research communications
n-hexyloxybenzoate
of 4-[(3-methylbut-3-enoyl)oxy]phenyl 4-aInstitute of General and Inorganic Chemistry RAS, 31 Leninskii prosp., Moscow 119991, Russian Federation, and bInstitute of Petrochemical Synthesis RAS, 29 Leninskii prosp., Moscow 119991, Russian Federation
*Correspondence e-mail: kuzmina@igic.ras.ru
The structure of the title compound, C23H26O5 or CH2=C(CH3)—C(O)O—C6H4—O(O)C—C6H4—OC6H13, has been determined. The molecule is non-planar and the dihedral angle between the phenyl rings is 50.72 (4)°. The crystal packing differs from those typical for mesogenic compounds. Only a weak directional interaction of the C—H⋯O type combines molecules in endless chains running along the a axis.
Keywords: crystal structure; phenylbenzoate; DSC study.
CCDC reference: 1554948
1. Chemical context
Phenylbenzoates bearing a rather long aliphatic substituent at the benzene ring are potentially mesogenic compounds. On melting, these compounds often form smectic or nematic phases. Cases where these compounds exhibit a monotropic mesomorphism, i.e. do not form the on melting but instead form it on cooling the isotropic melt, are also known. The structural studies of these compounds are of great interest as these investigations make it possible to clarify the structure of the and propose a mechanism of phase transitions in a crystal-mesophase-isotropic system.
In this work we performed an X-ray structural determination and DSC study of the title compound. According to DSC the compound is non–mesomorphic, exhibiting three solid-state modifications: CrIII 367.7 K Iso 350.6 K CrII 349.9 K CrI.
2. Structural commentary
The . The molecule is non-planar. Five planar fragments can be selected in it, viz. benzene rings C8–C13 (plane I) and C2–C7 (plane II), ester groups C2/C1/O1/O2 (plane III) and O4/O5/C20/C21 (plane IV) and the hexyloxy group O3/C14–C19 (plane V). The dihedral angles between the planes I/II, II/III, II/V, I/III and I/IV are 50.72 (4), 4.84 (5), 7.05 (3), 52.82 (4) and 55.50 (5)°, respectively. According to the CSD Groom et al., 2016), the dihedral angle between the planes of the benzene rings in phenylbenzoates varies over a rather wide range (30–90°) having a normal distribution with the maximum at ∼60°. The obtained values of the dihedral angles in the structure provide evidence that the ester group C2/C1/O1/O2 is in a π-conjugation with the benzene ring C2–C7 bonded to the ester group through a C—C bond and is out of π-conjugation with the benzene ring C8–C13 bonded with it through a C—O bond. The same feature is characteristic of the second ester group bounded with the benzene ring C8–C13 through a C–O bond. This group is also strongly rotated from the plane of the indicated benzene ring and does not participate in conjugation with it. As is usual for compounds with a rather long alkyloxy chain O—CnH2n+1 (n > 4), this substituent has an extended structure and its plane is nearly coplanar with the plane of the corresponding benzene ring.
contains one independent molecule whose structure is shown in Fig. 13. Supramolecular features
It is known that crystal packing of mesogenic compounds is characterized by certain features, one of which is the separation of the packing into alternating aromatic and aliphatic areas, as shown in Fig. 2. Another feature is that the aromatic areas are closely packed, whereas the aliphatic areas have a very loose crystal packing. The close packing is formed as a result of many non-directional van der Waals and weak directional interactions. The most typical directional interactions are weak hydrogen bonds C—H⋯O/N, π–π stacking and C—H⋯π interactions (Nangia, 2002; Janiak, 2000; Chen et al., 2009), as well as usual hydrogen bonds. The loose aliphatic areas involve only a few van der Waals contacts. These peculiarities bring about specific melting of the mesogenic compounds. Upon a rise in temperature, melting starts from the loose aliphatic areas, whereas the aromatic areas retain their ordering over a certain time, resulting in formation. All these peculiarities have been observed in the crystal packing of alkyl- and alkyloxycyanobiphenyls (Kuz'mina & Kucherepa, 2011; Kuz'mina et al., 2012), alkyloxybenzoic acids (Kuz'mina et al., 2009), n-(alkyloxybenzilidene)-n′-tolyidines (Kuz'mina et al., 2016) and phenylbenzoates (Konstantinov et al., 2013; Kuz'mina et al., 2014), which represent a precursor of the mesophase.
The crystal packing of the title compound is shown in Fig. 3. Both aforementioned features of mesogenic compound crystal packing are lacking in the compound. An analysis of the intermolecular distances of the aliphatic chain atoms indicates that there are no loosely packed areas, which explains lacking the mesomorphism for this compound.
In the crystal, only C9—H9⋯O1 contacts between translationally (along the a axis) related molecules may be considered to be weak hydrogen bonds (Table 1, Fig. 4). The H9⋯O1 distances are equal to 2.47 Å, which corresponds to common values. The H9 atom is rather acidic to participate in a weak hydrogen bond since it is situated at the ortho position to the accepting ester group. A detailed analysis of the crystal packing did not reveal contacts that could be considered to be weak directional interactions of other types.
|
Interestingly, on cooling the isotropic melt of the compound, the formed crystal modifications CrII and CrI differ from that found in the crystal modification grown from solution at room temperature. Nevertheless, these modifications are also non-mesomorphous. The lack of mesomorphism of the compound in all crystal modifications may be explained by the occurrence of the branched metacryl group at the benzene ring C8–C13 that efficiently fills the adjacent areas in the crystal packing, thus restricting the displacement of the aliphatic chains.
4. Synthesis and crystallization
The compound was prepared by the reaction of 4-n-hexyloxybenzoic acid with 4-methacryloyloxyphenol using N,N-dicyclohexylcarbodiimide in dichloromethane solution according to the procedure described by Hassner & Alexanian (1978). The product was purified by and then recrystallized from acetone. Its purity was checked by thin-layer chromatography.
5. Refinement
Crystal data, data collection and structure . All H atoms were located from a difference Fourier synthesis and refined isotropically without constrains and restrains.
details are summarized in Table 2Supporting information
CCDC reference: 1554948
https://doi.org/10.1107/S2056989017008568/rk2436sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017008568/rk2436Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017008568/rk2436Isup3.cml
Data collection: SMART (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C23H26O5 | Z = 2 |
Mr = 382.44 | F(000) = 408 |
Triclinic, P1 | Dx = 1.260 Mg m−3 |
a = 5.6805 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.3846 (5) Å | Cell parameters from 2709 reflections |
c = 21.4864 (12) Å | θ = 2.5–30.3° |
α = 99.191 (1)° | µ = 0.09 mm−1 |
β = 92.719 (1)° | T = 150 K |
γ = 91.701 (1)° | Prism, colourless |
V = 1008.37 (10) Å3 | 0.48 × 0.14 × 0.08 mm |
Bruker SMART APEXII CCD area detector diffractometer | 5330 independent reflections |
Radiation source: fine-focus sealed tube | 3849 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
φ– and ω–scans | θmax = 29.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADAB; Bruker, 2008) | h = −7→7 |
Tmin = 0.660, Tmax = 0.746 | k = −11→11 |
11249 measured reflections | l = −28→29 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.117 | All H-atom parameters refined |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0585P)2 + 0.0431P] where P = (Fo2 + 2Fc2)/3 |
5330 reflections | (Δ/σ)max < 0.001 |
357 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 1.32606 (15) | 0.12065 (11) | 0.13553 (4) | 0.0286 (2) | |
O2 | 0.97617 (15) | 0.04386 (10) | 0.16947 (4) | 0.0257 (2) | |
O3 | 0.99053 (15) | −0.41394 (10) | −0.09472 (4) | 0.0253 (2) | |
O4 | 1.01986 (15) | 0.53782 (11) | 0.37446 (4) | 0.0278 (2) | |
O5 | 0.68226 (17) | 0.46661 (13) | 0.41579 (5) | 0.0419 (3) | |
C1 | 1.1518 (2) | 0.03297 (14) | 0.12803 (5) | 0.0208 (2) | |
C2 | 1.0995 (2) | −0.09530 (14) | 0.07307 (5) | 0.0197 (2) | |
C3 | 1.2689 (2) | −0.11683 (15) | 0.02774 (6) | 0.0218 (3) | |
H3 | 1.418 (3) | −0.0549 (17) | 0.0345 (7) | 0.034 (4)* | |
C4 | 1.2282 (2) | −0.22457 (15) | −0.02734 (6) | 0.0229 (3) | |
H4 | 1.339 (3) | −0.2381 (17) | −0.0599 (7) | 0.032 (4)* | |
C5 | 1.0156 (2) | −0.31488 (14) | −0.03819 (5) | 0.0207 (2) | |
C6 | 0.8480 (2) | −0.29893 (14) | 0.00758 (6) | 0.0222 (3) | |
H6 | 0.704 (2) | −0.3634 (17) | 0.0006 (6) | 0.026 (3)* | |
C7 | 0.8906 (2) | −0.18837 (14) | 0.06278 (6) | 0.0214 (2) | |
H7 | 0.775 (2) | −0.1768 (16) | 0.0936 (6) | 0.025 (3)* | |
C8 | 0.9940 (2) | 0.16953 (14) | 0.22149 (5) | 0.0218 (3) | |
C9 | 0.8023 (2) | 0.26700 (15) | 0.22967 (6) | 0.0239 (3) | |
H9 | 0.674 (3) | 0.2492 (16) | 0.1996 (7) | 0.031 (4)* | |
C10 | 0.8037 (2) | 0.38796 (15) | 0.28172 (6) | 0.0244 (3) | |
H10 | 0.673 (2) | 0.4579 (16) | 0.2881 (6) | 0.025 (3)* | |
C11 | 0.9979 (2) | 0.40909 (15) | 0.32390 (6) | 0.0232 (3) | |
C12 | 1.1896 (2) | 0.31167 (16) | 0.31564 (6) | 0.0249 (3) | |
H12 | 1.315 (2) | 0.3316 (16) | 0.3464 (6) | 0.028 (4)* | |
C13 | 1.1875 (2) | 0.18957 (15) | 0.26387 (6) | 0.0243 (3) | |
H13 | 1.324 (2) | 0.1234 (16) | 0.2570 (6) | 0.025 (3)* | |
C14 | 0.7688 (2) | −0.50073 (15) | −0.11192 (6) | 0.0237 (3) | |
H14A | 0.642 (2) | −0.4245 (17) | −0.1094 (6) | 0.027 (4)* | |
H14B | 0.738 (2) | −0.5776 (16) | −0.0828 (6) | 0.026 (3)* | |
C15 | 0.7830 (2) | −0.58681 (16) | −0.17877 (6) | 0.0261 (3) | |
H15A | 0.927 (3) | −0.6575 (17) | −0.1810 (6) | 0.031 (4)* | |
H15B | 0.810 (3) | −0.5070 (18) | −0.2066 (7) | 0.036 (4)* | |
C16 | 0.5590 (2) | −0.68682 (16) | −0.20221 (6) | 0.0261 (3) | |
H16A | 0.422 (3) | −0.6186 (18) | −0.1961 (7) | 0.032 (4)* | |
H16B | 0.532 (3) | −0.7710 (18) | −0.1752 (7) | 0.036 (4)* | |
C17 | 0.5631 (2) | −0.76731 (16) | −0.27084 (6) | 0.0262 (3) | |
H17A | 0.583 (2) | −0.6819 (18) | −0.2984 (7) | 0.033 (4)* | |
H17B | 0.702 (3) | −0.8369 (18) | −0.2756 (7) | 0.038 (4)* | |
C18 | 0.3397 (3) | −0.86774 (19) | −0.29400 (7) | 0.0355 (3) | |
H18A | 0.310 (3) | −0.947 (2) | −0.2637 (8) | 0.050 (5)* | |
H18B | 0.204 (3) | −0.798 (2) | −0.2900 (8) | 0.049 (5)* | |
C19 | 0.3486 (4) | −0.9629 (2) | −0.35978 (8) | 0.0484 (4) | |
H19A | 0.374 (3) | −0.893 (2) | −0.3915 (9) | 0.060 (5)* | |
H19B | 0.200 (4) | −1.030 (2) | −0.3717 (9) | 0.069 (6)* | |
H19C | 0.480 (4) | −1.039 (2) | −0.3619 (9) | 0.066 (6)* | |
C20 | 0.8557 (2) | 0.55349 (16) | 0.41884 (6) | 0.0263 (3) | |
C21 | 0.9248 (2) | 0.69069 (16) | 0.47011 (6) | 0.0287 (3) | |
C22 | 0.7842 (3) | 0.7171 (2) | 0.51894 (7) | 0.0378 (3) | |
H22A | 0.827 (3) | 0.804 (2) | 0.5527 (8) | 0.048 (5)* | |
H22B | 0.652 (3) | 0.648 (2) | 0.5221 (8) | 0.050 (5)* | |
C23 | 1.1432 (3) | 0.7870 (2) | 0.46524 (8) | 0.0422 (4) | |
H23A | 1.282 (3) | 0.719 (2) | 0.4610 (9) | 0.064 (6)* | |
H23B | 1.173 (3) | 0.875 (2) | 0.5006 (9) | 0.060 (5)* | |
H23C | 1.132 (3) | 0.837 (2) | 0.4253 (9) | 0.058 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0254 (5) | 0.0325 (5) | 0.0256 (5) | −0.0076 (4) | 0.0021 (4) | −0.0017 (4) |
O2 | 0.0248 (4) | 0.0263 (5) | 0.0232 (4) | −0.0036 (4) | 0.0055 (3) | −0.0048 (4) |
O3 | 0.0258 (4) | 0.0263 (5) | 0.0216 (4) | −0.0015 (4) | 0.0024 (3) | −0.0028 (4) |
O4 | 0.0283 (5) | 0.0291 (5) | 0.0231 (4) | −0.0031 (4) | 0.0051 (4) | −0.0053 (4) |
O5 | 0.0341 (6) | 0.0567 (7) | 0.0302 (5) | −0.0122 (5) | 0.0084 (4) | −0.0072 (5) |
C1 | 0.0213 (6) | 0.0217 (6) | 0.0199 (6) | 0.0020 (5) | 0.0010 (4) | 0.0044 (5) |
C2 | 0.0208 (6) | 0.0191 (6) | 0.0194 (6) | 0.0031 (4) | 0.0015 (4) | 0.0029 (4) |
C3 | 0.0204 (6) | 0.0226 (6) | 0.0224 (6) | −0.0001 (5) | 0.0012 (5) | 0.0036 (5) |
C4 | 0.0221 (6) | 0.0249 (6) | 0.0222 (6) | 0.0031 (5) | 0.0055 (5) | 0.0034 (5) |
C5 | 0.0246 (6) | 0.0177 (6) | 0.0196 (6) | 0.0035 (5) | 0.0006 (5) | 0.0019 (4) |
C6 | 0.0211 (6) | 0.0210 (6) | 0.0242 (6) | −0.0008 (5) | 0.0020 (5) | 0.0028 (5) |
C7 | 0.0192 (6) | 0.0238 (6) | 0.0210 (6) | 0.0016 (5) | 0.0032 (5) | 0.0023 (5) |
C8 | 0.0246 (6) | 0.0203 (6) | 0.0191 (6) | −0.0036 (5) | 0.0042 (5) | −0.0006 (5) |
C9 | 0.0209 (6) | 0.0287 (6) | 0.0213 (6) | −0.0023 (5) | 0.0002 (5) | 0.0020 (5) |
C10 | 0.0229 (6) | 0.0262 (6) | 0.0237 (6) | 0.0028 (5) | 0.0039 (5) | 0.0020 (5) |
C11 | 0.0255 (6) | 0.0235 (6) | 0.0189 (6) | −0.0035 (5) | 0.0046 (5) | −0.0013 (5) |
C12 | 0.0232 (6) | 0.0305 (7) | 0.0203 (6) | −0.0019 (5) | −0.0011 (5) | 0.0034 (5) |
C13 | 0.0240 (6) | 0.0250 (6) | 0.0241 (6) | 0.0030 (5) | 0.0028 (5) | 0.0037 (5) |
C14 | 0.0248 (6) | 0.0227 (6) | 0.0227 (6) | −0.0004 (5) | 0.0018 (5) | 0.0010 (5) |
C15 | 0.0299 (7) | 0.0254 (6) | 0.0219 (6) | −0.0029 (5) | 0.0018 (5) | 0.0012 (5) |
C16 | 0.0286 (7) | 0.0250 (6) | 0.0239 (6) | −0.0029 (5) | 0.0021 (5) | 0.0017 (5) |
C17 | 0.0298 (7) | 0.0232 (6) | 0.0248 (6) | −0.0006 (5) | 0.0016 (5) | 0.0013 (5) |
C18 | 0.0364 (8) | 0.0336 (8) | 0.0337 (8) | −0.0090 (6) | −0.0022 (6) | −0.0001 (6) |
C19 | 0.0585 (11) | 0.0436 (10) | 0.0374 (9) | −0.0066 (9) | −0.0135 (8) | −0.0043 (8) |
C20 | 0.0259 (6) | 0.0315 (7) | 0.0205 (6) | 0.0037 (5) | 0.0013 (5) | 0.0005 (5) |
C21 | 0.0317 (7) | 0.0306 (7) | 0.0225 (6) | 0.0061 (5) | −0.0016 (5) | −0.0001 (5) |
C22 | 0.0430 (9) | 0.0423 (9) | 0.0262 (7) | 0.0053 (7) | 0.0040 (6) | −0.0012 (6) |
C23 | 0.0417 (9) | 0.0399 (9) | 0.0389 (9) | −0.0093 (7) | 0.0046 (7) | −0.0113 (7) |
O1—C1 | 1.2044 (13) | C13—H13 | 0.968 (14) |
O2—C1 | 1.3636 (14) | C14—H14A | 0.976 (14) |
O2—C8 | 1.4059 (13) | C14—H14B | 0.986 (14) |
O3—C5 | 1.3563 (14) | C14—C15 | 1.5080 (17) |
O3—C14 | 1.4382 (15) | C15—H15A | 1.022 (15) |
O4—C11 | 1.4019 (14) | C15—H15B | 0.980 (16) |
O4—C20 | 1.3594 (15) | C15—C16 | 1.5221 (17) |
O5—C20 | 1.2007 (15) | C16—H16A | 0.983 (15) |
C1—C2 | 1.4770 (16) | C16—H16B | 0.996 (16) |
C2—C3 | 1.3965 (16) | C16—C17 | 1.5221 (18) |
C2—C7 | 1.3897 (16) | C17—H17A | 1.008 (15) |
C3—H3 | 0.971 (15) | C17—H17B | 0.994 (16) |
C3—C4 | 1.3749 (17) | C17—C18 | 1.5199 (19) |
C4—H4 | 0.959 (15) | C18—H18A | 1.018 (18) |
C4—C5 | 1.3960 (16) | C18—H18B | 0.982 (18) |
C5—C6 | 1.3950 (16) | C18—C19 | 1.512 (2) |
C6—H6 | 0.959 (14) | C19—H19A | 0.98 (2) |
C6—C7 | 1.3903 (16) | C19—H19B | 1.00 (2) |
C7—H7 | 0.951 (14) | C19—H19C | 0.99 (2) |
C8—C9 | 1.3822 (17) | C20—C21 | 1.4894 (18) |
C8—C13 | 1.3823 (17) | C21—C22 | 1.3427 (19) |
C9—H9 | 0.944 (14) | C21—C23 | 1.477 (2) |
C9—C10 | 1.3841 (17) | C22—H22A | 0.961 (17) |
C10—H10 | 0.961 (14) | C22—H22B | 0.945 (18) |
C10—C11 | 1.3828 (17) | C23—H23A | 0.99 (2) |
C11—C12 | 1.3819 (18) | C23—H23B | 0.977 (18) |
C12—H12 | 0.942 (14) | C23—H23C | 1.013 (19) |
C12—C13 | 1.3856 (17) | ||
C1—O2—C8 | 118.12 (9) | C15—C14—H14B | 111.3 (8) |
C5—O3—C14 | 118.59 (9) | C14—C15—H15A | 108.8 (8) |
C20—O4—C11 | 119.76 (10) | C14—C15—H15B | 109.3 (9) |
O1—C1—O2 | 123.19 (11) | C14—C15—C16 | 112.14 (11) |
O1—C1—C2 | 124.69 (11) | H15A—C15—H15B | 106.4 (12) |
O2—C1—C2 | 112.11 (10) | C16—C15—H15A | 111.0 (8) |
C3—C2—C1 | 116.71 (10) | C16—C15—H15B | 109.1 (9) |
C7—C2—C1 | 124.17 (10) | C15—C16—H16A | 109.6 (8) |
C7—C2—C3 | 119.05 (11) | C15—C16—H16B | 110.0 (8) |
C2—C3—H3 | 120.4 (9) | H16A—C16—H16B | 103.9 (12) |
C4—C3—C2 | 120.91 (11) | C17—C16—C15 | 113.23 (11) |
C4—C3—H3 | 118.7 (9) | C17—C16—H16A | 110.4 (8) |
C3—C4—H4 | 122.3 (8) | C17—C16—H16B | 109.3 (8) |
C3—C4—C5 | 119.83 (11) | C16—C17—H17A | 109.4 (8) |
C5—C4—H4 | 117.8 (8) | C16—C17—H17B | 108.7 (9) |
O3—C5—C4 | 115.06 (10) | H17A—C17—H17B | 107.6 (12) |
O3—C5—C6 | 124.98 (11) | C18—C17—C16 | 113.10 (11) |
C6—C5—C4 | 119.96 (11) | C18—C17—H17A | 108.3 (8) |
C5—C6—H6 | 119.9 (8) | C18—C17—H17B | 109.7 (8) |
C7—C6—C5 | 119.54 (11) | C17—C18—H18A | 108.5 (9) |
C7—C6—H6 | 120.6 (8) | C17—C18—H18B | 109.3 (10) |
C2—C7—C6 | 120.65 (11) | H18A—C18—H18B | 103.9 (14) |
C2—C7—H7 | 120.0 (8) | C19—C18—C17 | 114.27 (14) |
C6—C7—H7 | 119.3 (8) | C19—C18—H18A | 108.3 (9) |
C9—C8—O2 | 116.27 (10) | C19—C18—H18B | 112.0 (10) |
C9—C8—C13 | 121.80 (11) | C18—C19—H19A | 112.4 (11) |
C13—C8—O2 | 121.86 (11) | C18—C19—H19B | 110.7 (11) |
C8—C9—H9 | 119.1 (8) | C18—C19—H19C | 110.7 (11) |
C8—C9—C10 | 119.18 (11) | H19A—C19—H19B | 109.3 (16) |
C10—C9—H9 | 121.7 (8) | H19A—C19—H19C | 107.2 (16) |
C9—C10—H10 | 120.5 (8) | H19B—C19—H19C | 106.2 (15) |
C11—C10—C9 | 119.12 (11) | O4—C20—C21 | 110.19 (11) |
C11—C10—H10 | 120.3 (8) | O5—C20—O4 | 123.39 (11) |
C10—C11—O4 | 122.03 (11) | O5—C20—C21 | 126.41 (12) |
C12—C11—O4 | 116.12 (11) | C22—C21—C20 | 117.14 (14) |
C12—C11—C10 | 121.66 (11) | C22—C21—C23 | 123.96 (14) |
C11—C12—H12 | 117.4 (8) | C23—C21—C20 | 118.89 (12) |
C11—C12—C13 | 119.28 (12) | C21—C22—H22A | 118.3 (10) |
C13—C12—H12 | 123.3 (8) | C21—C22—H22B | 121.8 (10) |
C8—C13—C12 | 118.97 (12) | H22A—C22—H22B | 119.7 (14) |
C8—C13—H13 | 121.3 (8) | C21—C23—H23A | 111.5 (11) |
C12—C13—H13 | 119.6 (8) | C21—C23—H23B | 113.1 (11) |
O3—C14—H14A | 109.4 (8) | C21—C23—H23C | 109.5 (10) |
O3—C14—H14B | 110.7 (8) | H23A—C23—H23B | 109.7 (15) |
O3—C14—C15 | 107.03 (10) | H23A—C23—H23C | 105.3 (15) |
H14A—C14—H14B | 108.0 (11) | H23B—C23—H23C | 107.4 (15) |
C15—C14—H14A | 110.3 (8) | ||
O1—C1—C2—C3 | 1.43 (18) | C5—O3—C14—C15 | 174.48 (10) |
O1—C1—C2—C7 | −175.41 (12) | C5—C6—C7—C2 | −0.80 (18) |
O2—C1—C2—C3 | −179.84 (10) | C7—C2—C3—C4 | 2.05 (17) |
O2—C1—C2—C7 | 3.33 (16) | C8—O2—C1—O1 | 3.74 (17) |
O2—C8—C9—C10 | 176.84 (10) | C8—O2—C1—C2 | −175.02 (10) |
O2—C8—C13—C12 | −177.26 (10) | C8—C9—C10—C11 | 0.58 (18) |
O3—C5—C6—C7 | −177.51 (11) | C9—C8—C13—C12 | −0.55 (18) |
O3—C14—C15—C16 | 178.76 (10) | C9—C10—C11—O4 | 174.30 (11) |
O4—C11—C12—C13 | −175.19 (11) | C9—C10—C11—C12 | −0.53 (19) |
O4—C20—C21—C22 | −177.29 (12) | C10—C11—C12—C13 | −0.07 (19) |
O4—C20—C21—C23 | 1.57 (17) | C11—O4—C20—O5 | −3.94 (19) |
O5—C20—C21—C22 | 2.4 (2) | C11—O4—C20—C21 | 175.79 (10) |
O5—C20—C21—C23 | −178.72 (15) | C11—C12—C13—C8 | 0.60 (18) |
C1—O2—C8—C9 | 126.52 (12) | C13—C8—C9—C10 | −0.05 (18) |
C1—O2—C8—C13 | −56.60 (15) | C14—O3—C5—C4 | −174.72 (10) |
C1—C2—C3—C4 | −174.95 (11) | C14—O3—C5—C6 | 5.20 (17) |
C1—C2—C7—C6 | 175.36 (11) | C14—C15—C16—C17 | 176.70 (11) |
C2—C3—C4—C5 | −0.46 (18) | C15—C16—C17—C18 | 179.72 (12) |
C3—C2—C7—C6 | −1.40 (17) | C16—C17—C18—C19 | −174.03 (14) |
C3—C4—C5—O3 | 178.14 (10) | C20—O4—C11—C10 | 60.01 (16) |
C3—C4—C5—C6 | −1.78 (18) | C20—O4—C11—C12 | −124.89 (12) |
C4—C5—C6—C7 | 2.40 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···O1i | 0.943 (16) | 2.471 (16) | 3.3774 (15) | 161.3 (12) |
Symmetry code: (i) x−1, y, z. |
Acknowledgements
The X-ray diffraction study was performed at the Centre of Shared Equipment of IGIC RAS.
Funding information
Funding for this research was provided by: Russian Science Foundation (award No. 16-13-10273).
References
Bruker (2009). SAINT, APEX2, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, Zh., Lohr, A., Saha-Möller, C. R. & Würthner, F. (2009). Chem. Soc. Rev. 38, 564–584. CrossRef PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hassner, A. & Alexanian, V. (1978). Tetrahedron Lett. 19, 4475–4478. CrossRef Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Konstantinov, I. I., Churakov, A. V. & Kuz'mina, L. G. (2013). Crystallogr. Rep. 58, 81–92. CSD CrossRef CAS Google Scholar
Kuz'mina, L. G., Konstantinov, I. I. & Lermontova, E. Kh. (2014). Mol. Cryst. Liq. Cryst. 588, 1–8. CAS Google Scholar
Kuz'mina, L. G. & Kucherepa, N. S. (2011). Crystallogr. Rep. 56, 242–255. CAS Google Scholar
Kuz'mina, L. G., Kucherepa, N. S. & Churakov, A. V. (2012). Crystallogr. Rep. 57, 213–226. CAS Google Scholar
Kuz'mina, L. G., Kucherepa, N. S., Pestov, S. M., Kochetov, A. N., Rukk, N. S. & Syrbu, S. A. (2009). Crystallogr. Rep. 54, 862–879. CAS Google Scholar
Kuz'mina, L. G., Navasardyan, M. A., Churakov, A. V. & Howard, J. A. K. (2016). Mol. Cryst. Liq. Cryst. 638, 60–67. CAS Google Scholar
Nangia, A. (2002). CrystEngComm, 4, 93–101. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.