—C11178.4 (3)
C1—C2—C3—C40.3 (6)C9—C10—C11—N10.4 (6)
C2—C3—C4—C50.6 (7)N1—C12—C13—C90.5 (8)
C3—C4—C5—C61.2 (8)C10—C9—C13—C122.2 (7)
C4—C5—C6—C10.9 (8)C8—C9—C13—C12178.2 (4)
C2—C1—C6—C50.0 (6)C10—C11—N1—C121.4 (6)
C7—C1—C6—C5178.7 (4)C10—C11—N1—C14178.7 (4)
C6—C1—C7—N2103.1 (4)C13—C12—N1—C111.3 (7)
C2—C1—C7—N278.2 (5)C13—C12—N1—C14178.7 (5)
O1—C8—C9—C10179.0 (4)O1—C8—N2—C75.2 (6)
N2—C8—C9—C100.6 (5)C9—C8—N2—C7175.1 (3)
O1—C8—C9—C130.5 (5)C1—C7—N2—C897.8 (4)
N2—C8—C9—C13179.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···I10.98 (6)2.68 (6)3.563 (3)150 (5)
C14—H14A···I1i0.963.084.018 (5)168
C14—H14C···I1ii0.963.063.919 (5)150
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y, z.
 

Acknowledgements

We thank Dr E. A. Losev for recording the FT–IR ATR spectra.

References

First citationBernstein, J. (2002). In Polymorphism in Molecular Crystals. New York: Oxford University Press Inc.  Google Scholar
First citationBrittain, H. G. (1999). In Polymorphism in Pharmaceutical Solids: London: Taylor & Francis.  Google Scholar
First citationBuhtiarova, T. A., Danilenko, V. P., Homenko, V. S., Shatyrkina, T. V. & Yadlovsky, O. E. (2003). Ukrainian Med. J. 33, 72–74.  Google Scholar
First citationBuhtiarova, T. A., Trinus, F. P., Danilenko, V. F., Danilenko, G. I., Ovrutskiy, V. M. & Sharykina, N. I. (1997). Khim. Farm. Zh. 31, 30–32.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrolov, A. F., Frolov, V. M., Buhtiarova, T. A. & Danilenko, V. P. (2004). Ukrainian Med. J. 39, 69–74.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHilfiker, R. (2006). Pharm. Ind. 1st ed. London: Wiley–VCH.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNavarro, M., Li, M., Müller-Bunz, H., Bernhard, S. & Albrecht, M. (2016). Chem. Eur. J. 22, 6740–6745.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2011). WinXPOW. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationSysoljatin, S. V., Sakovich, G. V., Kryukov, Yu. A., Rogov, A. I., Bubelo, V. D. & Chernov, A. I. (2011). Patent 2429230, RF, 20.09.2011, Bull. 26.  Google Scholar
First citationTrinus, F. P., Danilenko, V. F., Buhtiarova, T. A., Rybalko, S. L., Arkad'ev, V. G., Klebanov, B. M. & Maksimov, Yu. N. (1994). Patent 6752, Ukraine, 29.08.1994, Bull. `Promyslova vlasnist' 8–1.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds