research communications
κN)cobalt(II)–caffeine–water (1/2/4) co-crystal
of the tetraaquabis(thiocyanato-aEquipe Métallation, Complexes Moléculaires et Applications, Université Moulay Ismail, Faculté des Sciences, BP 11201 Zitoune, 50000 Meknès, Morocco, bCNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, F-31077 Toulouse, France, and cUniversité de Toulouse, UPS, INPT, LCC, F-31077 Toulouse, France
*Correspondence e-mail: elhamdanihicham41@gmail.com
In the structure of the title compound [systematic name: tetraaquabis(thiocyanato-κN)cobalt(II)–1,3,7-trimethyl-1,2,3,6-tetrahydro-7H-purine-2,6-dione–water (1/2/4)], [Co(NCS)2(H2O)4]·2C8H10N4O2·4H2O, the cobalt(II) cation lies on an inversion centre and is coordinated in a slightly distorted octahedral geometry by the oxygen atoms of four water molecules and two N atoms of two trans-arranged thiocyanate anions. In the crystal, the complex molecules interact with the caffeine molecules through O—H⋯N, O—H⋯O and C—H⋯S hydrogen bonds and π–π interactions [centroid-to-centroid distance = 3.4715 (5) Å], forming layers parallel to the ab plane, which are further connected into a three-dimensional network by O—H⋯O and O—H⋯S hydrogen bonds involving the non-coordinating water molecules.
CCDC reference: 1553654
1. Chemical context
Compounds with supramolecular metal–organic structures, which are diversified by their innovative applications, attract attention in various fields such as non-linear optical activity, catalysis, electrical conductivity, and cooperative magnetic behavior (Fan et al., 2016). In particular, the supramolecular complexes of mixed metals and ligands that possess active pharmaceutical ingredients (APIs) offers an approach to generate crystalline materials that form pharmaceutical co-crystals to effect therapeutic parameters such as solubility and (Ma & Moulton, 2007). The properties of caffeine as a pharmaceutical compound exhibiting moisture instability with the formation of a non-stoichiometric crystalline hydrate have been widely studied. Caffeine is a stimulant of the central nervous system and a smooth muscle relaxant, and is used as a formulation additive to analgesic remedies (Trask et al., 2005). Caffeine has attractive effects on various biological systems, including cardiovascular, gastrointestinal, respiratory and muscle systems (Taşdemir et al., 2016), and forms complexes with transition metals having different coordination and biological properties such as anti-inflammatory and antibacterial (Taşdemir et al., 2016). Thiocyanate is a commonly used ligand because of its numerous bonding modes to one or more transition metal ions, and provides useful precursors for numerous coordination complexes. Usually, the thiocyanate anion bonds terminally through the nitrogen atom with first-row transition metals, and can act as a hydrogen-bond acceptor through the nitrogen or sulfur atom (Bie et al., 2005).
2. Structural commentary
The ) contains half a complex molecule of formula [Co(NCS)2(H2O)4], a caffeine molecule and two free water molecules. The cobalt(II) cation lies on an inversion centre and displays a trans-arranged octahedral coordination geometry provided by the N atoms of two thiocyanate anions and four O atoms of coordinating water molecules. The Co1—N15 [2.0981 (8) Å] and Co1—O18 [2.0981 (7) Å] bond lengths are equal within standard uncertainties and significantly longer than the Co1–O19 bond length [2.0732 (7) Å], and therefore the CoN2O4 octahedron is slightly axially compressed. This structural feature is typical for related compounds (Shylin et al., 2013, 2015). The thiocyanato ligands are bound through the nitrogen atoms and are nearly linear [N15—C16—S17 = 177.81 (8)°], while the Co–NCS linkage is bent [C16—N15—Co1 = 167.35 (8)°]. Previously reported complexes with an N-bound NCS group possess similar structural features (Petrusenko et al., 1997). The caffeine molecule is nearly planar (r.m.s. deviation = 0.0346 Å), with a maximum deviation from the mean plane of 0.0404 (7) Å for atom N5.
of the title compound (Fig. 13. Supramolecular features
In the crystal, each complex molecule interacts with four neighboring caffeine molecules through classical O—H⋯N and O—H⋯O hydrogen bonds (Table 1) involving the coordinating water molecules as H-atom donors to form layers parallel to the ab plane. These planes are further enforced by C—H⋯S hydrogen bonds and π–π interactions occurring between centrosymmetrically related six-membered rings of the purine ring system [Cg⋯Cgi = 3.4715 (5) Å; Cg is the centroid of the N3/N7/C4/C6/C8/C9 ring; symmetry code: (i) 1 − x, 2 − y, 1 − z; Fig. 2], and are alternated by layers of non-coordinating water molecules linked through O—H⋯O and O—H⋯S hydrogen bonds (Fig. 3), leading to the formation of a three-dimensional network (Fig. 3).
4. Synthesis and crystallization
In a glass tube, a solution of CoCl2·6H2O (129 mg, 1 mmol) in 5 ml of water and caffeine (194.19 mg, 1 mmol) in 10 ml of ethanol was added to a solution of potassium thiocyanate (190 mg, 2 mmol) in 5 ml of water. Single crystals of the title compound suitable for X-ray analysis were grown after several months by slow evaporation of the solvent at room temperature.
5. Refinement
Crystal data, data collection and structure . All H atoms could be located in a difference-Fourier map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H = 0.98, O—H = 0.82 Å) and with Uiso(H) set at 1.2–1.5 times of the Ueq of the parent atom, after which the positions were refined with riding constraints (Cooper et al., 2010).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1553654
https://doi.org/10.1107/S2056989017008180/rz5216sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017008180/rz5216Isup2.hkl
Data collection: Gemini (Oxford Diffraction, 2006); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).[Co(NCS)2(H2O)4]·2C8H10N4O2·4H2O | F(000) = 738 |
Mr = 707.61 | Dx = 1.504 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 26895 reflections |
a = 10.65854 (19) Å | θ = 4–29° |
b = 8.16642 (14) Å | µ = 0.75 mm−1 |
c = 18.0595 (3) Å | T = 120 K |
β = 96.4701 (15)° | Block, orange |
V = 1561.93 (3) Å3 | 0.25 × 0.20 × 0.20 mm |
Z = 2 |
Oxford Diffraction Gemini diffractometer | 3693 reflections with I > 2.0σ(I) |
Graphite monochromator | Rint = 0.023 |
φ & ω scans | θmax = 29.3°, θmin = 3.1° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | h = −14→13 |
Tmin = 0.78, Tmax = 0.86 | k = −10→10 |
62568 measured reflections | l = −24→24 |
4002 independent reflections |
Refinement on F | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | H-atom parameters not refined |
wR(F2) = 0.022 | Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 4.58 -1.83 2.76 |
S = 1.13 | (Δ/σ)max = 0.001 |
3586 reflections | Δρmax = 0.36 e Å−3 |
196 parameters | Δρmin = −0.24 e Å−3 |
0 restraints |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1K. Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105-107. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.52963 (7) | 0.70159 (10) | 0.44118 (4) | 0.0159 | |
N3 | 0.39238 (7) | 0.69668 (10) | 0.52732 (4) | 0.0165 | |
N5 | 0.50891 (7) | 0.88202 (9) | 0.61607 (4) | 0.0138 | |
N7 | 0.70166 (7) | 0.97981 (10) | 0.57845 (4) | 0.0148 | |
N15 | 0.87722 (7) | 0.56972 (10) | 0.57738 (4) | 0.0177 | |
C2 | 0.42006 (9) | 0.64292 (12) | 0.46092 (5) | 0.0177 | |
C4 | 0.49202 (8) | 0.79469 (11) | 0.55076 (5) | 0.0134 | |
C6 | 0.61761 (8) | 0.97269 (11) | 0.63265 (5) | 0.0145 | |
C8 | 0.68939 (8) | 0.89801 (11) | 0.50972 (5) | 0.0140 | |
C9 | 0.57826 (8) | 0.80031 (11) | 0.49965 (5) | 0.0138 | |
C10 | 0.58693 (10) | 0.66144 (13) | 0.37365 (5) | 0.0214 | |
C11 | 0.41902 (9) | 0.86319 (12) | 0.67132 (5) | 0.0187 | |
C13 | 0.81636 (9) | 1.07902 (13) | 0.59652 (6) | 0.0212 | |
C16 | 0.82097 (8) | 0.58619 (11) | 0.62832 (5) | 0.0146 | |
O12 | 0.63887 (6) | 1.04807 (9) | 0.69164 (4) | 0.0199 | |
O14 | 0.76700 (6) | 0.91542 (9) | 0.46473 (4) | 0.0191 | |
O18 | 1.14207 (7) | 0.63274 (10) | 0.56379 (4) | 0.0243 | |
O19 | 1.04404 (7) | 0.29467 (9) | 0.56531 (4) | 0.0202 | |
O20 | 0.85940 (7) | 1.15725 (10) | 0.78244 (4) | 0.0218 | |
O21 | 1.04346 (7) | 0.33657 (9) | 0.71711 (4) | 0.0227 | |
S17 | 0.73704 (2) | 0.60472 (3) | 0.699098 (13) | 0.0206 | |
Co1 | 1.0000 | 0.5000 | 0.5000 | 0.0133 | |
H21 | 0.3674 | 0.5683 | 0.4293 | 0.0226* | |
H103 | 0.6697 | 0.6105 | 0.3874 | 0.0339* | |
H102 | 0.5958 | 0.7614 | 0.3446 | 0.0343* | |
H101 | 0.5302 | 0.5835 | 0.3448 | 0.0347* | |
H111 | 0.4397 | 0.9420 | 0.7112 | 0.0299* | |
H112 | 0.3339 | 0.8828 | 0.6471 | 0.0298* | |
H113 | 0.4258 | 0.7533 | 0.6921 | 0.0310* | |
H131 | 0.8546 | 1.0964 | 0.5513 | 0.0326* | |
H132 | 0.7942 | 1.1847 | 0.6172 | 0.0322* | |
H133 | 0.8741 | 1.0211 | 0.6328 | 0.0327* | |
H181 | 1.1398 | 0.6463 | 0.6098 | 0.0378* | |
H202 | 0.9034 | 1.2295 | 0.7618 | 0.0364* | |
H191 | 1.0428 | 0.3014 | 0.6127 | 0.0336* | |
H182 | 1.2164 | 0.6538 | 0.5531 | 0.0384* | |
H211 | 1.1073 | 0.2809 | 0.7394 | 0.0376* | |
H212 | 1.0591 | 0.4409 | 0.7176 | 0.0382* | |
H201 | 0.7920 | 1.1412 | 0.7538 | 0.0355* | |
H192 | 1.1020 | 0.2292 | 0.5552 | 0.0330* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0180 (4) | 0.0155 (4) | 0.0136 (3) | 0.0004 (3) | 0.0001 (3) | −0.0018 (3) |
N3 | 0.0150 (3) | 0.0163 (4) | 0.0178 (4) | −0.0018 (3) | 0.0000 (3) | −0.0004 (3) |
N5 | 0.0130 (3) | 0.0168 (4) | 0.0119 (3) | −0.0009 (3) | 0.0028 (3) | −0.0008 (3) |
N7 | 0.0127 (3) | 0.0175 (4) | 0.0140 (3) | −0.0031 (3) | 0.0010 (3) | 0.0002 (3) |
N15 | 0.0152 (3) | 0.0229 (4) | 0.0155 (3) | −0.0010 (3) | 0.0039 (3) | −0.0018 (3) |
C2 | 0.0164 (4) | 0.0178 (4) | 0.0185 (4) | −0.0015 (3) | −0.0005 (3) | −0.0012 (3) |
C4 | 0.0133 (4) | 0.0136 (4) | 0.0132 (4) | 0.0012 (3) | 0.0007 (3) | 0.0012 (3) |
C6 | 0.0140 (4) | 0.0156 (4) | 0.0135 (4) | 0.0007 (3) | 0.0002 (3) | 0.0007 (3) |
C8 | 0.0137 (4) | 0.0141 (4) | 0.0140 (4) | 0.0024 (3) | 0.0012 (3) | 0.0023 (3) |
C9 | 0.0149 (4) | 0.0146 (4) | 0.0120 (4) | 0.0011 (3) | 0.0011 (3) | 0.0000 (3) |
C10 | 0.0269 (5) | 0.0228 (5) | 0.0152 (4) | 0.0007 (4) | 0.0058 (4) | −0.0028 (4) |
C11 | 0.0177 (4) | 0.0244 (5) | 0.0152 (4) | −0.0010 (4) | 0.0067 (3) | −0.0006 (3) |
C13 | 0.0154 (4) | 0.0269 (5) | 0.0208 (4) | −0.0084 (4) | 0.0000 (3) | −0.0009 (4) |
C16 | 0.0139 (4) | 0.0147 (4) | 0.0146 (4) | −0.0021 (3) | −0.0005 (3) | −0.0003 (3) |
O12 | 0.0199 (3) | 0.0232 (3) | 0.0163 (3) | −0.0028 (3) | 0.0006 (2) | −0.0052 (3) |
O14 | 0.0172 (3) | 0.0224 (3) | 0.0190 (3) | 0.0006 (3) | 0.0071 (2) | 0.0021 (3) |
O18 | 0.0175 (3) | 0.0413 (4) | 0.0147 (3) | −0.0121 (3) | 0.0044 (2) | −0.0074 (3) |
O19 | 0.0212 (3) | 0.0232 (3) | 0.0173 (3) | 0.0041 (3) | 0.0063 (2) | 0.0018 (3) |
O20 | 0.0203 (3) | 0.0300 (4) | 0.0146 (3) | −0.0021 (3) | −0.0004 (2) | 0.0011 (3) |
O21 | 0.0241 (3) | 0.0246 (4) | 0.0195 (3) | 0.0044 (3) | 0.0020 (3) | 0.0047 (3) |
S17 | 0.01944 (11) | 0.02902 (12) | 0.01456 (10) | −0.00462 (9) | 0.00757 (8) | −0.00446 (9) |
Co1 | 0.01068 (8) | 0.01859 (9) | 0.01093 (8) | −0.00186 (6) | 0.00259 (5) | −0.00104 (6) |
N1—C2 | 1.3469 (12) | C10—H102 | 0.980 |
N1—C9 | 1.3820 (11) | C10—H101 | 0.985 |
N1—C10 | 1.4616 (12) | C11—H111 | 0.972 |
N3—C2 | 1.3407 (12) | C11—H112 | 0.975 |
N3—C4 | 1.3588 (12) | C11—H113 | 0.972 |
N5—C4 | 1.3727 (11) | C13—H131 | 0.963 |
N5—C6 | 1.3792 (11) | C13—H132 | 0.980 |
N5—C11 | 1.4672 (11) | C13—H133 | 0.969 |
N7—C6 | 1.4006 (11) | C16—S17 | 1.6476 (9) |
N7—C8 | 1.4027 (11) | O18—Co1 | 2.0981 (7) |
N7—C13 | 1.4723 (11) | O18—H181 | 0.842 |
N15—C16 | 1.1610 (12) | O18—H182 | 0.853 |
N15—Co1 | 2.0981 (8) | O19—Co1 | 2.0732 (7) |
C2—H21 | 0.969 | O19—H191 | 0.860 |
C4—C9 | 1.3749 (12) | O19—H192 | 0.853 |
C6—O12 | 1.2291 (11) | O20—H202 | 0.864 |
C8—C9 | 1.4226 (12) | O20—H201 | 0.846 |
C8—O14 | 1.2314 (11) | O21—H211 | 0.877 |
C10—H103 | 0.982 | O21—H212 | 0.868 |
C2—N1—C9 | 105.49 (7) | H111—C11—H112 | 110.1 |
C2—N1—C10 | 126.68 (8) | N5—C11—H113 | 109.5 |
C9—N1—C10 | 127.76 (8) | H111—C11—H113 | 109.0 |
C2—N3—C4 | 103.21 (8) | H112—C11—H113 | 110.5 |
C4—N5—C6 | 119.42 (7) | N7—C13—H131 | 108.3 |
C4—N5—C11 | 119.83 (7) | N7—C13—H132 | 109.8 |
C6—N5—C11 | 120.37 (7) | H131—C13—H132 | 109.6 |
C6—N7—C8 | 126.55 (7) | N7—C13—H133 | 109.2 |
C6—N7—C13 | 116.65 (7) | H131—C13—H133 | 110.3 |
C8—N7—C13 | 116.77 (7) | H132—C13—H133 | 109.6 |
C16—N15—Co1 | 167.35 (8) | N15—C16—S17 | 177.81 (8) |
N1—C2—N3 | 113.89 (8) | Co1—O18—H181 | 120.7 |
N1—C2—H21 | 122.0 | Co1—O18—H182 | 127.7 |
N3—C2—H21 | 124.1 | H181—O18—H182 | 109.1 |
N5—C4—N3 | 126.58 (8) | Co1—O19—H191 | 119.2 |
N5—C4—C9 | 121.78 (8) | Co1—O19—H192 | 120.6 |
N3—C4—C9 | 111.64 (8) | H191—O19—H192 | 110.2 |
N7—C6—N5 | 117.28 (8) | H202—O20—H201 | 107.9 |
N7—C6—O12 | 120.99 (8) | H211—O21—H212 | 111.4 |
N5—C6—O12 | 121.70 (8) | O18i—Co1—O18 | 179.995 |
N7—C8—C9 | 111.93 (7) | O18i—Co1—N15i | 87.69 (3) |
N7—C8—O14 | 121.76 (8) | O18—Co1—N15i | 92.31 (3) |
C9—C8—O14 | 126.29 (8) | O18i—Co1—N15 | 92.31 (3) |
C8—C9—N1 | 131.30 (8) | O18—Co1—N15 | 87.69 (3) |
C8—C9—C4 | 122.88 (8) | N15i—Co1—N15 | 179.995 |
N1—C9—C4 | 105.77 (8) | O18i—Co1—O19 | 89.86 (3) |
N1—C10—H103 | 109.4 | O18—Co1—O19 | 90.14 (3) |
N1—C10—H102 | 109.5 | N15i—Co1—O19 | 92.36 (3) |
H103—C10—H102 | 110.5 | N15—Co1—O19 | 87.64 (3) |
N1—C10—H101 | 107.3 | O18i—Co1—O19i | 90.14 (3) |
H103—C10—H101 | 109.9 | O18—Co1—O19i | 89.86 (3) |
H102—C10—H101 | 110.2 | N15i—Co1—O19i | 87.64 (3) |
N5—C11—H111 | 108.8 | N15—Co1—O19i | 92.36 (3) |
N5—C11—H112 | 108.9 | O19—Co1—O19i | 179.994 |
Symmetry code: (i) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H21···S17ii | 0.97 | 2.83 | 3.7622 (9) | 160.6 |
O20—H202···O21iii | 0.86 | 1.98 | 2.8119 (11) | 161.6 |
O19—H191···O21 | 0.86 | 1.91 | 2.7634 (10) | 174.9 |
O18—H182···N3iv | 0.85 | 2.01 | 2.8671 (11) | 178.4 |
O21—H211···S17v | 0.88 | 2.38 | 3.2481 (7) | 173.3 |
O21—H212···O20v | 0.87 | 1.97 | 2.8157 (11) | 164.8 |
O20—H201···O12 | 0.85 | 2.02 | 2.8531 (10) | 166.8 |
O19—H192···O14i | 0.85 | 1.89 | 2.7460 (10) | 178.5 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x, y+1, z; (iv) x+1, y, z; (v) −x+2, y−1/2, −z+3/2. |
Acknowledgements
The authors would like to thank the LCC CNRS (Laboratory of Chemistry of Coordination) for their help.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Bie, H. Y., Lu, J., Yu, J. H., Xu, J., Zhao, K. & Zhang, X. (2005). J. Solid State Chem. 178, 1445–1451. Web of Science CSD CrossRef CAS Google Scholar
Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fan, G., Deng, L.-J., Ma, Z.-Y., Li, X.-B., Zhang, Y.-L. & Sun, J.-J. (2016). Chin. J. Struct. Chem. 35, 100–106. CAS Google Scholar
Ma, Z. & Moulton, B. (2007). Mol. Pharm. 4, 373–385. Web of Science CSD CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2006). Gemini User Manual. Oxford Diffraction, Abingdon, England. Google Scholar
Petrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267–274. CSD CrossRef CAS Web of Science Google Scholar
Prince, E. (1982). In Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag. Google Scholar
Shylin, S. I., Gural'skiy, I. A., Bykov, D., Demeshko, S., Dechert, S., Meyer, F., Hauka, M. & Fritsky, I. O. (2015). Polyhedron, 87, 147–155. Web of Science CSD CrossRef CAS Google Scholar
Shylin, S. I., Gural'skiy, I. A., Haukka, M. & Golenya, I. A. (2013). Acta Cryst. E69, m280. CSD CrossRef IUCr Journals Google Scholar
Taşdemir, E., Özbek, F. E., Sertçelik, M., Hökelek, T., Çelik, R. Ç., & Necefoğlu, H. (2016). J. Mol. Struct. 1119, 472–478. Google Scholar
Trask, A. V., Motherwell, W. D. S. & Jones, W. (2005). Cryst. Growth Des. 5, 1013–1021. Web of Science CSD CrossRef CAS Google Scholar
Watkin, D. (1994). Acta Cryst. A50, 411–437. CrossRef CAS Web of Science IUCr Journals Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.