research communications
S)-4-[(2S,3S,4S,Z)-3-hydroxy-4-methylhept-5-en-2-yl]-1,3-dioxolan-2-one
of (−)-(aDepartment of Chemistry, University of Puerto Rico-Rio Piedras Campus, PO Box 23346, San Juan, 00931-3346, Puerto Rico
*Correspondence e-mail: jose.prieto2@upr.edu
The title compound, C11H18O4, consists of an anti,anti,anti-stereotetrad with a 1,2-carbonate and an alkene motif. The molecule displays a common zigzag conformation. The five-membered ring has a twisted conformation on the C—C bond. In the crystal, a strong intermolecular hydrogen bond between the hydroxy group and the carboxylate moiety from an adjacent molecule forms chains propagating along the b-axis direction. The of the molecule in the crystal was determined by [Flack parameter = 0.05 (6)].
Keywords: crystal structure; polypropionate; 1,2-carbonate; stereotetrads; O—H⋯O hydrogen bonding.
CCDC reference: 1548935
1. Chemical context
The title compound was obtained as part of our studies toward the synthesis of (−)-dolabriferol and (−)-dolabriferol B (Ciavatta et al., 1996; Jiménez-Romero et al., 2012), using an epoxide-based approach for the stereotetrad construction. Polypropionate chains are structural motifs consisting of alternating methyl and hydroxy groups within an aliphatic framework (Torres et al., 2004, 2009; Tirado et al., 2005, Rodríguez et al., 2006). Their structure is found in various natural products, many of them possessing a wide range of biological activity, typically antibiotic, antitumor, antifungal, antiparasitic, among others (Rohr, 2000). Different methodologies for the synthesis of polypropionates have been developed, with aldol and aldol-related chemistry being the most used (Schetter & Mahrwald, 2006).
In our laboratory, we have developed an epoxide-based methodology for the construction of polypropionates, consisting of a reiterative sequence of three steps. Our approach involves a regioselective epoxide cleavage with an alkynyl aluminium reagent (Torres et al., 2005) or Grignard reagent (Rodríguez et al., 2006), cis or trans reduction of the alkyne (if needed), and the stereoselective epoxidation of the resulting alkenol for the elaboration of each propionate unit. In this approach, the configuration of the hydroxyl group is derived from the of the epoxide precursor, while the syn/anti of the methyl and hydroxyl groups is derived from the epoxide geometry. One of the advantages of this methodology is that it is a substrate-controlled synthesis; the only enantiomeric step in this sequence is the first epoxidation (Katsuki & Sharpless, 1980).
2. Structural commentary
The molecular structure of the title compound is illustrated in Fig. 1. The alkyl back bone has a typical zigzag conformation with two of the three methyl groups, those located on C4 and C6, anti to one another. Likewise, the hydroxy group located on C5 is in an anti relative conformation with respect to the methyl groups. The five-membered ring (O2/O3/C1–C3) has a twisted conformation on bond C2–C3 [puckering parameters Q(2) = 0.137 (2) Å and φ(2) = 307.4 (10)°].
3. Supramolecular features
The conformational distance between the hydroxyl group and the carbonyl moiety does not allow intramolecular hydrogen-bond formation, therefore, hydrogen bonding is observed through intermolecular interactions alone (Table 1). In the crystal, neighbouring molecules are linked by the O4—H4⋯O1i hydrogen bond, forming chains along [010]; see Fig. 2 and Table 1.
4. Database survey
A search of the Cambridge Structural Database (Version 5.38, updated May 2017; Groom et al., 2016) revealed no related compounds with the 3-hydroxy-2-methyl-1,2-carbonate However, a search for the 2,4-dimethylhex-5-en-3-ol fragment revealed more than 120 hits. Many of these involve reactants for the synthesis of natural products, such as superotolide A (Yakelis & Roush, 2003) and erythronolides A and B (Lynch et al., 1989a; 1989b).
5. Synthesis and crystallization
The synthesis of the title compound, illustrated in Fig. 3, was performed through the selective protection of the 1,2-diol of (+)-(2S,3S,4S,5S,Z)-3,5-dimethyloct-6-ene-1,2,4-triol with a carbonate using N,N′-carbonyldiimidazole (CDI) in CH2Cl2 as solvent, favouring formation of the 1,2-carbonate over the 1,3-carbonate. This reaction afforded the optically active anti,anti,anti-polypropionate unit with the correct To a dry round-bottom flask containing the 1,2-diol of (+)-(2S,3S,4S,5S,Z)-3,5-dimethyloct-6-ene-1,2,4-triol (0.04 g, 0.212 mmol) in dry CH2Cl2 (1.07 ml, 0.2 M) was added N,N′-carbonyldiimidazole (0.048 g, 0.30 mmol). The reaction mixture was stirred at 298 K for 2.5 h, then saturated aqueous NaCl was added. The resulting mixture was then extracted with ethyl acetate (three times). The combined organic layer was dried over MgSO4 and concentrated at reduced pressure. The crude product was purified by flash (2:1, ethyl acetate:hexane) to yield 0.027 g (62%) of the pure title carbonate product as a white solid (m.p. 360–363 K). Block-like clear crystals suitable for X-ray diffraction, were obtained by slow diffusion of a 1:1 (v:v) ethyl acetate:hexanes solution of the title compound at room temperature over a period of two days. NMR analyses were performed on a Bruker AV-500 spectrometer using Chloroform-d as solvent (CDCl3). The solvent signal at 7.26 and 77.00 ppm were used as internal standards for proton and carbon respectively. 1H NMR (500 MHz, CDCl3) δ 5.69 (dq, J = 10.9, 6.8 Hz, 1H), 5.23 (ddt, J = 11.2, 9.8, 1.8 Hz, 1H), 4.99 (td, J = 8.2, 5.0 Hz, 1H), 4.44 (t, J = 8.6 Hz, 1H), 4.37 (t, J = 8.6 Hz, 1H), 3.26 (dd, J = 7.5, 4.2 Hz, 1H), 2.72 (ddq, J = 6.9, 6.7, 3.1 Hz, 1H), 2.29 (ddq, J = 6.6, 4.5, 2.4 Hz, 1H), 2.00 (s, 1H, -OH), 1.65 (dd, J = 6.8, 1.9 Hz, 3H), 1.05 (d, J = 6.9 Hz, 3H), 1.00 (d, J = 6.6 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 155.3, 131.3, 127.4, 77.5, 77.3, 66.9, 36.8, 35.3, 17.1, 13.3, 11.7. [α]20D = −2.0 (c = 1.0, CHCl3). Analysis calculated for C11H18O4: C, 61.66, H, 8.47%. Found: C, 61.74, H, 8.44%. IR data: C=O: 1761.32 cm−1, C—O: 1061.01 cm−1.
6. Refinement
Crystal data, data collection and structure . H atoms were included in geometrically calculated positions and refined as riding: O—H = 0.82 Å, C—H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(O-hydroxyl and C-methyl) and 1.2Ueq(C) for other H atoms.
details are summarized in Table 2Supporting information
CCDC reference: 1548935
https://doi.org/10.1107/S2056989017009318/su5376sup1.cif
contains datablocks Global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017009318/su5376Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017009318/su5376Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2016); cell
CrysAlis PRO (Rigaku OD, 2016); data reduction: CrysAlis PRO (Rigaku OD, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C11H18O4 | Dx = 1.237 Mg m−3 |
Mr = 214.25 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, P212121 | Cell parameters from 12810 reflections |
a = 5.0968 (1) Å | θ = 3.5–68.8° |
b = 8.8153 (1) Å | µ = 0.77 mm−1 |
c = 25.6052 (3) Å | T = 100 K |
V = 1150.44 (3) Å3 | Block, colourless |
Z = 4 | 0.23 × 0.13 × 0.06 mm |
F(000) = 464 |
Rigaku OD SuperNova, Single source at offset/far, HyPix3000 diffractometer | 2131 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 2081 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.030 |
ω scans | θmax = 69.0°, θmin = 3.5° |
Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2016) | h = −6→6 |
Tmin = 0.739, Tmax = 1.000 | k = −10→10 |
17757 measured reflections | l = −30→31 |
Refinement on F2 | H-atom parameters constrained |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0367P)2 + 0.4414P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.032 | (Δ/σ)max < 0.001 |
wR(F2) = 0.094 | Δρmax = 0.23 e Å−3 |
S = 1.26 | Δρmin = −0.17 e Å−3 |
2131 reflections | Extinction correction: (SHELXL2016; Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
141 parameters | Extinction coefficient: 0.0032 (6) |
0 restraints | Absolute structure: Flack x determined using 812 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: dual | Absolute structure parameter: 0.05 (6) |
Hydrogen site location: inferred from neighbouring sites |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.9031 (4) | −0.13807 (18) | 0.69895 (7) | 0.0267 (4) | |
O2 | 0.6220 (3) | 0.03761 (19) | 0.72821 (6) | 0.0234 (4) | |
O3 | 0.9752 (3) | 0.10820 (18) | 0.68416 (6) | 0.0214 (4) | |
O4 | 0.8749 (4) | 0.55481 (18) | 0.66999 (6) | 0.0241 (4) | |
H4 | 0.838292 | 0.644582 | 0.674153 | 0.036* | |
C1 | 0.8397 (5) | −0.0079 (3) | 0.70337 (9) | 0.0196 (5) | |
C2 | 0.6171 (5) | 0.2019 (3) | 0.73034 (9) | 0.0208 (5) | |
H2A | 0.653581 | 0.237855 | 0.765407 | 0.025* | |
H2B | 0.447987 | 0.240857 | 0.719285 | 0.025* | |
C3 | 0.8339 (5) | 0.2503 (2) | 0.69242 (9) | 0.0182 (5) | |
H3 | 0.949859 | 0.323486 | 0.709691 | 0.022* | |
C4 | 0.7482 (5) | 0.3135 (2) | 0.63967 (8) | 0.0164 (5) | |
H4A | 0.904016 | 0.316110 | 0.617275 | 0.020* | |
C5 | 0.6564 (5) | 0.4780 (2) | 0.64684 (9) | 0.0179 (5) | |
H5 | 0.509516 | 0.479338 | 0.671547 | 0.021* | |
C6 | 0.5674 (5) | 0.5528 (3) | 0.59550 (8) | 0.0188 (5) | |
H6 | 0.418322 | 0.494773 | 0.581917 | 0.023* | |
C7 | 0.7832 (5) | 0.5488 (3) | 0.55492 (9) | 0.0224 (5) | |
H7 | 0.947944 | 0.581376 | 0.565794 | 0.027* | |
C8 | 0.7641 (5) | 0.5043 (3) | 0.50573 (9) | 0.0266 (5) | |
H8 | 0.916088 | 0.510563 | 0.485756 | 0.032* | |
C9 | 0.5243 (6) | 0.4446 (4) | 0.47858 (10) | 0.0394 (7) | |
H9A | 0.492138 | 0.503209 | 0.447625 | 0.059* | |
H9B | 0.375977 | 0.452228 | 0.501530 | 0.059* | |
H9C | 0.551540 | 0.340378 | 0.469213 | 0.059* | |
C10 | 0.5456 (5) | 0.2129 (3) | 0.61247 (9) | 0.0208 (5) | |
H10A | 0.379257 | 0.222893 | 0.629735 | 0.031* | |
H10B | 0.601834 | 0.109062 | 0.613932 | 0.031* | |
H10C | 0.528349 | 0.243598 | 0.576661 | 0.031* | |
C11 | 0.4749 (6) | 0.7165 (3) | 0.60482 (10) | 0.0268 (6) | |
H11A | 0.343748 | 0.717439 | 0.631719 | 0.040* | |
H11B | 0.401916 | 0.756573 | 0.573128 | 0.040* | |
H11C | 0.621298 | 0.777709 | 0.615420 | 0.040* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0337 (10) | 0.0144 (8) | 0.0319 (9) | 0.0021 (7) | −0.0088 (8) | −0.0007 (7) |
O2 | 0.0230 (8) | 0.0183 (8) | 0.0289 (8) | −0.0017 (7) | 0.0033 (7) | 0.0048 (7) |
O3 | 0.0198 (8) | 0.0151 (7) | 0.0292 (8) | 0.0029 (7) | 0.0022 (7) | 0.0037 (6) |
O4 | 0.0278 (9) | 0.0128 (7) | 0.0316 (9) | 0.0000 (7) | −0.0107 (7) | −0.0023 (7) |
C1 | 0.0218 (11) | 0.0181 (11) | 0.0189 (10) | −0.0010 (10) | −0.0052 (9) | 0.0004 (9) |
C2 | 0.0244 (12) | 0.0166 (11) | 0.0215 (11) | 0.0024 (11) | 0.0028 (10) | 0.0003 (9) |
C3 | 0.0180 (11) | 0.0134 (10) | 0.0231 (11) | 0.0004 (9) | −0.0006 (9) | −0.0017 (8) |
C4 | 0.0159 (10) | 0.0128 (10) | 0.0205 (10) | 0.0007 (9) | 0.0012 (9) | −0.0006 (8) |
C5 | 0.0175 (11) | 0.0146 (10) | 0.0214 (11) | −0.0010 (9) | −0.0012 (9) | −0.0014 (9) |
C6 | 0.0158 (11) | 0.0181 (11) | 0.0224 (11) | −0.0002 (9) | −0.0019 (9) | 0.0013 (9) |
C7 | 0.0164 (11) | 0.0230 (11) | 0.0277 (11) | 0.0002 (10) | −0.0008 (9) | 0.0054 (10) |
C8 | 0.0217 (12) | 0.0331 (13) | 0.0251 (11) | 0.0042 (11) | 0.0026 (10) | 0.0053 (10) |
C9 | 0.0310 (15) | 0.0616 (19) | 0.0258 (13) | −0.0003 (15) | −0.0020 (11) | −0.0064 (13) |
C10 | 0.0218 (12) | 0.0182 (11) | 0.0224 (11) | −0.0015 (10) | −0.0008 (9) | −0.0013 (9) |
C11 | 0.0314 (14) | 0.0192 (12) | 0.0299 (12) | 0.0065 (11) | −0.0050 (11) | 0.0029 (10) |
O1—C1 | 1.198 (3) | C6—H6 | 0.9800 |
O2—C1 | 1.340 (3) | C6—C7 | 1.513 (3) |
O2—C2 | 1.450 (3) | C6—C11 | 1.536 (3) |
O3—C1 | 1.329 (3) | C7—H7 | 0.9300 |
O3—C3 | 1.461 (3) | C7—C8 | 1.323 (3) |
O4—H4 | 0.8200 | C8—H8 | 0.9300 |
O4—C5 | 1.432 (3) | C8—C9 | 1.501 (4) |
C2—H2A | 0.9700 | C9—H9A | 0.9600 |
C2—H2B | 0.9700 | C9—H9B | 0.9600 |
C2—C3 | 1.532 (3) | C9—H9C | 0.9600 |
C3—H3 | 0.9800 | C10—H10A | 0.9600 |
C3—C4 | 1.525 (3) | C10—H10B | 0.9600 |
C4—H4A | 0.9800 | C10—H10C | 0.9600 |
C4—C5 | 1.535 (3) | C11—H11A | 0.9600 |
C4—C10 | 1.529 (3) | C11—H11B | 0.9600 |
C5—H5 | 0.9800 | C11—H11C | 0.9600 |
C5—C6 | 1.539 (3) | ||
C1—O2—C2 | 109.32 (19) | C5—C6—H6 | 107.9 |
C1—O3—C3 | 110.52 (17) | C7—C6—C5 | 111.25 (19) |
C5—O4—H4 | 109.5 | C7—C6—H6 | 107.9 |
O1—C1—O2 | 123.7 (2) | C7—C6—C11 | 110.58 (19) |
O1—C1—O3 | 124.2 (2) | C11—C6—C5 | 111.11 (18) |
O3—C1—O2 | 112.07 (19) | C11—C6—H6 | 107.9 |
O2—C2—H2A | 111.0 | C6—C7—H7 | 116.3 |
O2—C2—H2B | 111.0 | C8—C7—C6 | 127.4 (2) |
O2—C2—C3 | 104.01 (18) | C8—C7—H7 | 116.3 |
H2A—C2—H2B | 109.0 | C7—C8—H8 | 116.4 |
C3—C2—H2A | 111.0 | C7—C8—C9 | 127.2 (2) |
C3—C2—H2B | 111.0 | C9—C8—H8 | 116.4 |
O3—C3—C2 | 102.04 (17) | C8—C9—H9A | 109.5 |
O3—C3—H3 | 109.4 | C8—C9—H9B | 109.5 |
O3—C3—C4 | 109.03 (18) | C8—C9—H9C | 109.5 |
C2—C3—H3 | 109.4 | H9A—C9—H9B | 109.5 |
C4—C3—C2 | 117.2 (2) | H9A—C9—H9C | 109.5 |
C4—C3—H3 | 109.4 | H9B—C9—H9C | 109.5 |
C3—C4—H4A | 107.1 | C4—C10—H10A | 109.5 |
C3—C4—C5 | 109.04 (18) | C4—C10—H10B | 109.5 |
C3—C4—C10 | 112.68 (18) | C4—C10—H10C | 109.5 |
C5—C4—H4A | 107.1 | H10A—C10—H10B | 109.5 |
C10—C4—H4A | 107.1 | H10A—C10—H10C | 109.5 |
C10—C4—C5 | 113.36 (19) | H10B—C10—H10C | 109.5 |
O4—C5—C4 | 105.02 (18) | C6—C11—H11A | 109.5 |
O4—C5—H5 | 108.7 | C6—C11—H11B | 109.5 |
O4—C5—C6 | 112.33 (18) | C6—C11—H11C | 109.5 |
C4—C5—H5 | 108.7 | H11A—C11—H11B | 109.5 |
C4—C5—C6 | 113.11 (18) | H11A—C11—H11C | 109.5 |
C6—C5—H5 | 108.7 | H11B—C11—H11C | 109.5 |
O2—C2—C3—O3 | −13.8 (2) | C2—C3—C4—C10 | −49.2 (3) |
O2—C2—C3—C4 | 105.2 (2) | C3—O3—C1—O1 | 175.2 (2) |
O3—C3—C4—C5 | −167.31 (18) | C3—O3—C1—O2 | −4.5 (2) |
O3—C3—C4—C10 | 65.9 (2) | C3—C4—C5—O4 | 56.7 (2) |
O4—C5—C6—C7 | 61.8 (2) | C3—C4—C5—C6 | 179.52 (19) |
O4—C5—C6—C11 | −61.9 (3) | C4—C5—C6—C7 | −56.9 (3) |
C1—O2—C2—C3 | 12.2 (2) | C4—C5—C6—C11 | 179.4 (2) |
C1—O3—C3—C2 | 11.6 (2) | C5—C6—C7—C8 | 131.2 (3) |
C1—O3—C3—C4 | −113.0 (2) | C6—C7—C8—C9 | −1.0 (4) |
C2—O2—C1—O1 | 174.9 (2) | C10—C4—C5—O4 | −176.93 (18) |
C2—O2—C1—O3 | −5.3 (2) | C10—C4—C5—C6 | −54.1 (3) |
C2—C3—C4—C5 | 77.5 (2) | C11—C6—C7—C8 | −104.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O1i | 0.82 | 2.05 | 2.811 (2) | 155 |
Symmetry code: (i) x, y+1, z. |
Acknowledgements
The authors thank NIH RISE (5R25GM061151–15) and SCORE (2S06GM-08102–29) for the financial support. This material is based upon work supported by the National Science Foundation under Grant No. 1626103.
Funding information
Funding for this research was provided by: National Institutes of Health (award No. 5R25GM061151-15); National Institutes of General Medical Sciences (award No. 2S06GM-08102-29); National Science Foundation (award No. 1626103).
References
Ciavatta, M. L., Gavagnin, M., Puliti, R., Cimino, G., Martinez, E., Ortea, J. & Mattia, C. A. (1996). Tetrahedron, 52, 12831–12838. CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jiménez-Romero, C., González, K. & Rodríguez, A. (2012). Tetrahedron Lett. 53, 6641–6645. PubMed Google Scholar
Katsuki, T. & Sharpless, K. B. (1980). J. Am. Chem. Soc. 102, 5974–5976. CrossRef CAS Google Scholar
Lynch, V. M., Pacofsky, G. J., Martin, S. F. & Davis, B. E. (1989a). Acta Cryst. C45, 973–975. CSD CrossRef CAS IUCr Journals Google Scholar
Lynch, V. M., Pacofsky, G. J., Martin, S. F. & Davis, B. E. (1989b). Acta Cryst. C45, 1641–1643. CSD CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2016). CrysAlis PRO. Rigaku Oxford Diffraction, Wroclaw, Poland. Google Scholar
Rodríguez, D., Mulero, M. & Prieto, J. A. (2006). J. Org. Chem. 71, 5826–5829. Web of Science PubMed Google Scholar
Rohr, J. (2000). Angew. Chem. Int. Ed. 39, 2847–2849. CrossRef CAS Google Scholar
Schetter, B. & Mahrwald, R. (2006). Angew. Chem. Int. Ed. 45, 7506–7525. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tirado, R., Torres, G., Torres, W. & Prieto, J. A. (2005). Tetrahedron Lett. 46, 797–801. CrossRef CAS Google Scholar
Torres, W., Rodríguez, R. & Prieto, J. (2009). J. Org. Chem. 74, 2447–2451. CrossRef PubMed CAS Google Scholar
Torres, G., Torres, W. & Prieto, J. A. (2004). Tetrahedron, 60, 10245–10251. CrossRef CAS Google Scholar
Yakelis, N. A. & Roush, W. R. (2003). J. Org. Chem. 68, 3838–3843. CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.