research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of the crystal structure of NaTcO4 at 100 and 296 K based on single-crystal X-ray data

aA.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky prospekt, 119071 Moscow, Russian Federation, bMedical University Reaviz, 2 Krasnobogatyrskaya, building 2, 107564 Moscow, Russian Federation, cD. Mendeleyev University of Chemical Technology of Russia, 9 Miusskaya pl., 125047 Moscow, Russian Federation, dKurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prospect, 119991 Moscow, Russian Federation, and eNational Research Nuclear University, 31 Kashirskoye sh., 115409 Moscow, Russian Federation
*Correspondence e-mail: guerman_k@mail.ru

Edited by M. Weil, Vienna University of Technology, Austria (Received 12 May 2017; accepted 6 June 2017; online 16 June 2017)

The redetermination of the title compound, sodium pertechnate, from single-crystal CCD data recorded both at 296 and 100 K confirms previous studies based on X-ray powder diffraction film data [Schwochau (1962[Schwochau, K. (1962). Z. Naturforsch. Teil A, 17, 630.]). Z. Naturforsch. Teil A, 17, 630; Keller & Kanellakopulos (1963[Keller, C. & Kanellakopulos, B. (1963). Radiochim. Acta, 1, 107-108.]). Radiochim. Acta, 1, 107–108] and neutron powder diffraction data using the Rietveld method [Weaver et al. (2017[Weaver, J., Soderquist, C. Z., Washton, N. M., Lipton, A. S., Gassman, P. L., Lukens, W. W., Kruger, A. A., Wall, N. A. & McCloy, J. S. (2017). Inorg. Chem. 56, 2533-2544.]). Inorg. Chem. 12, 677–681], but reveals a considerable improvement in precision. The standard uncertainties of the room-temperature structure determination are about seven times lower than those of the neutron diffraction structure determination and about 13 times lower at 100 K, due to the decrease in the amplitude of librations. The crystal expansion could be approximated linearly with a thermal volumic expansion coefficient of 1.19 (12) × 10−4 K−1. NaTcO4 adopts the scheelite (CaWO4) structure type in space group type I41/a with Na and Tc atoms (both with site symmetry -4) replacing Ca and W atoms, respectively.

1. Chemical context

Sodium pertechnetate, NaTcO4, refers to a group of d0-tetroxide anion salts. Since the inception of quantum chemistry, compounds of this type have been models (generally with respect to the MnO4 anion) for which the validity of the proposed equations and approximations for the case of d-electrons are verified. It was believed that, owing to the d0 electronic state, they define the least complex class of compounds of d-elements. Such simplicity, due to the absence of d-electrons and their pseudospherical symmetry, does by far not imply that any of these compounds show no complex behavior under changing environmental conditions, e.g. by changing temperature and/or the strength of the crystal field, and publications on the discovery of a more complex behaviour and properties appeared periodically. For example, for sodium (German et al., 1987b[German, K. E., Kryuchkov & S. V., Belyaeva, L. I. (1987b). Izv. Akad. Nauk SSSR Ser. Khim. 10, 2387.], 1993[German, K. E., Grushevschkaya, L. N., Kryutchkov, S. V., Pustovalov, V. A. & Obruchikov, V. V. (1993). Radiochim. Acta, 63, 221-224.]), potassium (German et al., 1993[German, K. E., Grushevschkaya, L. N., Kryutchkov, S. V., Pustovalov, V. A. & Obruchikov, V. V. (1993). Radiochim. Acta, 63, 221-224.]; Gafurov & Aliev, 2005[Gafurov, M. M. & Aliev, A. R. (2005). J. Struct. Chem. 46, 824-828.]) and caesium (Tarasov et al., 1991[Tarasov, V. P., Kirakosyan, G. A., German, K. E. & Grigoriev, M. S. (1991). Russ. J. Coord. Chem. 17, 1643-1653.], 1992[Tarasov, V. P., Kirakosyan, G. A. & German, K. E. (1992). Z. Naturforsch. Teil A, 47, 325-329.]) tetra­oxidotechnates, the existence of phase transitions was noted at high temperatures, while for the rhenium analogue, caesium tetra­oxidorhenate, the ability of laser-excited second harmonic generation has been observed (Stefanovich et al., 1991[Stefanovich, S. Y., Kalinin, V. B., German, K. E. & Elvaer, S. M. (1991). Zh. Neorg. Khim. 36, 2200-2202.]). Differences for these systems are also observed in the crystal structures. Potassium permanganate crystallizes in the ortho­rhom­bic system (Palenik, 1967[Palenik, G. J. (1967). Inorg. Chem. 6, 504-507.]), whereas the per­techne­tate and perrhenate of the same cation crystallize in the tetra­gonal system (Hoppe et al., 1999[Hoppe, R., Fischer, D. & Schneider, J. (1999). Z. Anorg. Allg. Chem. 625, 1135-1142.]; Schwochau, 1962[Schwochau, K. (1962). Z. Naturforsch. Teil A, 17, 630.]). Next to the inter­est for the TcO4 anion in its sodium salt, sodium cations in general are worth being investigated in detail. For example, sodium salts are known to form hydrates with different hydration numbers and various coordination numbers for the sodium cation. The change in these numbers often occurs in the vitally important temperature range of 309–313 K (German et al., 1987b[German, K. E., Kryuchkov & S. V., Belyaeva, L. I. (1987b). Izv. Akad. Nauk SSSR Ser. Khim. 10, 2387.]; Tarasov et al., 2015[Tarasov, V. P., Kirakosyan, G. A. & German, K. E. (2015). Russ. J. Phys. Chem. B, 9, 185-192.]). Precise structural data of such systems are important for the analyses of transmutation rates in homogeneous systems as noted by Kuo et al. (2017[Kuo, E. Y., Qin, M. J., Thorogood, G. J., Huai, P., Ren, C. L., Lumpkin, G. R. & Middleburgh, S. C. (2017). Modell. Simul. Mater. Sci. Eng. 25, 025011.]) and in this respect, are more useful than the data of previously determined structures (Kuo et al., 2017[Kuo, E. Y., Qin, M. J., Thorogood, G. J., Huai, P., Ren, C. L., Lumpkin, G. R. & Middleburgh, S. C. (2017). Modell. Simul. Mater. Sci. Eng. 25, 025011.]; Ackerman et al., 2016[Ackerman, M., Kim, E., Weck, P. F., Chernesky, W. & Czerwinski, K. R. (2016). Dalton Trans. 45, 18171-18176.]; German et al., 1987a[German, K. E., Grigoriev, M. S. & Kuzina, A. (1987a). Zh. Neorg. Khim. 32, 1089-1095.]; Spitsyn et al., 1987[Spitsyn, V. I., Kuzina, A. F., German, K. E. & Grigor'ev, M. S. (1987). Dokl. Akad. Nauk SSSR, 293, 101-104.]; Tarasov et al., 1983[Tarasov, V. P., Privalov, V. I., Petrushin, S. A., Kirakosian, G. A. & Kriuchkov, S. V. (1983). Dokl. Akad. Nauk SSSR, 272, 919-920.], 1991[Tarasov, V. P., Kirakosyan, G. A., German, K. E. & Grigoriev, M. S. (1991). Russ. J. Coord. Chem. 17, 1643-1653.]). Likewise, Ackerman et al. (2016[Ackerman, M., Kim, E., Weck, P. F., Chernesky, W. & Czerwinski, K. R. (2016). Dalton Trans. 45, 18171-18176.]) have shown that precise structural data are needed for the estimation of the incorporation possibility for 99Tc into stable scheelite matrices of different compositions. Another aspect for obtaining more precise structure data on pertechnates is to clarify if pseudo-Jahn–Teller distortions of d0-tetra­oxide anions really take place when compared with previous determinations (German et al., 1987a[German, K. E., Grigoriev, M. S. & Kuzina, A. (1987a). Zh. Neorg. Khim. 32, 1089-1095.]; Spitsyn et al., 1987[Spitsyn, V. I., Kuzina, A. F., German, K. E. & Grigor'ev, M. S. (1987). Dokl. Akad. Nauk SSSR, 293, 101-104.]; Tarasov et al., 1983[Tarasov, V. P., Privalov, V. I., Petrushin, S. A., Kirakosian, G. A. & Kriuchkov, S. V. (1983). Dokl. Akad. Nauk SSSR, 272, 919-920.], 1991[Tarasov, V. P., Kirakosyan, G. A., German, K. E. & Grigoriev, M. S. (1991). Russ. J. Coord. Chem. 17, 1643-1653.]). In this context we have reinvestigated the crystal structure of NaTcO4 that is known from powder diffraction data only, namely by inspection of its X-ray powder diffraction pattern (Schwochau, 1962[Schwochau, K. (1962). Z. Naturforsch. Teil A, 17, 630.]; Keller & Kanellakopulos, 1963[Keller, C. & Kanellakopulos, B. (1963). Radiochim. Acta, 1, 107-108.]) and Rietveld refinement of neutron powder diffraction data (Weaver et al., 2017[Weaver, J., Soderquist, C. Z., Washton, N. M., Lipton, A. S., Gassman, P. L., Lukens, W. W., Kruger, A. A., Wall, N. A. & McCloy, J. S. (2017). Inorg. Chem. 56, 2533-2544.]).

2. Structural commentary

The structure of anhydrous NaTcO4, determined here on the basis of X-ray diffraction data of a single crystal recorded both at room and low temperature, belongs to the CaWO4 structural type (space group type I41/a). The obtained bond lengths and angles are similar to those obtained from previous X-ray powder (Keller & Kanellakopulos, 1963[Keller, C. & Kanellakopulos, B. (1963). Radiochim. Acta, 1, 107-108.]; Schwochau, 1962[Schwochau, K. (1962). Z. Naturforsch. Teil A, 17, 630.]) and neutron powder diffraction studies (Weaver et al., 2017[Weaver, J., Soderquist, C. Z., Washton, N. M., Lipton, A. S., Gassman, P. L., Lukens, W. W., Kruger, A. A., Wall, N. A. & McCloy, J. S. (2017). Inorg. Chem. 56, 2533-2544.])

Lattice parameters determined here with the precision of 0.0002-0.0005 Å at 296 K (Table 1[link]) are close to those of a = 5.342 (3) Å, c = 11.874 (6) Å given by Weaver et al. (2017[Weaver, J., Soderquist, C. Z., Washton, N. M., Lipton, A. S., Gassman, P. L., Lukens, W. W., Kruger, A. A., Wall, N. A. & McCloy, J. S. (2017). Inorg. Chem. 56, 2533-2544.]). The lattice parameters at 100 K are a = 5.2945 (2) Å, c = 11.7470 (5) Å (single crystal measurement). These values represent the thermal volumic expansion coefficient of 1.19 (12) × 10 −4 K−1. The c/a ratio in this structure changes from 2.2187 (7) to 2.2223 (4) as a function of the temperature change from 100 to 296 K.

Table 1
Selected geometric parameters (Å, °) at 100 K

Tc1—O1 1.7208 (3) Na1—O1ii 2.5980 (4)
Na1—O1i 2.5107 (4)    
       
O1iii—Tc1—O1 108.439 (12) O1iv—Tc1—O1 111.56 (3)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y, z; (iii) [-y+{\script{5\over 4}}, x+{\script{1\over 4}}, -z+{\script{1\over 4}}]; (iv) [-x+1, -y+{\script{3\over 2}}, z].

Our results confirm that NaTcO4 is isostructural to KTcO4 and RbTcO4 (Keller & Kanellakopulos, 1963[Keller, C. & Kanellakopulos, B. (1963). Radiochim. Acta, 1, 107-108.]). The structure is composed of three atom types (Na, Tc, O). The Tc and Na atoms occupy special positions with [\overline{4}] symmetry, Wyckoff positions 4b and 4a, respectively. The configuration of the TeO4 anion is that of a slightly distorted tetra­hedron both at 296 K and at 100 K (Tables 1[link] and 2[link]). The Tc—O distances are 1.7183 (6) Å at 296 K and 1.7208 (3) Å at 100 K. These distances are in good agreement with values known for these ions from the literature (German et al., 1987a[German, K. E., Grigoriev, M. S. & Kuzina, A. (1987a). Zh. Neorg. Khim. 32, 1089-1095.]; Tarasov et al., 1992[Tarasov, V. P., Kirakosyan, G. A. & German, K. E. (1992). Z. Naturforsch. Teil A, 47, 325-329.]; Kuo et al., 2017[Kuo, E. Y., Qin, M. J., Thorogood, G. J., Huai, P., Ren, C. L., Lumpkin, G. R. & Middleburgh, S. C. (2017). Modell. Simul. Mater. Sci. Eng. 25, 025011.]; Ackerman et al., 2016[Ackerman, M., Kim, E., Weck, P. F., Chernesky, W. & Czerwinski, K. R. (2016). Dalton Trans. 45, 18171-18176.]). The elongation of bonds (Fig. 1[link]), while decreasing the temperature from 296 K to 100 K, can be attributed to a decrease in the libration effect (German et al., 1987a[German, K. E., Grigoriev, M. S. & Kuzina, A. (1987a). Zh. Neorg. Khim. 32, 1089-1095.]). A similar phenomenon has previously been observed in the structure of anilinium pertechnetate (Maruk et al., 2010[Maruk, A. Ya., Grigor'ev, M. S. & German, K. E. (2010). Russ. J. Coord. Chem. 36, 381-388.]).

Table 2
Selected geometric parameters (Å, °) at 296 K

Tc1—O1 1.7183 (6) O1—Na1ii 2.6304 (6)
O1—Na1i 2.5357 (6)    
       
O1—Tc1—O1iii 111.53 (5) O1—Tc1—O1iv 108.45 (2)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z; (iii) [-x+1, -y+{\script{3\over 2}}, z]; (iv) [y-{\script{1\over 4}}, -x+{\script{5\over 4}}, -z+{\script{1\over 4}}].
[Figure 1]
Figure 1
The elongation of bonds upon cooling from 296 K [(II), A] to 100 K [(I), B] is associated with a decrease in libration (C). All displacement ellipsoids are drawn at the 50% probability. [Symmetry codes: (a) −y + [{5\over 4}], x + [{1\over 4}], −z + [{1\over 4}]; (b) −x + 1, −y + [{3\over 2}], z; (c) y + [{3\over 2}], −x + [{11\over 4}]., z + [{3\over 4}].]

The greatest distortion of the TcO4 anion from an ideal tetra­hedral configuration reported by Weaver et al. (2017[Weaver, J., Soderquist, C. Z., Washton, N. M., Lipton, A. S., Gassman, P. L., Lukens, W. W., Kruger, A. A., Wall, N. A. & McCloy, J. S. (2017). Inorg. Chem. 56, 2533-2544.]) is confirmed by our analysis of the O—Tc—O angles in the NaTcO4 structure, but the difference is not as high as in the model from the neutron diffraction experiment (Weaver et al., 2017[Weaver, J., Soderquist, C. Z., Washton, N. M., Lipton, A. S., Gassman, P. L., Lukens, W. W., Kruger, A. A., Wall, N. A. & McCloy, J. S. (2017). Inorg. Chem. 56, 2533-2544.]). The maximum deviation values are 3.12° at 100 K and 3.08° at 296 K for the sodium salt and are larger in comparison with the potassium and rubidium salts, because the sodium cation has the smallest ionic radius compared to K+ and Rb+ and hence has the highest polarizing ability. This distortion is insensitive to the temperature change from 100 K to 296 K.

The packing of Na+ cations and TcO4 anions in the crystal is presented in Fig. 2[link]. Each Na+ cation is coordinated by eight oxygen atoms that are belonging to four TcO4 anions. The resulting coordination polyhedron can be described as a distorted dodeca­hedron (Fig. 3[link]). The two dihedral angles between pairs of two triangular faces sharing an edge that connects two five-edged vertices of the dodeca­hedron are equal to 21.2 and 30.3°, respectively. The corresponding faces should form an angle of 29.5° for a dodeca­hedron and 0° for a square anti-prism according to the Aslanov–Porai-Koshits criterion (Porai-Koshits & Aslanov, 1972[Porai-Koshits, M. A. & Aslanov, L. A. (1972). Russ. J. Struct. Chem. 12, 266.]). Hence the coordi­n­ation polyhedron of the sodium cation is closer to a dodeca­hedron than to a square anti-prism. Each of the four oxygen atoms of an individual TcO4 anion is in contact with two sodium cations, so that each TcO4 anion is directly contacted with eight sodium cations.

[Figure 2]
Figure 2
View of the crystal packing of the title compound.
[Figure 3]
Figure 3
The coordination polyhedron of the sodium cation (data from 100 K measurement).

3. Synthesis and crystallization

The synthesis of the title compound was carried out based on neutralization of an aqueous solution of freshly prepared HTcO4 with an equivalent qu­antity of 1 M aqueous solution of chemically pure sodium hydroxide. The HTcO4 solution was made by dissolution of Tc2O7 sublimed from TcO2 in an oxygen flow at 973 K.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Seven (six) reflections at room (and low) temperature were omitted from refinement due to large differences between observed and calculated intensities.

Table 3
Experimental details

  100 K 296 K
Crystal data
Chemical formula NaTcO4 NaTcO4
Mr 185.9 185.9
Crystal system, space group Tetragonal, I41/a Tetragonal, I41/a
Temperature (K) 100 296
a, c (Å) 5.2945 (2), 11.7470 (5) 5.3325 (1), 11.8503 (3)
V3) 329.29 (3) 336.97 (2)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 4.33 4.23
Crystal size (mm) 0.34 × 0.28 × 0.20 0.28 × 0.26 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII area-detector Bruker Kappa APEXII area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.399, 0.478 0.386, 0.485
No. of measured, independent and observed [I > 2σ(I)] reflections 6909, 678, 661 2371, 365, 350
Rint 0.018 0.016
(sin θ/λ)max−1) 0.995 0.805
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.009, 0.017, 1.31 0.008, 0.019, 1.16
No. of reflections 678 365
No. of parameters 15 15
Δρmax, Δρmin (e Å−3) 0.26, −0.34 0.23, −0.33
Computer programs: APEX2 and SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(I) Sodium pertechnetate top
Crystal data top
NaTcO4Melting point < 1063 K
Mr = 185.9Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 5622 reflections
a = 5.2945 (2) Åθ = 4.2–45.4°
c = 11.7470 (5) ŵ = 4.33 mm1
V = 329.29 (3) Å3T = 100 K
Z = 4Fragment, colourless
F(000) = 3440.34 × 0.28 × 0.20 mm
Dx = 3.750 Mg m3
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
661 reflections with I > 2σ(I)
ω– and φ–scansRint = 0.018
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 45.0°, θmin = 4.2°
Tmin = 0.399, Tmax = 0.478h = 1010
6909 measured reflectionsk = 1010
678 independent reflectionsl = 2223
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0029P)2 + 0.0769P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.009(Δ/σ)max < 0.001
wR(F2) = 0.017Δρmax = 0.26 e Å3
S = 1.31Δρmin = 0.34 e Å3
678 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
15 parametersExtinction coefficient: 0.0489 (10)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tc10.50000.75000.12500.00517 (2)
Na10.00000.25000.12500.00980 (7)
O10.73565 (6)0.62081 (7)0.04262 (3)0.00879 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tc10.00489 (2)0.00489 (2)0.00574 (3)0.0000.0000.000
Na10.00988 (10)0.00988 (10)0.00965 (16)0.0000.0000.000
O10.00795 (11)0.00901 (11)0.00942 (11)0.00054 (9)0.00202 (10)0.00104 (10)
Geometric parameters (Å, º) top
Tc1—O1i1.7208 (3)Na1—O1viii2.5980 (4)
Tc1—O1ii1.7208 (3)Na1—O1ix2.5980 (4)
Tc1—O1iii1.7208 (3)Na1—O1x2.5980 (4)
Tc1—O11.7208 (3)Na1—Na1xi3.9538 (1)
Na1—O1iv2.5107 (4)Na1—Na1xii3.9538 (1)
Na1—O1v2.5107 (4)Na1—Na1xiii3.9538 (1)
Na1—O1vi2.5107 (4)Na1—Na1xiv3.9538 (1)
Na1—O1vii2.5107 (4)O1—Na1vii2.5107 (4)
Na1—O1iii2.5980 (4)O1—Na1xv2.5980 (4)
O1i—Tc1—O1ii108.439 (12)O1iii—Na1—Na1xi129.596 (8)
O1i—Tc1—O1iii111.56 (3)O1viii—Na1—Na1xi85.180 (8)
O1ii—Tc1—O1iii108.439 (12)O1ix—Na1—Na1xi38.498 (8)
O1i—Tc1—O1108.439 (12)O1x—Na1—Na1xi103.255 (8)
O1ii—Tc1—O1111.56 (3)O1iv—Na1—Na1xii162.891 (8)
O1iii—Tc1—O1108.439 (12)O1v—Na1—Na1xii66.415 (8)
O1iv—Na1—O1v127.954 (10)O1vi—Na1—Na1xii40.101 (8)
O1iv—Na1—O1vi127.954 (10)O1vii—Na1—Na1xii102.079 (9)
O1v—Na1—O1vi76.700 (17)O1iii—Na1—Na1xii38.498 (8)
O1iv—Na1—O1vii76.700 (17)O1viii—Na1—Na1xii103.255 (8)
O1v—Na1—O1vii127.954 (10)O1ix—Na1—Na1xii85.180 (8)
O1vi—Na1—O1vii127.954 (10)O1x—Na1—Na1xii129.596 (8)
O1iv—Na1—O1iii149.332 (14)Na1xi—Na1—Na1xii123.484 (2)
O1v—Na1—O1iii67.259 (8)O1iv—Na1—Na1xiii66.415 (8)
O1vi—Na1—O1iii78.599 (12)O1v—Na1—Na1xiii102.079 (9)
O1vii—Na1—O1iii73.985 (7)O1vi—Na1—Na1xiii162.891 (8)
O1iv—Na1—O1viii73.985 (7)O1vii—Na1—Na1xiii40.101 (8)
O1v—Na1—O1viii78.599 (12)O1iii—Na1—Na1xiii85.180 (8)
O1vi—Na1—O1viii67.259 (8)O1viii—Na1—Na1xiii129.596 (8)
O1vii—Na1—O1viii149.332 (14)O1ix—Na1—Na1xiii103.255 (8)
O1iii—Na1—O1viii136.261 (16)O1x—Na1—Na1xiii38.498 (8)
O1iv—Na1—O1ix78.599 (12)Na1xi—Na1—Na1xiii84.064 (3)
O1v—Na1—O1ix149.332 (14)Na1xii—Na1—Na1xiii123.484 (2)
O1vi—Na1—O1ix73.985 (7)O1iv—Na1—Na1xiv102.079 (9)
O1vii—Na1—O1ix67.259 (8)O1v—Na1—Na1xiv40.101 (8)
O1iii—Na1—O1ix97.976 (6)O1vi—Na1—Na1xiv66.415 (8)
O1viii—Na1—O1ix97.976 (6)O1vii—Na1—Na1xiv162.891 (8)
O1iv—Na1—O1x67.259 (8)O1iii—Na1—Na1xiv103.255 (8)
O1v—Na1—O1x73.985 (7)O1viii—Na1—Na1xiv38.498 (8)
O1vi—Na1—O1x149.332 (14)O1ix—Na1—Na1xiv129.596 (8)
O1vii—Na1—O1x78.599 (12)O1x—Na1—Na1xiv85.180 (8)
O1iii—Na1—O1x97.976 (6)Na1xi—Na1—Na1xiv123.484 (2)
O1viii—Na1—O1x97.976 (6)Na1xii—Na1—Na1xiv84.064 (4)
O1ix—Na1—O1x136.261 (16)Na1xiii—Na1—Na1xiv123.484 (2)
O1iv—Na1—Na1xi40.101 (8)Tc1—O1—Na1vii137.472 (19)
O1v—Na1—Na1xi162.891 (8)Tc1—O1—Na1xv118.781 (18)
O1vi—Na1—Na1xi102.079 (9)Na1vii—O1—Na1xv101.402 (12)
O1vii—Na1—Na1xi66.415 (8)
Symmetry codes: (i) y+5/4, x+1/4, z+1/4; (ii) x+1, y+3/2, z; (iii) y1/4, x+5/4, z+1/4; (iv) x1, y1/2, z; (v) y3/4, x+5/4, z+1/4; (vi) y+3/4, x3/4, z+1/4; (vii) x+1, y+1, z; (viii) y+1/4, x3/4, z+1/4; (ix) x+1, y+1/2, z; (x) x1, y, z; (xi) x, y, z; (xii) x+1/2, y+1/2, z+1/2; (xiii) x, y+1, z; (xiv) x1/2, y+1/2, z+1/2; (xv) x+1, y, z.
(II) Sodium tetraoxidotechnetate(VII) top
Crystal data top
O4Tc·NaDx = 3.664 Mg m3
Mr = 185.9Melting point < 1063 K
Tetragonal, I41/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 4adCell parameters from 2097 reflections
a = 5.3325 (1) Åθ = 4.2–35.2°
c = 11.8503 (3) ŵ = 4.23 mm1
V = 336.97 (2) Å3T = 296 K
Z = 4Fragment, colourless
F(000) = 3440.28 × 0.26 × 0.20 mm
Data collection top
Bruker Kappa APEX II area-detector
diffractometer
365 independent reflections
Graphite monochromator350 reflections with I > 2σ(I)
Detector resolution: 9.091 pixels mm-1Rint = 0.016
ω– and φ–scansθmax = 34.9°, θmin = 4.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 87
Tmin = 0.386, Tmax = 0.485k = 88
2371 measured reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0071P)2 + 0.0846P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.008(Δ/σ)max < 0.001
wR(F2) = 0.019Δρmax = 0.23 e Å3
S = 1.16Δρmin = 0.33 e Å3
365 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
15 parametersExtinction coefficient: 0.136 (3)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tc10.50000.75000.12500.01434 (6)
Na10.00000.25000.12500.02546 (16)
O10.73494 (12)0.62442 (11)0.04342 (6)0.02225 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tc10.01355 (6)0.01355 (6)0.01591 (7)0.0000.0000.000
Na10.0261 (2)0.0261 (2)0.0242 (4)0.0000.0000.000
O10.0200 (2)0.0225 (2)0.0242 (3)0.0005 (2)0.0050 (2)0.0030 (2)
Geometric parameters (Å, º) top
Tc1—O1i1.7183 (6)Na1—O1vii2.5357 (6)
Tc1—O11.7183 (6)Na1—O1iii2.6303 (6)
Tc1—O1ii1.7183 (6)Na1—O1viii2.6303 (6)
Tc1—O1iii1.7183 (6)Na1—O1ix2.6303 (6)
Na1—O1iv2.5357 (6)Na1—O1x2.6303 (6)
Na1—O1v2.5357 (6)O1—Na1vii2.5357 (6)
Na1—O1vi2.5357 (6)O1—Na1xi2.6304 (6)
O1i—Tc1—O1108.45 (2)O1iii—Na1—Na1xii129.245 (14)
O1i—Tc1—O1ii108.45 (2)O1viii—Na1—Na1xii85.049 (14)
O1—Tc1—O1ii111.53 (5)O1ix—Na1—Na1xii38.652 (13)
O1i—Tc1—O1iii111.53 (5)O1x—Na1—Na1xii103.569 (14)
O1—Tc1—O1iii108.45 (2)O1iv—Na1—Na1xiii163.325 (14)
O1ii—Tc1—O1iii108.45 (2)O1v—Na1—Na1xiii65.896 (14)
O1iv—Na1—O1v128.283 (18)O1vi—Na1—Na1xiii40.383 (14)
O1iv—Na1—O1vi128.283 (18)O1vii—Na1—Na1xiii102.250 (15)
O1v—Na1—O1vi76.17 (3)O1iii—Na1—Na1xiii38.652 (13)
O1iv—Na1—O1vii76.17 (3)O1viii—Na1—Na1xiii103.569 (14)
O1v—Na1—O1vii128.283 (18)O1ix—Na1—Na1xiii85.049 (14)
O1vi—Na1—O1vii128.283 (18)O1x—Na1—Na1xiii129.245 (14)
O1iv—Na1—O1iii148.68 (2)Na1xii—Na1—Na1xiii123.539 (1)
O1v—Na1—O1iii67.149 (15)O1iv—Na1—Na1xiv65.896 (14)
O1vi—Na1—O1iii79.04 (2)O1v—Na1—Na1xiv102.250 (15)
O1vii—Na1—O1iii73.993 (11)O1vi—Na1—Na1xiv163.325 (14)
O1iv—Na1—O1viii73.993 (11)O1vii—Na1—Na1xiv40.383 (14)
O1v—Na1—O1viii79.04 (2)O1iii—Na1—Na1xiv85.049 (14)
O1vi—Na1—O1viii67.149 (15)O1viii—Na1—Na1xiv129.245 (14)
O1vii—Na1—O1viii148.68 (2)O1ix—Na1—Na1xiv103.569 (14)
O1iii—Na1—O1viii136.88 (3)O1x—Na1—Na1xiv38.652 (13)
O1iv—Na1—O1ix79.04 (2)Na1xii—Na1—Na1xiv83.973 (2)
O1v—Na1—O1ix148.68 (2)Na1xiii—Na1—Na1xiv123.539 (1)
O1vi—Na1—O1ix73.993 (11)O1iv—Na1—Na1xv102.250 (15)
O1vii—Na1—O1ix67.149 (15)O1v—Na1—Na1xv40.383 (14)
O1iii—Na1—O1ix97.762 (10)O1vi—Na1—Na1xv65.896 (14)
O1viii—Na1—O1ix97.762 (10)O1vii—Na1—Na1xv163.325 (14)
O1iv—Na1—O1x67.149 (15)O1iii—Na1—Na1xv103.569 (14)
O1v—Na1—O1x73.993 (11)O1viii—Na1—Na1xv38.652 (13)
O1vi—Na1—O1x148.68 (2)O1ix—Na1—Na1xv129.245 (14)
O1vii—Na1—O1x79.04 (2)O1x—Na1—Na1xv85.049 (14)
O1iii—Na1—O1x97.762 (10)Na1xii—Na1—Na1xv123.539 (1)
O1viii—Na1—O1x97.762 (10)Na1xiii—Na1—Na1xv83.973 (2)
O1ix—Na1—O1x136.88 (3)Na1xiv—Na1—Na1xv123.539 (1)
O1iv—Na1—Na1xii40.383 (14)Tc1—O1—Na1vii138.27 (3)
O1v—Na1—Na1xii163.325 (14)Tc1—O1—Na1xi118.74 (3)
O1vi—Na1—Na1xii102.250 (15)Na1vii—O1—Na1xi100.96 (2)
O1vii—Na1—Na1xii65.896 (14)
Symmetry codes: (i) y+5/4, x+1/4, z+1/4; (ii) x+1, y+3/2, z; (iii) y1/4, x+5/4, z+1/4; (iv) x1, y1/2, z; (v) y3/4, x+5/4, z+1/4; (vi) y+3/4, x3/4, z+1/4; (vii) x+1, y+1, z; (viii) y+1/4, x3/4, z+1/4; (ix) x+1, y+1/2, z; (x) x1, y, z; (xi) x+1, y, z; (xii) x, y, z; (xiii) x+1/2, y+1/2, z+1/2; (xiv) x, y+1, z; (xv) x1/2, y+1/2, z+1/2.
 

References

First citationAckerman, M., Kim, E., Weck, P. F., Chernesky, W. & Czerwinski, K. R. (2016). Dalton Trans. 45, 18171–18176.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGafurov, M. M. & Aliev, A. R. (2005). J. Struct. Chem. 46, 824–828.  Web of Science CrossRef CAS Google Scholar
First citationGerman, K. E., Grigoriev, M. S. & Kuzina, A. (1987a). Zh. Neorg. Khim. 32, 1089–1095.  CAS Google Scholar
First citationGerman, K. E., Grushevschkaya, L. N., Kryutchkov, S. V., Pustovalov, V. A. & Obruchikov, V. V. (1993). Radiochim. Acta, 63, 221–224.  CrossRef CAS Google Scholar
First citationGerman, K. E., Kryuchkov & S. V., Belyaeva, L. I. (1987b). Izv. Akad. Nauk SSSR Ser. Khim. 10, 2387.  Google Scholar
First citationHoppe, R., Fischer, D. & Schneider, J. (1999). Z. Anorg. Allg. Chem. 625, 1135–1142.  CrossRef CAS Google Scholar
First citationKeller, C. & Kanellakopulos, B. (1963). Radiochim. Acta, 1, 107–108.  CAS Google Scholar
First citationKuo, E. Y., Qin, M. J., Thorogood, G. J., Huai, P., Ren, C. L., Lumpkin, G. R. & Middleburgh, S. C. (2017). Modell. Simul. Mater. Sci. Eng. 25, 025011.  Web of Science CrossRef Google Scholar
First citationMaruk, A. Ya., Grigor'ev, M. S. & German, K. E. (2010). Russ. J. Coord. Chem. 36, 381–388.  Web of Science CrossRef CAS Google Scholar
First citationPalenik, G. J. (1967). Inorg. Chem. 6, 504–507.  Google Scholar
First citationPorai-Koshits, M. A. & Aslanov, L. A. (1972). Russ. J. Struct. Chem. 12, 266.  Google Scholar
First citationSchwochau, K. (1962). Z. Naturforsch. Teil A, 17, 630.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpitsyn, V. I., Kuzina, A. F., German, K. E. & Grigor'ev, M. S. (1987). Dokl. Akad. Nauk SSSR, 293, 101–104.  CAS Google Scholar
First citationStefanovich, S. Y., Kalinin, V. B., German, K. E. & Elvaer, S. M. (1991). Zh. Neorg. Khim. 36, 2200–2202.  CAS Google Scholar
First citationTarasov, V. P., Kirakosyan, G. A. & German, K. E. (1992). Z. Naturforsch. Teil A, 47, 325–329.  CAS Google Scholar
First citationTarasov, V. P., Kirakosyan, G. A. & German, K. E. (2015). Russ. J. Phys. Chem. B, 9, 185–192.  Web of Science CrossRef CAS Google Scholar
First citationTarasov, V. P., Kirakosyan, G. A., German, K. E. & Grigoriev, M. S. (1991). Russ. J. Coord. Chem. 17, 1643–1653.  CAS Google Scholar
First citationTarasov, V. P., Privalov, V. I., Petrushin, S. A., Kirakosian, G. A. & Kriuchkov, S. V. (1983). Dokl. Akad. Nauk SSSR, 272, 919–920.  CAS Google Scholar
First citationWeaver, J., Soderquist, C. Z., Washton, N. M., Lipton, A. S., Gassman, P. L., Lukens, W. W., Kruger, A. A., Wall, N. A. & McCloy, J. S. (2017). Inorg. Chem. 56, 2533–2544.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds