research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-[(3-methyl­but-3-eno­yl)­­oxy]phenyl 4-n-hexyl­oxybenzoate

aInstitute of General and Inorganic Chemistry RAS, 31 Leninskii prosp., Moscow 119991, Russian Federation, and bInstitute of Petrochemical Synthesis RAS, 29 Leninskii prosp., Moscow 119991, Russian Federation
*Correspondence e-mail: kuzmina@igic.ras.ru

Edited by V. Rybakov, Moscow State University, Russia (Received 23 May 2017; accepted 8 June 2017; online 20 June 2017)

The structure of the title compound, C23H26O5 or CH2=C(CH3)—C(O)O—C6H4—O(O)C—C6H4—OC6H13, has been determined. The mol­ecule is non-planar and the dihedral angle between the phenyl rings is 50.72 (4)°. The crystal packing differs from those typical for mesogenic compounds. Only a weak directional inter­action of the C—H⋯O type combines mol­ecules in endless chains running along the a axis.

1. Chemical context

Phenyl­benzoates bearing a rather long aliphatic substituent at the benzene ring are potentially mesogenic compounds. On melting, these compounds often form smectic or nematic phases. Cases where these compounds exhibit a monotropic mesomorphism, i.e. do not form the mesophase on melting but instead form it on cooling the isotropic melt, are also known. The structural studies of these compounds are of great inter­est as these investigations make it possible to clarify the structure of the mesophase and propose a mechanism of phase transitions in a crystal-mesophase-isotropic system.

[Scheme 1]

In this work we performed an X-ray structural determination and DSC study of the title compound. According to DSC the compound is non–mesomorphic, exhibiting three solid-state modifications: CrIII 367.7 K Iso 350.6 K CrII 349.9 K CrI.

2. Structural commentary

The unit cell contains one independent mol­ecule whose structure is shown in Fig. 1[link]. The mol­ecule is non-planar. Five planar fragments can be selected in it, viz. benzene rings C8–C13 (plane I) and C2–C7 (plane II), ester groups C2/C1/O1/O2 (plane III) and O4/O5/C20/C21 (plane IV) and the hex­yloxy group O3/C14–C19 (plane V). The dihedral angles between the planes I/II, II/III, II/V, I/III and I/IV are 50.72 (4), 4.84 (5), 7.05 (3), 52.82 (4) and 55.50 (5)°, respectively. According to the CSD Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), the dihedral angle between the planes of the benzene rings in phenyl­benzoates varies over a rather wide range (30–90°) having a normal distribution with the maximum at ∼60°. The obtained values of the dihedral angles in the structure provide evidence that the ester group C2/C1/O1/O2 is in a π-conjugation with the benzene ring C2–C7 bonded to the ester group through a C—C bond and is out of π-conjugation with the benzene ring C8–C13 bonded with it through a C—O bond. The same feature is characteristic of the second ester group bounded with the benzene ring C8–C13 through a C–O bond. This group is also strongly rotated from the plane of the indicated benzene ring and does not participate in conjugation with it. As is usual for liquid crystal compounds with a rather long alk­yloxy chain O—CnH2n+1 (n > 4), this substituent has an extended structure and its plane is nearly coplanar with the plane of the corresponding benzene ring.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are shown at the 50% probability level. The H atoms are presented as a small spheres of arbitrary radius.

3. Supra­molecular features

It is known that crystal packing of mesogenic compounds is characterized by certain features, one of which is the separation of the packing into alternating aromatic and aliphatic areas, as shown in Fig. 2[link]. Another feature is that the aromatic areas are closely packed, whereas the aliphatic areas have a very loose crystal packing. The close packing is formed as a result of many non-directional van der Waals and weak directional inter­actions. The most typical directional inter­actions are weak hydrogen bonds C—H⋯O/N, ππ stacking and C—H⋯π inter­actions (Nangia, 2002[Nangia, A. (2002). CrystEngComm, 4, 93-101.]; Janiak, 2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]; Chen et al., 2009[Chen, Zh., Lohr, A., Saha-Möller, C. R. & Würthner, F. (2009). Chem. Soc. Rev. 38, 564-584.]), as well as usual hydrogen bonds. The loose aliphatic areas involve only a few van der Waals contacts. These peculiarities bring about specific melting of the mesogenic compounds. Upon a rise in temperature, melting starts from the loose aliphatic areas, whereas the aromatic areas retain their ordering over a certain time, resulting in mesophase formation. All these peculiarities have been observed in the crystal packing of alkyl- and alkyl­oxycyano­biphenyls (Kuz'mina & Kucherepa, 2011[Kuz'mina, L. G. & Kucherepa, N. S. (2011). Crystallogr. Rep. 56, 242-255.]; Kuz'mina et al., 2012[Kuz'mina, L. G., Kucherepa, N. S. & Churakov, A. V. (2012). Crystallogr. Rep. 57, 213-226.]), alkyl­oxybenzoic acids (Kuz'mina et al., 2009[Kuz'mina, L. G., Kucherepa, N. S., Pestov, S. M., Kochetov, A. N., Rukk, N. S. & Syrbu, S. A. (2009). Crystallogr. Rep. 54, 862-879.]), n-(alkyl­oxybenzil­idene)-n′-tolyidines (Kuz'mina et al., 2016[Kuz'mina, L. G., Navasardyan, M. A., Churakov, A. V. & Howard, J. A. K. (2016). Mol. Cryst. Liq. Cryst. 638, 60-67.]) and phenyl­benzoates (Konstanti­nov et al., 2013[Konstantinov, I. I., Churakov, A. V. & Kuz'mina, L. G. (2013). Crystallogr. Rep. 58, 81-92.]; Kuz'mina et al., 2014[Kuz'mina, L. G., Konstantinov, I. I. & Lermontova, E. Kh. (2014). Mol. Cryst. Liq. Cryst. 588, 1-8.]), which represent a precursor of the mesophase.

[Figure 2]
Figure 2
Two variants of crystal packing for mesogenic compounds; rectangles denote aromatic fragments and zigzags denote aliphatic side chains; d2 > d1.

The crystal packing of the title compound is shown in Fig. 3[link]. Both aforementioned features of mesogenic compound crystal packing are lacking in the compound. An analysis of the inter­molecular distances of the aliphatic chain atoms indicates that there are no loosely packed areas, which explains lacking the mesomorphism for this compound.

[Figure 3]
Figure 3
The crystal packing of the title compound.

In the crystal, only C9—H9⋯O1 contacts between translationally (along the a axis) related mol­ecules may be considered to be weak hydrogen bonds (Table 1[link], Fig. 4[link]). The H9⋯O1 distances are equal to 2.47 Å, which corresponds to common values. The H9 atom is rather acidic to participate in a weak hydrogen bond since it is situated at the ortho position to the accepting ester group. A detailed analysis of the crystal packing did not reveal contacts that could be considered to be weak directional inter­actions of other types.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 0.943 (16) 2.471 (16) 3.3774 (15) 161.3 (12)
Symmetry code: (i) x-1, y, z.
[Figure 4]
Figure 4
Translation related (along the a axis) mol­ecules.

Inter­estingly, on cooling the isotropic melt of the compound, the formed crystal modifications CrII and CrI differ from that found in the crystal modification grown from solution at room temperature. Nevertheless, these modifications are also non-mesomorphous. The lack of mesomorphism of the compound in all crystal modifications may be explained by the occurrence of the branched metacryl group at the benzene ring C8–C13 that efficiently fills the adjacent areas in the crystal packing, thus restricting the displacement of the aliphatic chains.

4. Synthesis and crystallization

The compound was prepared by the reaction of 4-n-hexyl­oxybenzoic acid with 4-methacryloyloxyphenol using N,N-di­cyclo­hexyl­carbodi­imide in di­chloro­methane solution according to the procedure described by Hassner & Alexanian (1978[Hassner, A. & Alexanian, V. (1978). Tetrahedron Lett. 19, 4475-4478.]). The product was purified by column chromatography and then recrystallized from acetone. Its purity was checked by thin-layer chromatography.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located from a difference Fourier synthesis and refined isotropically without constrains and restrains.

Table 2
Experimental details

Crystal data
Chemical formula C23H26O5
Mr 382.44
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 5.6805 (3), 8.3846 (5), 21.4864 (12)
α, β, γ (°) 99.191 (1), 92.719 (1), 91.701 (1)
V3) 1008.37 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.48 × 0.14 × 0.08
 
Data collection
Diffractometer Bruker SMART APEXII CCD area detector
Absorption correction Multi-scan (SADAB; Bruker, 2008[Bruker (2009). SAINT, APEX2, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.660, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 11249, 5330, 3849
Rint 0.025
(sin θ/λ)max−1) 0.682
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.117, 1.04
No. of reflections 5330
No. of parameters 357
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.32, −0.23
Computer programs: SMART and SAINT (Bruker, 2009[Bruker (2009). SAINT, APEX2, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

4-[(3-Methylbut-3-enoyl)oxy]phenyl 4-n-hexyloxybenzoate top
Crystal data top
C23H26O5Z = 2
Mr = 382.44F(000) = 408
Triclinic, P1Dx = 1.260 Mg m3
a = 5.6805 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.3846 (5) ÅCell parameters from 2709 reflections
c = 21.4864 (12) Åθ = 2.5–30.3°
α = 99.191 (1)°µ = 0.09 mm1
β = 92.719 (1)°T = 150 K
γ = 91.701 (1)°Prism, colourless
V = 1008.37 (10) Å30.48 × 0.14 × 0.08 mm
Data collection top
Bruker SMART APEXII CCD area detector
diffractometer
5330 independent reflections
Radiation source: fine-focus sealed tube3849 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ– and ω–scansθmax = 29.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADAB; Bruker, 2008)
h = 77
Tmin = 0.660, Tmax = 0.746k = 1111
11249 measured reflectionsl = 2829
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.0431P]
where P = (Fo2 + 2Fc2)/3
5330 reflections(Δ/σ)max < 0.001
357 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.32606 (15)0.12065 (11)0.13553 (4)0.0286 (2)
O20.97617 (15)0.04386 (10)0.16947 (4)0.0257 (2)
O30.99053 (15)0.41394 (10)0.09472 (4)0.0253 (2)
O41.01986 (15)0.53782 (11)0.37446 (4)0.0278 (2)
O50.68226 (17)0.46661 (13)0.41579 (5)0.0419 (3)
C11.1518 (2)0.03297 (14)0.12803 (5)0.0208 (2)
C21.0995 (2)0.09530 (14)0.07307 (5)0.0197 (2)
C31.2689 (2)0.11683 (15)0.02774 (6)0.0218 (3)
H31.418 (3)0.0549 (17)0.0345 (7)0.034 (4)*
C41.2282 (2)0.22457 (15)0.02734 (6)0.0229 (3)
H41.339 (3)0.2381 (17)0.0599 (7)0.032 (4)*
C51.0156 (2)0.31488 (14)0.03819 (5)0.0207 (2)
C60.8480 (2)0.29893 (14)0.00758 (6)0.0222 (3)
H60.704 (2)0.3634 (17)0.0006 (6)0.026 (3)*
C70.8906 (2)0.18837 (14)0.06278 (6)0.0214 (2)
H70.775 (2)0.1768 (16)0.0936 (6)0.025 (3)*
C80.9940 (2)0.16953 (14)0.22149 (5)0.0218 (3)
C90.8023 (2)0.26700 (15)0.22967 (6)0.0239 (3)
H90.674 (3)0.2492 (16)0.1996 (7)0.031 (4)*
C100.8037 (2)0.38796 (15)0.28172 (6)0.0244 (3)
H100.673 (2)0.4579 (16)0.2881 (6)0.025 (3)*
C110.9979 (2)0.40909 (15)0.32390 (6)0.0232 (3)
C121.1896 (2)0.31167 (16)0.31564 (6)0.0249 (3)
H121.315 (2)0.3316 (16)0.3464 (6)0.028 (4)*
C131.1875 (2)0.18957 (15)0.26387 (6)0.0243 (3)
H131.324 (2)0.1234 (16)0.2570 (6)0.025 (3)*
C140.7688 (2)0.50073 (15)0.11192 (6)0.0237 (3)
H14A0.642 (2)0.4245 (17)0.1094 (6)0.027 (4)*
H14B0.738 (2)0.5776 (16)0.0828 (6)0.026 (3)*
C150.7830 (2)0.58681 (16)0.17877 (6)0.0261 (3)
H15A0.927 (3)0.6575 (17)0.1810 (6)0.031 (4)*
H15B0.810 (3)0.5070 (18)0.2066 (7)0.036 (4)*
C160.5590 (2)0.68682 (16)0.20221 (6)0.0261 (3)
H16A0.422 (3)0.6186 (18)0.1961 (7)0.032 (4)*
H16B0.532 (3)0.7710 (18)0.1752 (7)0.036 (4)*
C170.5631 (2)0.76731 (16)0.27084 (6)0.0262 (3)
H17A0.583 (2)0.6819 (18)0.2984 (7)0.033 (4)*
H17B0.702 (3)0.8369 (18)0.2756 (7)0.038 (4)*
C180.3397 (3)0.86774 (19)0.29400 (7)0.0355 (3)
H18A0.310 (3)0.947 (2)0.2637 (8)0.050 (5)*
H18B0.204 (3)0.798 (2)0.2900 (8)0.049 (5)*
C190.3486 (4)0.9629 (2)0.35978 (8)0.0484 (4)
H19A0.374 (3)0.893 (2)0.3915 (9)0.060 (5)*
H19B0.200 (4)1.030 (2)0.3717 (9)0.069 (6)*
H19C0.480 (4)1.039 (2)0.3619 (9)0.066 (6)*
C200.8557 (2)0.55349 (16)0.41884 (6)0.0263 (3)
C210.9248 (2)0.69069 (16)0.47011 (6)0.0287 (3)
C220.7842 (3)0.7171 (2)0.51894 (7)0.0378 (3)
H22A0.827 (3)0.804 (2)0.5527 (8)0.048 (5)*
H22B0.652 (3)0.648 (2)0.5221 (8)0.050 (5)*
C231.1432 (3)0.7870 (2)0.46524 (8)0.0422 (4)
H23A1.282 (3)0.719 (2)0.4610 (9)0.064 (6)*
H23B1.173 (3)0.875 (2)0.5006 (9)0.060 (5)*
H23C1.132 (3)0.837 (2)0.4253 (9)0.058 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0254 (5)0.0325 (5)0.0256 (5)0.0076 (4)0.0021 (4)0.0017 (4)
O20.0248 (4)0.0263 (5)0.0232 (4)0.0036 (4)0.0055 (3)0.0048 (4)
O30.0258 (4)0.0263 (5)0.0216 (4)0.0015 (4)0.0024 (3)0.0028 (4)
O40.0283 (5)0.0291 (5)0.0231 (4)0.0031 (4)0.0051 (4)0.0053 (4)
O50.0341 (6)0.0567 (7)0.0302 (5)0.0122 (5)0.0084 (4)0.0072 (5)
C10.0213 (6)0.0217 (6)0.0199 (6)0.0020 (5)0.0010 (4)0.0044 (5)
C20.0208 (6)0.0191 (6)0.0194 (6)0.0031 (4)0.0015 (4)0.0029 (4)
C30.0204 (6)0.0226 (6)0.0224 (6)0.0001 (5)0.0012 (5)0.0036 (5)
C40.0221 (6)0.0249 (6)0.0222 (6)0.0031 (5)0.0055 (5)0.0034 (5)
C50.0246 (6)0.0177 (6)0.0196 (6)0.0035 (5)0.0006 (5)0.0019 (4)
C60.0211 (6)0.0210 (6)0.0242 (6)0.0008 (5)0.0020 (5)0.0028 (5)
C70.0192 (6)0.0238 (6)0.0210 (6)0.0016 (5)0.0032 (5)0.0023 (5)
C80.0246 (6)0.0203 (6)0.0191 (6)0.0036 (5)0.0042 (5)0.0006 (5)
C90.0209 (6)0.0287 (6)0.0213 (6)0.0023 (5)0.0002 (5)0.0020 (5)
C100.0229 (6)0.0262 (6)0.0237 (6)0.0028 (5)0.0039 (5)0.0020 (5)
C110.0255 (6)0.0235 (6)0.0189 (6)0.0035 (5)0.0046 (5)0.0013 (5)
C120.0232 (6)0.0305 (7)0.0203 (6)0.0019 (5)0.0011 (5)0.0034 (5)
C130.0240 (6)0.0250 (6)0.0241 (6)0.0030 (5)0.0028 (5)0.0037 (5)
C140.0248 (6)0.0227 (6)0.0227 (6)0.0004 (5)0.0018 (5)0.0010 (5)
C150.0299 (7)0.0254 (6)0.0219 (6)0.0029 (5)0.0018 (5)0.0012 (5)
C160.0286 (7)0.0250 (6)0.0239 (6)0.0029 (5)0.0021 (5)0.0017 (5)
C170.0298 (7)0.0232 (6)0.0248 (6)0.0006 (5)0.0016 (5)0.0013 (5)
C180.0364 (8)0.0336 (8)0.0337 (8)0.0090 (6)0.0022 (6)0.0001 (6)
C190.0585 (11)0.0436 (10)0.0374 (9)0.0066 (9)0.0135 (8)0.0043 (8)
C200.0259 (6)0.0315 (7)0.0205 (6)0.0037 (5)0.0013 (5)0.0005 (5)
C210.0317 (7)0.0306 (7)0.0225 (6)0.0061 (5)0.0016 (5)0.0001 (5)
C220.0430 (9)0.0423 (9)0.0262 (7)0.0053 (7)0.0040 (6)0.0012 (6)
C230.0417 (9)0.0399 (9)0.0389 (9)0.0093 (7)0.0046 (7)0.0113 (7)
Geometric parameters (Å, º) top
O1—C11.2044 (13)C13—H130.968 (14)
O2—C11.3636 (14)C14—H14A0.976 (14)
O2—C81.4059 (13)C14—H14B0.986 (14)
O3—C51.3563 (14)C14—C151.5080 (17)
O3—C141.4382 (15)C15—H15A1.022 (15)
O4—C111.4019 (14)C15—H15B0.980 (16)
O4—C201.3594 (15)C15—C161.5221 (17)
O5—C201.2007 (15)C16—H16A0.983 (15)
C1—C21.4770 (16)C16—H16B0.996 (16)
C2—C31.3965 (16)C16—C171.5221 (18)
C2—C71.3897 (16)C17—H17A1.008 (15)
C3—H30.971 (15)C17—H17B0.994 (16)
C3—C41.3749 (17)C17—C181.5199 (19)
C4—H40.959 (15)C18—H18A1.018 (18)
C4—C51.3960 (16)C18—H18B0.982 (18)
C5—C61.3950 (16)C18—C191.512 (2)
C6—H60.959 (14)C19—H19A0.98 (2)
C6—C71.3903 (16)C19—H19B1.00 (2)
C7—H70.951 (14)C19—H19C0.99 (2)
C8—C91.3822 (17)C20—C211.4894 (18)
C8—C131.3823 (17)C21—C221.3427 (19)
C9—H90.944 (14)C21—C231.477 (2)
C9—C101.3841 (17)C22—H22A0.961 (17)
C10—H100.961 (14)C22—H22B0.945 (18)
C10—C111.3828 (17)C23—H23A0.99 (2)
C11—C121.3819 (18)C23—H23B0.977 (18)
C12—H120.942 (14)C23—H23C1.013 (19)
C12—C131.3856 (17)
C1—O2—C8118.12 (9)C15—C14—H14B111.3 (8)
C5—O3—C14118.59 (9)C14—C15—H15A108.8 (8)
C20—O4—C11119.76 (10)C14—C15—H15B109.3 (9)
O1—C1—O2123.19 (11)C14—C15—C16112.14 (11)
O1—C1—C2124.69 (11)H15A—C15—H15B106.4 (12)
O2—C1—C2112.11 (10)C16—C15—H15A111.0 (8)
C3—C2—C1116.71 (10)C16—C15—H15B109.1 (9)
C7—C2—C1124.17 (10)C15—C16—H16A109.6 (8)
C7—C2—C3119.05 (11)C15—C16—H16B110.0 (8)
C2—C3—H3120.4 (9)H16A—C16—H16B103.9 (12)
C4—C3—C2120.91 (11)C17—C16—C15113.23 (11)
C4—C3—H3118.7 (9)C17—C16—H16A110.4 (8)
C3—C4—H4122.3 (8)C17—C16—H16B109.3 (8)
C3—C4—C5119.83 (11)C16—C17—H17A109.4 (8)
C5—C4—H4117.8 (8)C16—C17—H17B108.7 (9)
O3—C5—C4115.06 (10)H17A—C17—H17B107.6 (12)
O3—C5—C6124.98 (11)C18—C17—C16113.10 (11)
C6—C5—C4119.96 (11)C18—C17—H17A108.3 (8)
C5—C6—H6119.9 (8)C18—C17—H17B109.7 (8)
C7—C6—C5119.54 (11)C17—C18—H18A108.5 (9)
C7—C6—H6120.6 (8)C17—C18—H18B109.3 (10)
C2—C7—C6120.65 (11)H18A—C18—H18B103.9 (14)
C2—C7—H7120.0 (8)C19—C18—C17114.27 (14)
C6—C7—H7119.3 (8)C19—C18—H18A108.3 (9)
C9—C8—O2116.27 (10)C19—C18—H18B112.0 (10)
C9—C8—C13121.80 (11)C18—C19—H19A112.4 (11)
C13—C8—O2121.86 (11)C18—C19—H19B110.7 (11)
C8—C9—H9119.1 (8)C18—C19—H19C110.7 (11)
C8—C9—C10119.18 (11)H19A—C19—H19B109.3 (16)
C10—C9—H9121.7 (8)H19A—C19—H19C107.2 (16)
C9—C10—H10120.5 (8)H19B—C19—H19C106.2 (15)
C11—C10—C9119.12 (11)O4—C20—C21110.19 (11)
C11—C10—H10120.3 (8)O5—C20—O4123.39 (11)
C10—C11—O4122.03 (11)O5—C20—C21126.41 (12)
C12—C11—O4116.12 (11)C22—C21—C20117.14 (14)
C12—C11—C10121.66 (11)C22—C21—C23123.96 (14)
C11—C12—H12117.4 (8)C23—C21—C20118.89 (12)
C11—C12—C13119.28 (12)C21—C22—H22A118.3 (10)
C13—C12—H12123.3 (8)C21—C22—H22B121.8 (10)
C8—C13—C12118.97 (12)H22A—C22—H22B119.7 (14)
C8—C13—H13121.3 (8)C21—C23—H23A111.5 (11)
C12—C13—H13119.6 (8)C21—C23—H23B113.1 (11)
O3—C14—H14A109.4 (8)C21—C23—H23C109.5 (10)
O3—C14—H14B110.7 (8)H23A—C23—H23B109.7 (15)
O3—C14—C15107.03 (10)H23A—C23—H23C105.3 (15)
H14A—C14—H14B108.0 (11)H23B—C23—H23C107.4 (15)
C15—C14—H14A110.3 (8)
O1—C1—C2—C31.43 (18)C5—O3—C14—C15174.48 (10)
O1—C1—C2—C7175.41 (12)C5—C6—C7—C20.80 (18)
O2—C1—C2—C3179.84 (10)C7—C2—C3—C42.05 (17)
O2—C1—C2—C73.33 (16)C8—O2—C1—O13.74 (17)
O2—C8—C9—C10176.84 (10)C8—O2—C1—C2175.02 (10)
O2—C8—C13—C12177.26 (10)C8—C9—C10—C110.58 (18)
O3—C5—C6—C7177.51 (11)C9—C8—C13—C120.55 (18)
O3—C14—C15—C16178.76 (10)C9—C10—C11—O4174.30 (11)
O4—C11—C12—C13175.19 (11)C9—C10—C11—C120.53 (19)
O4—C20—C21—C22177.29 (12)C10—C11—C12—C130.07 (19)
O4—C20—C21—C231.57 (17)C11—O4—C20—O53.94 (19)
O5—C20—C21—C222.4 (2)C11—O4—C20—C21175.79 (10)
O5—C20—C21—C23178.72 (15)C11—C12—C13—C80.60 (18)
C1—O2—C8—C9126.52 (12)C13—C8—C9—C100.05 (18)
C1—O2—C8—C1356.60 (15)C14—O3—C5—C4174.72 (10)
C1—C2—C3—C4174.95 (11)C14—O3—C5—C65.20 (17)
C1—C2—C7—C6175.36 (11)C14—C15—C16—C17176.70 (11)
C2—C3—C4—C50.46 (18)C15—C16—C17—C18179.72 (12)
C3—C2—C7—C61.40 (17)C16—C17—C18—C19174.03 (14)
C3—C4—C5—O3178.14 (10)C20—O4—C11—C1060.01 (16)
C3—C4—C5—C61.78 (18)C20—O4—C11—C12124.89 (12)
C4—C5—C6—C72.40 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.943 (16)2.471 (16)3.3774 (15)161.3 (12)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The X-ray diffraction study was performed at the Centre of Shared Equipment of IGIC RAS.

Funding information

Funding for this research was provided by: Russian Science Foundation (award No. 16-13-10273).

References

First citationBruker (2009). SAINT, APEX2, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Zh., Lohr, A., Saha-Möller, C. R. & Würthner, F. (2009). Chem. Soc. Rev. 38, 564–584.  CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassner, A. & Alexanian, V. (1978). Tetrahedron Lett. 19, 4475–4478.  CrossRef Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKonstantinov, I. I., Churakov, A. V. & Kuz'mina, L. G. (2013). Crystallogr. Rep. 58, 81–92.  CSD CrossRef CAS Google Scholar
First citationKuz'mina, L. G., Konstantinov, I. I. & Lermontova, E. Kh. (2014). Mol. Cryst. Liq. Cryst. 588, 1–8.  CAS Google Scholar
First citationKuz'mina, L. G. & Kucherepa, N. S. (2011). Crystallogr. Rep. 56, 242–255.  CAS Google Scholar
First citationKuz'mina, L. G., Kucherepa, N. S. & Churakov, A. V. (2012). Crystallogr. Rep. 57, 213–226.  CAS Google Scholar
First citationKuz'mina, L. G., Kucherepa, N. S., Pestov, S. M., Kochetov, A. N., Rukk, N. S. & Syrbu, S. A. (2009). Crystallogr. Rep. 54, 862–879.  CAS Google Scholar
First citationKuz'mina, L. G., Navasardyan, M. A., Churakov, A. V. & Howard, J. A. K. (2016). Mol. Cryst. Liq. Cryst. 638, 60–67.  CAS Google Scholar
First citationNangia, A. (2002). CrystEngComm, 4, 93–101.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds