research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of catena-poly[[[aqua­bis­­(di­methyl­formamide-κO)magnesium(II)]-μ3-(2,2′-bi­pyridine-5,5′-di­carboxyl­ato-κ5O2:O2′:N,N′:O5)-[di­chlorido­platinum(II)]] di­methyl­formamide monosolvate]

CROSSMARK_Color_square_no_text.svg

aCentre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, PO Box 1126, 0315 Oslo, Norway, and bDepartment of Chemistry, University of Oslo, PO Box 1033, 0315 Oslo, Norway
*Correspondence e-mail: fredrik.lundvall@smn.uio.no

Edited by A. Van der Lee, Université de Montpellier II, France (Received 16 May 2017; accepted 31 May 2017; online 7 June 2017)

The title compound, {[MgPtCl2(C12H6N2O4)(C3H7NO)2(H2O)]·C3H7NO}n, is a one-dimensional coordination polymer. The structure consists of Pt-functionalized bi­pyridine ligands connected by MgII cations, as well as coordinating and non-coordinating solvent mol­ecules. The PtII cation is coordinated by the two N atoms of the bi­pyridine moiety and two Cl atoms in a square-planar fashion. This coordination induces an in-plane bend along the bi­pyridine backbone of approximately 10° from the linear ideal of a conjugated π-system. Likewise, the coordination to the MgII cation induces a significant bowing of the plane of the bi­pyridine of about 12°, giving it a distinct curved appearance. The carboxyl­ate groups of the bi­pyridine ligand exhibit moderate rotations relative to their parent pyridine rings. The MgII cation has a fairly regular octa­hedral coordination polyhedron, in which three vertices are occupied by O atoms from the carboxyl­ate groups of three different bi­pyridine ligands. The remaining three vertices are occupied by the O atoms of two di­methyl­formamide (DMF) mol­ecules and one water mol­ecule. The one-dimensional chains are oriented in the [01-1] direction, and non-coordinating DMF mol­ecules can be found in the space between the chains. The shortest inter­molecular O⋯H contacts are 2.844 (4) and 2.659 (4) Å, suggesting moderate hydrogen-bonding inter­actions. In addition, there is a short inter­molecular Pt⋯Pt contact of 3.491 (1) Å, indicating a Pt stacking inter­action. Some structure-directing contribution from the hydrogen bonding and Pt⋯Pt inter­action is probable. However, the crystal packing seems to be directed primarily by van der Waals inter­actions.

1. Chemical context

Metal–organic frameworks (MOFs) are porous materials that have attracted significant attention over the last two decades. The materials are formed from inorganic and organic components, typically a cationic unit linked by an organic ligand commonly referred to as a linker. Incorporating a catalytically active site in the linker of a porous MOF has the potential to create a heterogenous catalyst with the same selectivity often associated with homogenous catalysts. To this end, there are two main strategies for incorporating the active species. One method is to add the active species to the MOF after the frameworks has been formed, so called post-synthetic modification. The other option is to functionalize the linker either before or during the MOF synthesis (Cohen, 2017[Cohen, S. M. (2017). J. Am. Chem. Soc. 139, 2855-2863.]).

The title compound is an unexpected byproduct from the synthesis of the functionalized linker (2,2′-bi­pyridine-5,5′-dicarboxcylic acid)tetra­chlorido­platinum(IV). 2,2′-bi­pyridine-5,5′-dicarboxcylic acid is highly suitable for incorporation in the UiO-67 MOF, where it can partially substitute the biphenyl linker of the parent structure (Cavka et al., 2008[Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S. & Lillerud, K. P. (2008). J. Am. Chem. Soc. 130, 13850-13851.]). Furthermore, the N atoms of the bi­pyridine linker can be used to anchor and functionalize the linker with e.g. Pt or other noble metals. The Pt site of the target linker is inter­esting in a catalytic context. Pt has a rich redox chemistry and is know to readily switch between oxidation states PtII and PtIV, thus providing an active site for e.g. C—H activation. The target linker and its successful inclusion in the UiO-67 MOF has been reported in the literature (Øien et al., 2015[Øien, S., Agostini, G., Svelle, S., Borfecchia, E., Lomachenko, K. A., Mino, L., Gallo, E., Bordiga, S., Olsbye, U., Lillerud, K. P. & Lamberti, C. (2015). Chem. Mater. 27, 1042-1056.]).

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound comprises a MgII cation coordinated by two di­methyl­formamide (DMF) mol­ecules and one water mol­ecule, as well as a bi­pyridine moiety with two Cl atoms and PtII in a square-planar coordination. In addition, the asymmetric unit contains a DMF solvent mol­ecule that does not coordinate to the rest of the structure (Fig. 1[link]). The MgII cation is octa­hedrally coordinated, with the vertices occupied by O atoms from two DMF mol­ecules, one water mol­ecule and three carboxyl­ate groups from three different bi­pyridine moieties.

[Figure 1]
Figure 1
The asymmetric unit of the title compound, with atom labels and 50% probability displacement ellipsoids. H atoms have been omitted for clarity, excluding the H atoms of the coordinating water mol­ecule (H1WA/B).

The carboxyl­ate groups coordinate to the cation in a monodentate fashion, thus each bi­pyridine moiety coordinates to three different MgII cations. The fourth O atom of the carboxyl­ate groups (O4) is uncoordinating, and has a more pronounced displacement ellipsoid when compared to the coordinating O atoms O1, O2 and O3. Moderate torsion angles of 12.56 (29)° and 12.29 (25)° can be observed for the two carboxyl­ate groups relative to their parent pyridine rings.

One PtII and two Cl atoms are coordinated by the N atoms of the bi­pyridine ligand in a square-planar coordination. This type of coordination is commonly observed in complexes with PtII and other transition metals with a d8 electron configuration (Krogmann, 1969[Krogmann, K. (1969). Angew. Chem. Int. Ed. Engl. 8, 35-42.]). The square plane itself is regular with an r.m.s. deviation from the flat plane of only 0.013 Å. Angles of 88.94 (5) and 80.50 (13)° are observed for Cl1—Pt1—Cl2 and N1—Pt1—N2, respectively. Notably, the Pt—Cl bonds are slightly longer (∼2.30 Å) than the Pt—N bonds (∼2.02 Å). This indicates that there is a stronger trans effect from the bi­pyridine ligand than the Cl atoms. The bond lengths and angles (Table 1[link]) are consistent with other similar structures (Hazell et al., 1986[Hazell, A., Simonsen, O. & Wernberg, O. (1986). Acta Cryst. C42, 1707-1711.]; Kato & Ikemori, 2003[Kato, M. & Ikemori, M. (2003). Acta Cryst. C59, m25-m26.]; Kato et al., 2006[Kato, M., Okada, Y., Shishido, Y. & Kishi, S. (2006). Acta Cryst. C62, m171-m173.]; Hazell, 2004[Hazell, A. (2004). Polyhedron, 23, 2081-2083.]; Maheshwari et al., 2007[Maheshwari, V., Carlone, M., Fronczek, F. R. & Marzilli, L. G. (2007). Acta Cryst. B63, 603-611.]).

Table 1
Selected geometric parameters (Å, °)

Pt1—Cl1 2.3000 (14) Mg1—O2ii 2.066 (3)
Pt1—Cl2 2.3066 (13) Mg1—O3iii 2.063 (3)
Pt1—N1 2.020 (3) Mg1—O1C 2.086 (3)
Pt1—N2 2.016 (3) Mg1—O2C 2.155 (3)
Pt1—Pt1i 3.491 (1) Mg1—O1W 2.053 (3)
Mg1—O1 2.030 (3)    
       
Cl1—Pt1—Cl2 88.94 (5) N2—Pt1—N1 80.50 (13)
N1—Pt1—Cl1 94.88 (10) N1—C1—C7 114.8 (4)
N2—Pt1—Cl2 95.66 (10) N2—C7—C1 114.8 (4)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+2, -y, -z+2; (iii) x, y-1, z+1.

The bi­pyridine backbone exhibits a distinct bowing relative to the plane of the mol­ecule (Figs. 2[link] and 3[link]) as well as an in-plane bend (Fig. 4[link]). The bowing has been calculated to 12.74 (20)° by comparing the angle between the least-squares planes of the pyridine rings. Deviations from the ideal 120° for the N1—C1—C7 and C1—C7—N2 angles give an estimation of the in-plane bending of about 10°. Such in-plane bending and bowing has been observed in several similar, albeit non-coordinating, bi­pyridine compounds (Hazell et al., 1986[Hazell, A., Simonsen, O. & Wernberg, O. (1986). Acta Cryst. C42, 1707-1711.]; Kato & Ikemori, 2003[Kato, M. & Ikemori, M. (2003). Acta Cryst. C59, m25-m26.]; Kato et al., 2006[Kato, M., Okada, Y., Shishido, Y. & Kishi, S. (2006). Acta Cryst. C62, m171-m173.]; Hazell, 2004[Hazell, A. (2004). Polyhedron, 23, 2081-2083.]; Maheshwari et al., 2007[Maheshwari, V., Carlone, M., Fronczek, F. R. & Marzilli, L. G. (2007). Acta Cryst. B63, 603-611.]). However, it is likely that the distortion of the bi­pyridine is influenced by the coordination to Mg as well as the inter­molecular Pt⋯Pt inter­action.

[Figure 2]
Figure 2
Packing diagram of the title compound, viewed along the a axis. H atoms have been omitted for clarity.
[Figure 3]
Figure 3
Detailed view of the title compound viewed along the a axis, with 50% probability displacement ellipsoids. H atoms, non-coordinating solvent mol­ecules and non-O atoms of coordinating solvent mol­ecules have been omitted for clarity. The Pt⋯Pt inter­action is indicated by a red dashed line. The second bi­pyridine moiety is generated by the symmetry operation (−x + 2, −y + 1, −z + 1).
[Figure 4]
Figure 4
Packing diagram of the title compound, viewed along the c axis. H atoms, non-coordinating solvent mol­ecules and non-O atoms of coordinating solvent mol­ecules have been omitted for clarity.

3. Supra­molecular features

The title compound forms one-dimensional chains comprising two bi­pyridine linkers and two MgII cations with associated coordinating solvent mol­ecules as the repeating unit. These chains are oriented in the [01[\overline{1}]] direction (Fig. 1[link]). DMF solvent mol­ecules can be found between the chains, oriented side-on to the plane of the bi­pyridine linker. Hydrogen-bonding inter­actions (Table 2[link]) are found between the coordinating water mol­ecule O2W and atoms O2C and O4 of neighboring DMF and bi­pyridine moieties. The donor–acceptor distances are 2.844 (4) and 2.659 (4) Å, indicating moderately strong bonds. There is also a short inter­molecular Pt⋯Pt contact of 3.491 (1) Å, indicating a Pt stacking inter­action between pairs of bi­pyridine ligands in the chain. These types of stacking inter­actions are common in square-planar complexes of metals in a d8 electronic configuration (Krogmann, 1969[Krogmann, K. (1969). Angew. Chem. Int. Ed. Engl. 8, 35-42.]). The hydrogen bonding and Pt⋯Pt stacking inter­action are likely to contribute to the overall structure and crystal packing.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O2Civ 0.87 2.05 2.844 (4) 151
O1W—H1WB⋯O4v 0.87 1.80 2.659 (4) 168
Symmetry codes: (iv) -x+1, -y, -z+2; (v) -x+1, -y+1, -z+1.

4. Synthesis and crystallization

2,2′-Bi­pyridine-5,5′-di­carb­oxy­lic acid, was synthesized according to literature methods (Szeto et al., 2008[Szeto, K. C., Kongshaug, K. O., Jakobsen, S., Tilset, M. & Lillerud, K. P. (2008). Dalton Trans. pp. 2054-2060.]). Di­methyl­formamide (DMF) was supplied by Sigma–Aldrich and dried before use. K2PtCl6 and 35%wt HCl were used as received from Sigma–Aldrich.

The title compound was synthesized by dissolving 16.3 mg (0.067 mmol) 2,2′-bi­pyridine-5,5′-di­carb­oxy­lic acid, 65.3 mg (0.134 mmol) K2PtCl6 and three drops of 35% HCl in 4 ml of DMF. The mixture was heated in a closed glass vial in a convection oven at 323 K for 48 h, followed by 24 h at 343 K and finally 48 h at 353 K. This procedure yielded clusters of yellow needle-shaped crystals suitable for single crystal X-ray diffraction, as well as a yet unidentified red compound.

Note that the synthesis procedure does not include a source of Mg, despite its inclusion as cation in the title compound. The initial structural solution included K+ as the cation. However, the refinement of this initial model indicated several problems. First of all, a fully deprotonated organic ligand (L2−) and just one K+ cation would imply a charge imbalance in the structure. Secondly, the model had unrealistic displacement ellipsoids for the metal species as well as an unusual weighting scheme. Lastly, the metal-to-oxygen bond lengths were significantly shorter than expected for K—O bonds in an octa­hedral environment when applying the bond-valence method (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]). Thus we hypothesized that the coordination polymer must contain a contamination from the synthesis. The correct cation would likely be a divalent metal that is commonly encountered in organic chemistry, often exhibits octa­hedral coordination, and most importantly has a short metal-to-oxygen bond. Based on these criteria, the cation of the initial model was replaced with Mg, which solved the aforementioned refinement issues. Subsequent energy-dispersive X-ray spectroscopy (EDX) confirmed the presence of Mg in the sample (Fig. 5[link]). The source of the contamination is likely from a batch of DMF incorrectly dried over MgSO4.

[Figure 5]
Figure 5
Energy-dispersive X-ray spectroscopy (EDX) spectrum of the title compound.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were positioned geometrically at distances of 0.87 (OH), 0.95 (CH) and 0.98 Å (CH3) and refined using a riding model with Uiso(H) = 1.2 Ueq(CH) and Uiso(H) = 1.5Ueq(OH and CH3).

Table 3
Experimental details

Crystal data
Chemical formula [MgPtCl2(C12H6N2O4)(C3H7NO)2(H2O)]·C3H7NO
Mr 769.79
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.224 (4), 12.083 (6), 13.673 (7)
α, β, γ (°) 69.206 (14), 80.361 (17), 69.054 (14)
V3) 1329.1 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 5.56
Crystal size (mm) 0.2 × 0.1 × 0.09
 
Data collection
Diffractometer Bruker PHOTON CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.518, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 31765, 4615, 4405
Rint 0.057
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.074, 1.09
No. of reflections 4615
No. of parameters 352
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.92, −2.42
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), DIAMOND (Brandenburg, 2014[Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), ChemBioDraw Ultra (Cambridge Soft, 2012[Cambridge Soft (2012). ChemBioDraw Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009); molecular graphics: DIAMOND (Brandenburg, 2014) and ChemBioDraw Ultra (Cambridge Soft, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

catena-Poly[[[aquabis(dimethylformamide-κO)magnesium(II)]-µ3-(2,2'-bipyridine-5,5'-dicarboxylato-κ5O2:O2':N,N':O5)-[dichloridoplatinum(II)]] dimethylformamide monosolvate] top
Crystal data top
[MgPtCl2(C12H6N2O4)(C3H7NO)2(H2O)]·C3H7NOZ = 2
Mr = 769.79F(000) = 756
Triclinic, P1Dx = 1.923 Mg m3
a = 9.224 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.083 (6) ÅCell parameters from 9986 reflections
c = 13.673 (7) Åθ = 2.4–24.8°
α = 69.206 (14)°µ = 5.56 mm1
β = 80.361 (17)°T = 100 K
γ = 69.054 (14)°Needle, clear yellow
V = 1329.1 (11) Å30.2 × 0.1 × 0.09 mm
Data collection top
Bruker PHOTON CCD
diffractometer
4615 independent reflections
Radiation source: fine-focus sealed tube4405 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1010
Tmin = 0.518, Tmax = 0.745k = 1414
31765 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0491P)2 + 1.4382P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.002
4615 reflectionsΔρmax = 1.92 e Å3
352 parametersΔρmin = 2.42 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.96005 (2)0.60542 (2)0.56892 (2)0.01206 (8)
Cl11.17780 (12)0.52245 (9)0.66544 (8)0.0179 (2)
Cl21.06049 (12)0.75785 (9)0.45784 (8)0.0178 (2)
Mg10.75731 (15)0.01424 (12)1.05885 (10)0.0146 (3)
O10.8504 (3)0.0973 (3)0.9186 (2)0.0170 (6)
O21.0637 (3)0.1526 (3)0.8926 (2)0.0191 (6)
O30.6600 (4)0.9454 (3)0.2053 (2)0.0210 (7)
O40.4507 (4)0.8962 (3)0.1999 (2)0.0305 (8)
O1C0.8374 (3)0.1152 (3)1.1211 (2)0.0205 (6)
O2C0.5514 (3)0.1750 (3)1.0171 (2)0.0172 (6)
O1W0.6744 (3)0.0626 (3)0.9774 (2)0.0167 (6)
H1WA0.60490.10001.00280.025*
H1WB0.64560.00550.91740.025*
N10.8564 (4)0.4808 (3)0.6630 (3)0.0105 (7)
N20.7619 (4)0.6682 (3)0.4934 (3)0.0117 (7)
N1C1.0118 (4)0.1352 (4)1.2069 (3)0.0226 (8)
N2C0.3786 (4)0.3657 (3)1.0119 (3)0.0244 (8)
C10.7083 (5)0.5059 (4)0.6397 (3)0.0137 (8)
C20.6205 (5)0.4317 (4)0.6998 (3)0.0146 (8)
H20.51440.45400.68590.017*
C30.6879 (5)0.3246 (4)0.7803 (3)0.0165 (9)
H30.62980.27170.82150.020*
C40.8419 (5)0.2961 (4)0.7994 (3)0.0137 (8)
C50.9213 (5)0.3777 (4)0.7419 (3)0.0147 (8)
H51.02470.36060.75860.018*
C60.9253 (5)0.1716 (4)0.8792 (3)0.0147 (8)
C70.6553 (5)0.6113 (4)0.5438 (3)0.0133 (8)
C80.5117 (5)0.6468 (4)0.5021 (3)0.0155 (9)
H80.43700.60760.53910.019*
C90.4788 (5)0.7396 (4)0.4065 (3)0.0151 (8)
H90.38030.76610.37780.018*
C100.5910 (5)0.7938 (4)0.3526 (3)0.0144 (8)
C110.7305 (5)0.7576 (3)0.3990 (3)0.0127 (8)
H110.80600.79660.36340.015*
C120.5650 (5)0.8877 (4)0.2425 (3)0.0168 (9)
C1C0.9292 (5)0.0737 (4)1.1917 (3)0.0207 (9)
H1C0.94110.00841.23860.025*
C2C1.0120 (6)0.2562 (5)1.1336 (4)0.0316 (11)
H2CA0.94310.28071.07690.047*
H2CB1.11780.25121.10440.047*
H2CC0.97530.31861.17020.047*
C3C1.1173 (6)0.0797 (5)1.2919 (4)0.0294 (11)
H3CA1.22480.05911.26340.044*
H3CB1.09860.00331.34020.044*
H3CC1.09970.13931.32950.044*
C4C0.4982 (5)0.2652 (4)1.0503 (3)0.0212 (9)
H4C0.54680.26211.10770.025*
C5C0.3018 (5)0.3840 (4)0.9197 (4)0.0250 (10)
H5CA0.35600.31460.89190.038*
H5CB0.30410.46290.86610.038*
H5CC0.19370.38670.93910.038*
C6C0.3190 (7)0.4667 (5)1.0579 (5)0.0389 (14)
H6CA0.21480.46981.08980.058*
H6CB0.31380.54651.00310.058*
H6CC0.38840.45141.11160.058*
O1S0.3963 (4)0.6539 (3)0.7698 (3)0.0312 (8)
N1S0.3595 (5)0.8390 (4)0.6353 (3)0.0270 (9)
C1S0.3216 (6)0.7374 (4)0.6968 (4)0.0266 (10)
H1S0.22900.72980.68260.032*
C2S0.5037 (7)0.8550 (6)0.6488 (5)0.0377 (14)
H2SA0.56070.87370.58100.056*
H2SB0.56770.77790.69770.056*
H2SC0.47950.92420.67680.056*
C3S0.2617 (6)0.9344 (5)0.5520 (4)0.0344 (12)
H3SA0.22391.01420.56640.052*
H3SB0.17310.90960.54820.052*
H3SC0.32220.94380.48510.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01192 (11)0.00874 (11)0.01110 (11)0.00185 (7)0.00702 (7)0.00337 (7)
Cl10.0156 (5)0.0152 (5)0.0185 (5)0.0041 (4)0.0110 (4)0.0037 (4)
Cl20.0181 (5)0.0143 (5)0.0167 (5)0.0071 (4)0.0068 (4)0.0047 (4)
Mg10.0143 (7)0.0117 (7)0.0126 (7)0.0027 (6)0.0079 (5)0.0040 (5)
O10.0173 (15)0.0150 (15)0.0134 (15)0.0046 (13)0.0072 (12)0.0039 (12)
O20.0138 (15)0.0148 (15)0.0200 (16)0.0026 (12)0.0116 (12)0.0072 (12)
O30.0221 (17)0.0205 (16)0.0153 (15)0.0075 (14)0.0065 (13)0.0032 (12)
O40.0327 (19)0.0318 (19)0.0207 (17)0.0173 (15)0.0225 (14)0.0153 (14)
O1C0.0206 (16)0.0189 (15)0.0194 (16)0.0039 (13)0.0095 (13)0.0018 (13)
O2C0.0181 (15)0.0121 (14)0.0163 (15)0.0016 (12)0.0087 (12)0.0018 (12)
O1W0.0152 (15)0.0135 (15)0.0148 (15)0.0029 (12)0.0098 (12)0.0052 (11)
N10.0101 (17)0.0087 (16)0.0101 (16)0.0001 (14)0.0071 (13)0.0000 (13)
N20.0133 (17)0.0097 (17)0.0079 (16)0.0008 (14)0.0055 (13)0.0012 (13)
N1C0.025 (2)0.019 (2)0.022 (2)0.0069 (17)0.0112 (16)0.0008 (16)
N2C0.024 (2)0.0141 (19)0.029 (2)0.0016 (16)0.0122 (17)0.0020 (16)
C10.015 (2)0.0081 (19)0.012 (2)0.0018 (16)0.0072 (16)0.0007 (15)
C20.013 (2)0.013 (2)0.014 (2)0.0027 (17)0.0063 (16)0.0014 (16)
C30.019 (2)0.015 (2)0.013 (2)0.0057 (18)0.0029 (17)0.0005 (16)
C40.015 (2)0.010 (2)0.011 (2)0.0001 (17)0.0069 (16)0.0009 (16)
C50.017 (2)0.012 (2)0.011 (2)0.0008 (17)0.0096 (16)0.0008 (16)
C60.017 (2)0.012 (2)0.011 (2)0.0039 (17)0.0033 (16)0.0011 (16)
C70.019 (2)0.0083 (19)0.0097 (19)0.0027 (17)0.0033 (16)0.0001 (15)
C80.013 (2)0.013 (2)0.017 (2)0.0034 (17)0.0025 (17)0.0009 (17)
C90.016 (2)0.0121 (19)0.012 (2)0.0011 (17)0.0098 (16)0.0020 (16)
C100.017 (2)0.0095 (19)0.012 (2)0.0010 (16)0.0072 (16)0.0021 (15)
C110.014 (2)0.0069 (18)0.013 (2)0.0013 (16)0.0037 (16)0.0011 (15)
C120.018 (2)0.011 (2)0.016 (2)0.0021 (18)0.0054 (17)0.0023 (17)
C1C0.023 (2)0.015 (2)0.019 (2)0.0009 (18)0.0063 (19)0.0012 (18)
C2C0.031 (3)0.024 (3)0.036 (3)0.012 (2)0.007 (2)0.001 (2)
C3C0.028 (3)0.027 (3)0.032 (3)0.008 (2)0.010 (2)0.005 (2)
C4C0.021 (2)0.021 (2)0.019 (2)0.0062 (19)0.0105 (18)0.0002 (18)
C5C0.023 (2)0.022 (2)0.021 (2)0.001 (2)0.0126 (19)0.0025 (19)
C6C0.040 (3)0.025 (3)0.047 (3)0.006 (2)0.020 (3)0.016 (2)
O1S0.037 (2)0.0217 (17)0.0297 (19)0.0040 (15)0.0119 (15)0.0030 (15)
N1S0.029 (2)0.022 (2)0.029 (2)0.0078 (18)0.0028 (18)0.0077 (17)
C1S0.030 (3)0.024 (2)0.028 (3)0.008 (2)0.002 (2)0.011 (2)
C2S0.036 (3)0.039 (3)0.048 (4)0.016 (3)0.002 (3)0.023 (3)
C3S0.042 (3)0.022 (3)0.030 (3)0.004 (2)0.005 (2)0.003 (2)
Geometric parameters (Å, º) top
Pt1—Cl12.3000 (14)C4—C51.378 (6)
Pt1—Cl22.3066 (13)C4—C61.527 (5)
Pt1—N12.020 (3)C5—H50.9500
Pt1—N22.016 (3)C7—C81.392 (6)
Pt1—Pt1i3.491 (1)C8—H80.9500
Mg1—O12.030 (3)C8—C91.381 (6)
Mg1—O2ii2.066 (3)C9—H90.9500
Mg1—O3iii2.063 (3)C9—C101.390 (6)
Mg1—O1C2.086 (3)C10—C111.386 (6)
Mg1—O2C2.155 (3)C10—C121.525 (6)
Mg1—O1W2.053 (3)C11—H110.9500
O1—C61.245 (5)C1C—H1C0.9500
O2—Mg1ii2.066 (3)C2C—H2CA0.9800
O2—C61.248 (5)C2C—H2CB0.9800
O3—Mg1iv2.063 (3)C2C—H2CC0.9800
O3—C121.245 (5)C3C—H3CA0.9800
O4—C121.244 (5)C3C—H3CB0.9800
O1C—C1C1.236 (5)C3C—H3CC0.9800
O2C—C4C1.236 (5)C4C—H4C0.9500
O1W—H1WA0.8696C5C—H5CA0.9800
O1W—H1WB0.8718C5C—H5CB0.9800
N1—C11.356 (5)C5C—H5CC0.9800
N1—C51.343 (5)C6C—H6CA0.9800
N2—C71.354 (5)C6C—H6CB0.9800
N2—C111.352 (5)C6C—H6CC0.9800
N1C—C1C1.319 (6)O1S—C1S1.227 (6)
N1C—C2C1.451 (6)N1S—C1S1.346 (6)
N1C—C3C1.452 (6)N1S—C2S1.461 (7)
N2C—C4C1.324 (6)N1S—C3S1.452 (6)
N2C—C5C1.460 (6)C1S—H1S0.9500
N2C—C6C1.461 (6)C2S—H2SA0.9800
C1—C21.382 (6)C2S—H2SB0.9800
C1—C71.472 (5)C2S—H2SC0.9800
C2—H20.9500C3S—H3SA0.9800
C2—C31.385 (6)C3S—H3SB0.9800
C3—H30.9500C3S—H3SC0.9800
C3—C41.384 (6)
Cl1—Pt1—Cl288.94 (5)C9—C8—C7119.4 (4)
N1—Pt1—Cl194.88 (10)C9—C8—H8120.3
N1—Pt1—Cl2175.78 (9)C8—C9—H9120.3
N2—Pt1—Cl1175.36 (9)C8—C9—C10119.3 (4)
N2—Pt1—Cl295.66 (10)C10—C9—H9120.3
N2—Pt1—N180.50 (13)C9—C10—C12120.9 (4)
O1—Mg1—O2ii100.05 (13)C11—C10—C9118.9 (4)
O1—Mg1—O3iii174.30 (14)C11—C10—C12120.1 (4)
O1—Mg1—O1C87.00 (13)N2—C11—C10121.8 (4)
O1—Mg1—O2C85.67 (12)N2—C11—H11119.1
O1—Mg1—O1W85.74 (13)C10—C11—H11119.1
O2ii—Mg1—O1C96.54 (13)O3—C12—C10117.0 (4)
O2ii—Mg1—O2C172.91 (13)O4—C12—O3127.7 (4)
O3iii—Mg1—O2ii83.17 (13)O4—C12—C10115.3 (4)
O3iii—Mg1—O1C87.97 (13)O1C—C1C—N1C124.9 (4)
O3iii—Mg1—O2C91.48 (13)O1C—C1C—H1C117.6
O1C—Mg1—O2C87.89 (13)N1C—C1C—H1C117.6
O1W—Mg1—O2ii89.21 (13)N1C—C2C—H2CA109.5
O1W—Mg1—O3iii99.05 (14)N1C—C2C—H2CB109.5
O1W—Mg1—O1C171.43 (13)N1C—C2C—H2CC109.5
O1W—Mg1—O2C87.02 (12)H2CA—C2C—H2CB109.5
C6—O1—Mg1140.5 (3)H2CA—C2C—H2CC109.5
C6—O2—Mg1ii129.6 (3)H2CB—C2C—H2CC109.5
C12—O3—Mg1iv136.2 (3)N1C—C3C—H3CA109.5
C1C—O1C—Mg1127.8 (3)N1C—C3C—H3CB109.5
C4C—O2C—Mg1129.8 (3)N1C—C3C—H3CC109.5
Mg1—O1W—H1WA124.0H3CA—C3C—H3CB109.5
Mg1—O1W—H1WB107.2H3CA—C3C—H3CC109.5
H1WA—O1W—H1WB109.4H3CB—C3C—H3CC109.5
C1—N1—Pt1114.5 (3)O2C—C4C—N2C124.9 (4)
C5—N1—Pt1126.3 (3)O2C—C4C—H4C117.6
C5—N1—C1119.2 (3)N2C—C4C—H4C117.6
C7—N2—Pt1114.8 (3)N2C—C5C—H5CA109.5
C11—N2—Pt1125.9 (3)N2C—C5C—H5CB109.5
C11—N2—C7119.3 (3)N2C—C5C—H5CC109.5
C1C—N1C—C2C121.3 (4)H5CA—C5C—H5CB109.5
C1C—N1C—C3C121.5 (4)H5CA—C5C—H5CC109.5
C2C—N1C—C3C116.9 (4)H5CB—C5C—H5CC109.5
C4C—N2C—C5C122.1 (4)N2C—C6C—H6CA109.5
C4C—N2C—C6C121.6 (4)N2C—C6C—H6CB109.5
C5C—N2C—C6C116.2 (4)N2C—C6C—H6CC109.5
N1—C1—C2121.1 (4)H6CA—C6C—H6CB109.5
N1—C1—C7114.8 (4)H6CA—C6C—H6CC109.5
C2—C1—C7124.0 (4)H6CB—C6C—H6CC109.5
C1—C2—H2120.2C1S—N1S—C2S120.6 (5)
C1—C2—C3119.6 (4)C1S—N1S—C3S121.7 (4)
C3—C2—H2120.2C3S—N1S—C2S117.7 (4)
C2—C3—H3120.7O1S—C1S—N1S125.7 (5)
C4—C3—C2118.6 (4)O1S—C1S—H1S117.1
C4—C3—H3120.7N1S—C1S—H1S117.1
C3—C4—C6120.0 (4)N1S—C2S—H2SA109.5
C5—C4—C3119.5 (4)N1S—C2S—H2SB109.5
C5—C4—C6120.5 (4)N1S—C2S—H2SC109.5
N1—C5—C4121.8 (4)H2SA—C2S—H2SB109.5
N1—C5—H5119.1H2SA—C2S—H2SC109.5
C4—C5—H5119.1H2SB—C2S—H2SC109.5
O1—C6—O2127.2 (4)N1S—C3S—H3SA109.5
O1—C6—C4116.2 (4)N1S—C3S—H3SB109.5
O2—C6—C4116.4 (3)N1S—C3S—H3SC109.5
N2—C7—C1114.8 (4)H3SA—C3S—H3SB109.5
N2—C7—C8121.2 (4)H3SA—C3S—H3SC109.5
C8—C7—C1123.9 (4)H3SB—C3S—H3SC109.5
C7—C8—H8120.3
Pt1—N1—C1—C2177.5 (3)C3—C4—C6—O14.5 (6)
Pt1—N1—C1—C76.2 (4)C3—C4—C6—O2179.7 (4)
Pt1—N1—C5—C4177.8 (3)C5—N1—C1—C24.0 (6)
Pt1—N2—C7—C15.4 (4)C5—N1—C1—C7172.3 (3)
Pt1—N2—C7—C8178.6 (3)C5—C4—C6—O1171.8 (4)
Pt1—N2—C11—C10179.3 (3)C5—C4—C6—O23.9 (6)
Mg1—O1—C6—O269.9 (6)C6—C4—C5—N1172.1 (4)
Mg1—O1—C6—C4115.0 (4)C7—N2—C11—C100.8 (6)
Mg1ii—O2—C6—O122.0 (6)C7—C1—C2—C3171.1 (4)
Mg1ii—O2—C6—C4153.2 (3)C7—C8—C9—C101.4 (6)
Mg1iv—O3—C12—O433.1 (7)C8—C9—C10—C113.3 (6)
Mg1iv—O3—C12—C10145.9 (3)C8—C9—C10—C12174.3 (4)
Mg1—O1C—C1C—N1C158.2 (3)C9—C10—C11—N22.2 (6)
Mg1—O2C—C4C—N2C172.9 (3)C9—C10—C12—O3170.0 (4)
N1—C1—C2—C34.8 (6)C9—C10—C12—O410.9 (6)
N1—C1—C7—N20.5 (5)C11—N2—C7—C1173.2 (3)
N1—C1—C7—C8175.3 (4)C11—N2—C7—C82.7 (6)
N2—C7—C8—C91.6 (6)C11—C10—C12—O312.4 (6)
C1—N1—C5—C40.6 (6)C11—C10—C12—O4166.7 (4)
C1—C2—C3—C41.1 (6)C12—C10—C11—N2175.4 (4)
C1—C7—C8—C9174.0 (4)C2C—N1C—C1C—O1C5.8 (7)
C2—C1—C7—N2176.8 (4)C3C—N1C—C1C—O1C180.0 (4)
C2—C1—C7—C80.9 (6)C5C—N2C—C4C—O2C4.1 (7)
C2—C3—C4—C53.3 (6)C6C—N2C—C4C—O2C177.8 (5)
C2—C3—C4—C6173.1 (4)C2S—N1S—C1S—O1S2.9 (7)
C3—C4—C5—N14.2 (6)C3S—N1S—C1S—O1S178.7 (4)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z+2; (iii) x, y1, z+1; (iv) x, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2Cv0.872.052.844 (4)151
O1W—H1WB···O4vi0.871.802.659 (4)168
Symmetry codes: (v) x+1, y, z+2; (vi) x+1, y+1, z+1.
 

Acknowledgements

We acknowledge the support from the Department of Chemistry, UiO, and the use of the Norwegian national infrastructure for X-ray diffraction and scattering (RECX). Kristian Blindheim Lausund is acknowledged for recording the EDX spectra.

Funding information

Funding for this research was provided by: University of Oslo.

References

First citationBrandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCambridge Soft (2012). ChemBioDraw Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationCavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S. & Lillerud, K. P. (2008). J. Am. Chem. Soc. 130, 13850–13851.  Web of Science CSD CrossRef PubMed Google Scholar
First citationCohen, S. M. (2017). J. Am. Chem. Soc. 139, 2855–2863.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHazell, A. (2004). Polyhedron, 23, 2081–2083.  Web of Science CrossRef CAS Google Scholar
First citationHazell, A., Simonsen, O. & Wernberg, O. (1986). Acta Cryst. C42, 1707–1711.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKato, M. & Ikemori, M. (2003). Acta Cryst. C59, m25–m26.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKato, M., Okada, Y., Shishido, Y. & Kishi, S. (2006). Acta Cryst. C62, m171–m173.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKrogmann, K. (1969). Angew. Chem. Int. Ed. Engl. 8, 35–42.  CrossRef CAS Web of Science Google Scholar
First citationMaheshwari, V., Carlone, M., Fronczek, F. R. & Marzilli, L. G. (2007). Acta Cryst. B63, 603–611.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationØien, S., Agostini, G., Svelle, S., Borfecchia, E., Lomachenko, K. A., Mino, L., Gallo, E., Bordiga, S., Olsbye, U., Lillerud, K. P. & Lamberti, C. (2015). Chem. Mater. 27, 1042–1056.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSzeto, K. C., Kongshaug, K. O., Jakobsen, S., Tilset, M. & Lillerud, K. P. (2008). Dalton Trans. pp. 2054–2060.  Web of Science CSD CrossRef PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds