research communications
Redetermination of the 4 at 100 and 296 K based on single-crystal X-ray data
of NaTcOaA.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky prospekt, 119071 Moscow, Russian Federation, bMedical University Reaviz, 2 Krasnobogatyrskaya, building 2, 107564 Moscow, Russian Federation, cD. Mendeleyev University of Chemical Technology of Russia, 9 Miusskaya pl., 125047 Moscow, Russian Federation, dKurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prospect, 119991 Moscow, Russian Federation, and eNational Research Nuclear University, 31 Kashirskoye sh., 115409 Moscow, Russian Federation
*Correspondence e-mail: guerman_k@mail.ru
The redetermination of the title compound, sodium pertechnate, from single-crystal CCD data recorded both at 296 and 100 K confirms previous studies based on X-ray powder diffraction film data [Schwochau (1962). Z. Naturforsch. Teil A, 17, 630; Keller & Kanellakopulos (1963). Radiochim. Acta, 1, 107–108] and neutron powder diffraction data using the [Weaver et al. (2017). Inorg. Chem. 12, 677–681], but reveals a considerable improvement in precision. The standard uncertainties of the room-temperature are about seven times lower than those of the neutron diffraction and about 13 times lower at 100 K, due to the decrease in the amplitude of librations. The crystal expansion could be approximated linearly with a thermal volumic expansion coefficient of 1.19 (12) × 10−4 K−1. NaTcO4 adopts the scheelite (CaWO4) structure type in type I41/a with Na and Tc atoms (both with -4) replacing Ca and W atoms, respectively.
Keywords: Technetium; sodium; redetermination; crystal structure; low temperature; high precision.
1. Chemical context
Sodium pertechnetate, NaTcO4, refers to a group of d0-tetroxide anion salts. Since the inception of quantum chemistry, compounds of this type have been models (generally with respect to the MnO4− anion) for which the validity of the proposed equations and approximations for the case of d-electrons are verified. It was believed that, owing to the d0 electronic state, they define the least complex class of compounds of d-elements. Such simplicity, due to the absence of d-electrons and their pseudospherical symmetry, does by far not imply that any of these compounds show no complex behavior under changing environmental conditions, e.g. by changing temperature and/or the strength of the crystal field, and publications on the discovery of a more complex behaviour and properties appeared periodically. For example, for sodium (German et al., 1987b, 1993), potassium (German et al., 1993; Gafurov & Aliev, 2005) and caesium (Tarasov et al., 1991, 1992) tetraoxidotechnates, the existence of phase transitions was noted at high temperatures, while for the rhenium analogue, caesium tetraoxidorhenate, the ability of laser-excited second harmonic generation has been observed (Stefanovich et al., 1991). Differences for these systems are also observed in the crystal structures. Potassium permanganate crystallizes in the orthorhombic system (Palenik, 1967), whereas the pertechnetate and perrhenate of the same cation crystallize in the tetragonal system (Hoppe et al., 1999; Schwochau, 1962). Next to the interest for the TcO4− anion in its sodium salt, sodium cations in general are worth being investigated in detail. For example, sodium salts are known to form hydrates with different hydration numbers and various coordination numbers for the sodium cation. The change in these numbers often occurs in the vitally important temperature range of 309–313 K (German et al., 1987b; Tarasov et al., 2015). Precise structural data of such systems are important for the analyses of transmutation rates in homogeneous systems as noted by Kuo et al. (2017) and in this respect, are more useful than the data of previously determined structures (Kuo et al., 2017; Ackerman et al., 2016; German et al., 1987a; Spitsyn et al., 1987; Tarasov et al., 1983, 1991). Likewise, Ackerman et al. (2016) have shown that precise structural data are needed for the estimation of the incorporation possibility for 99Tc into stable scheelite matrices of different compositions. Another aspect for obtaining more precise structure data on pertechnates is to clarify if pseudo-Jahn–Teller distortions of d0-tetraoxide anions really take place when compared with previous determinations (German et al., 1987a; Spitsyn et al., 1987; Tarasov et al., 1983, 1991). In this context we have reinvestigated the of NaTcO4 that is known from powder diffraction data only, namely by inspection of its X-ray powder diffraction pattern (Schwochau, 1962; Keller & Kanellakopulos, 1963) and of neutron powder diffraction data (Weaver et al., 2017).
2. Structural commentary
The structure of anhydrous NaTcO4, determined here on the basis of X-ray diffraction data of a single crystal recorded both at room and low temperature, belongs to the CaWO4 structural type (space group type I41/a). The obtained bond lengths and angles are similar to those obtained from previous X-ray powder (Keller & Kanellakopulos, 1963; Schwochau, 1962) and neutron powder diffraction studies (Weaver et al., 2017)
Lattice parameters determined here with the precision of 0.0002-0.0005 Å at 296 K (Table 1) are close to those of a = 5.342 (3) Å, c = 11.874 (6) Å given by Weaver et al. (2017). The lattice parameters at 100 K are a = 5.2945 (2) Å, c = 11.7470 (5) Å (single crystal measurement). These values represent the thermal volumic expansion coefficient of 1.19 (12) × 10 −4 K−1. The c/a ratio in this structure changes from 2.2187 (7) to 2.2223 (4) as a function of the temperature change from 100 to 296 K.
|
Our results confirm that NaTcO4 is isostructural to KTcO4 and RbTcO4 (Keller & Kanellakopulos, 1963). The structure is composed of three atom types (Na, Tc, O). The Tc and Na atoms occupy special positions with symmetry, Wyckoff positions 4b and 4a, respectively. The configuration of the TeO4− anion is that of a slightly distorted tetrahedron both at 296 K and at 100 K (Tables 1 and 2). The Tc—O distances are 1.7183 (6) Å at 296 K and 1.7208 (3) Å at 100 K. These distances are in good agreement with values known for these ions from the literature (German et al., 1987a; Tarasov et al., 1992; Kuo et al., 2017; Ackerman et al., 2016). The elongation of bonds (Fig. 1), while decreasing the temperature from 296 K to 100 K, can be attributed to a decrease in the libration effect (German et al., 1987a). A similar phenomenon has previously been observed in the structure of anilinium pertechnetate (Maruk et al., 2010).
|
The greatest distortion of the TcO4− anion from an ideal tetrahedral configuration reported by Weaver et al. (2017) is confirmed by our analysis of the O—Tc—O angles in the NaTcO4 structure, but the difference is not as high as in the model from the neutron diffraction experiment (Weaver et al., 2017). The maximum deviation values are 3.12° at 100 K and 3.08° at 296 K for the sodium salt and are larger in comparison with the potassium and rubidium salts, because the sodium cation has the smallest ionic radius compared to K+ and Rb+ and hence has the highest polarizing ability. This distortion is insensitive to the temperature change from 100 K to 296 K.
The packing of Na+ cations and TcO4− anions in the crystal is presented in Fig. 2. Each Na+ cation is coordinated by eight oxygen atoms that are belonging to four TcO4− anions. The resulting can be described as a distorted dodecahedron (Fig. 3). The two dihedral angles between pairs of two triangular faces sharing an edge that connects two five-edged vertices of the dodecahedron are equal to 21.2 and 30.3°, respectively. The corresponding faces should form an angle of 29.5° for a dodecahedron and 0° for a square anti-prism according to the Aslanov–Porai-Koshits criterion (Porai-Koshits & Aslanov, 1972). Hence the coordination polyhedron of the sodium cation is closer to a dodecahedron than to a square anti-prism. Each of the four oxygen atoms of an individual TcO4− anion is in contact with two sodium cations, so that each TcO4− anion is directly contacted with eight sodium cations.
3. Synthesis and crystallization
The synthesis of the title compound was carried out based on neutralization of an aqueous solution of freshly prepared HTcO4 with an equivalent quantity of 1 M aqueous solution of chemically pure sodium hydroxide. The HTcO4 solution was made by dissolution of Tc2O7 sublimed from TcO2 in an oxygen flow at 973 K.
4. Refinement
Crystal data, data collection and structure . Seven (six) reflections at room (and low) temperature were omitted from due to large differences between observed and calculated intensities.
details are summarized in Table 3Supporting information
https://doi.org/10.1107/S2056989017008362/wm5391sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017008362/wm5391Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989017008362/wm5391IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017008362/wm5391Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989017008362/wm5391IIsup5.cml
For both compounds, data collection: APEX2 (Bruker, 2008); cell
SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).NaTcO4 | Melting point < 1063 K |
Mr = 185.9 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I41/a | Cell parameters from 5622 reflections |
a = 5.2945 (2) Å | θ = 4.2–45.4° |
c = 11.7470 (5) Å | µ = 4.33 mm−1 |
V = 329.29 (3) Å3 | T = 100 K |
Z = 4 | Fragment, colourless |
F(000) = 344 | 0.34 × 0.28 × 0.20 mm |
Dx = 3.750 Mg m−3 |
Bruker Kappa APEXII area-detector diffractometer | 661 reflections with I > 2σ(I) |
ω– and φ–scans | Rint = 0.018 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | θmax = 45.0°, θmin = 4.2° |
Tmin = 0.399, Tmax = 0.478 | h = −10→10 |
6909 measured reflections | k = −10→10 |
678 independent reflections | l = −22→23 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0029P)2 + 0.0769P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.009 | (Δ/σ)max < 0.001 |
wR(F2) = 0.017 | Δρmax = 0.26 e Å−3 |
S = 1.31 | Δρmin = −0.34 e Å−3 |
678 reflections | Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
15 parameters | Extinction coefficient: 0.0489 (10) |
x | y | z | Uiso*/Ueq | ||
Tc1 | 0.5000 | 0.7500 | 0.1250 | 0.00517 (2) | |
Na1 | 0.0000 | 0.2500 | 0.1250 | 0.00980 (7) | |
O1 | 0.73565 (6) | 0.62081 (7) | 0.04262 (3) | 0.00879 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Tc1 | 0.00489 (2) | 0.00489 (2) | 0.00574 (3) | 0.000 | 0.000 | 0.000 |
Na1 | 0.00988 (10) | 0.00988 (10) | 0.00965 (16) | 0.000 | 0.000 | 0.000 |
O1 | 0.00795 (11) | 0.00901 (11) | 0.00942 (11) | 0.00054 (9) | 0.00202 (10) | −0.00104 (10) |
Tc1—O1i | 1.7208 (3) | Na1—O1viii | 2.5980 (4) |
Tc1—O1ii | 1.7208 (3) | Na1—O1ix | 2.5980 (4) |
Tc1—O1iii | 1.7208 (3) | Na1—O1x | 2.5980 (4) |
Tc1—O1 | 1.7208 (3) | Na1—Na1xi | 3.9538 (1) |
Na1—O1iv | 2.5107 (4) | Na1—Na1xii | 3.9538 (1) |
Na1—O1v | 2.5107 (4) | Na1—Na1xiii | 3.9538 (1) |
Na1—O1vi | 2.5107 (4) | Na1—Na1xiv | 3.9538 (1) |
Na1—O1vii | 2.5107 (4) | O1—Na1vii | 2.5107 (4) |
Na1—O1iii | 2.5980 (4) | O1—Na1xv | 2.5980 (4) |
O1i—Tc1—O1ii | 108.439 (12) | O1iii—Na1—Na1xi | 129.596 (8) |
O1i—Tc1—O1iii | 111.56 (3) | O1viii—Na1—Na1xi | 85.180 (8) |
O1ii—Tc1—O1iii | 108.439 (12) | O1ix—Na1—Na1xi | 38.498 (8) |
O1i—Tc1—O1 | 108.439 (12) | O1x—Na1—Na1xi | 103.255 (8) |
O1ii—Tc1—O1 | 111.56 (3) | O1iv—Na1—Na1xii | 162.891 (8) |
O1iii—Tc1—O1 | 108.439 (12) | O1v—Na1—Na1xii | 66.415 (8) |
O1iv—Na1—O1v | 127.954 (10) | O1vi—Na1—Na1xii | 40.101 (8) |
O1iv—Na1—O1vi | 127.954 (10) | O1vii—Na1—Na1xii | 102.079 (9) |
O1v—Na1—O1vi | 76.700 (17) | O1iii—Na1—Na1xii | 38.498 (8) |
O1iv—Na1—O1vii | 76.700 (17) | O1viii—Na1—Na1xii | 103.255 (8) |
O1v—Na1—O1vii | 127.954 (10) | O1ix—Na1—Na1xii | 85.180 (8) |
O1vi—Na1—O1vii | 127.954 (10) | O1x—Na1—Na1xii | 129.596 (8) |
O1iv—Na1—O1iii | 149.332 (14) | Na1xi—Na1—Na1xii | 123.484 (2) |
O1v—Na1—O1iii | 67.259 (8) | O1iv—Na1—Na1xiii | 66.415 (8) |
O1vi—Na1—O1iii | 78.599 (12) | O1v—Na1—Na1xiii | 102.079 (9) |
O1vii—Na1—O1iii | 73.985 (7) | O1vi—Na1—Na1xiii | 162.891 (8) |
O1iv—Na1—O1viii | 73.985 (7) | O1vii—Na1—Na1xiii | 40.101 (8) |
O1v—Na1—O1viii | 78.599 (12) | O1iii—Na1—Na1xiii | 85.180 (8) |
O1vi—Na1—O1viii | 67.259 (8) | O1viii—Na1—Na1xiii | 129.596 (8) |
O1vii—Na1—O1viii | 149.332 (14) | O1ix—Na1—Na1xiii | 103.255 (8) |
O1iii—Na1—O1viii | 136.261 (16) | O1x—Na1—Na1xiii | 38.498 (8) |
O1iv—Na1—O1ix | 78.599 (12) | Na1xi—Na1—Na1xiii | 84.064 (3) |
O1v—Na1—O1ix | 149.332 (14) | Na1xii—Na1—Na1xiii | 123.484 (2) |
O1vi—Na1—O1ix | 73.985 (7) | O1iv—Na1—Na1xiv | 102.079 (9) |
O1vii—Na1—O1ix | 67.259 (8) | O1v—Na1—Na1xiv | 40.101 (8) |
O1iii—Na1—O1ix | 97.976 (6) | O1vi—Na1—Na1xiv | 66.415 (8) |
O1viii—Na1—O1ix | 97.976 (6) | O1vii—Na1—Na1xiv | 162.891 (8) |
O1iv—Na1—O1x | 67.259 (8) | O1iii—Na1—Na1xiv | 103.255 (8) |
O1v—Na1—O1x | 73.985 (7) | O1viii—Na1—Na1xiv | 38.498 (8) |
O1vi—Na1—O1x | 149.332 (14) | O1ix—Na1—Na1xiv | 129.596 (8) |
O1vii—Na1—O1x | 78.599 (12) | O1x—Na1—Na1xiv | 85.180 (8) |
O1iii—Na1—O1x | 97.976 (6) | Na1xi—Na1—Na1xiv | 123.484 (2) |
O1viii—Na1—O1x | 97.976 (6) | Na1xii—Na1—Na1xiv | 84.064 (4) |
O1ix—Na1—O1x | 136.261 (16) | Na1xiii—Na1—Na1xiv | 123.484 (2) |
O1iv—Na1—Na1xi | 40.101 (8) | Tc1—O1—Na1vii | 137.472 (19) |
O1v—Na1—Na1xi | 162.891 (8) | Tc1—O1—Na1xv | 118.781 (18) |
O1vi—Na1—Na1xi | 102.079 (9) | Na1vii—O1—Na1xv | 101.402 (12) |
O1vii—Na1—Na1xi | 66.415 (8) |
Symmetry codes: (i) −y+5/4, x+1/4, −z+1/4; (ii) −x+1, −y+3/2, z; (iii) y−1/4, −x+5/4, −z+1/4; (iv) x−1, y−1/2, −z; (v) y−3/4, −x+5/4, z+1/4; (vi) −y+3/4, x−3/4, z+1/4; (vii) −x+1, −y+1, −z; (viii) −y+1/4, x−3/4, −z+1/4; (ix) −x+1, −y+1/2, z; (x) x−1, y, z; (xi) −x, −y, −z; (xii) −x+1/2, −y+1/2, −z+1/2; (xiii) −x, −y+1, −z; (xiv) −x−1/2, −y+1/2, −z+1/2; (xv) x+1, y, z. |
O4Tc·Na | Dx = 3.664 Mg m−3 |
Mr = 185.9 | Melting point < 1063 K |
Tetragonal, I41/a | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -I 4ad | Cell parameters from 2097 reflections |
a = 5.3325 (1) Å | θ = 4.2–35.2° |
c = 11.8503 (3) Å | µ = 4.23 mm−1 |
V = 336.97 (2) Å3 | T = 296 K |
Z = 4 | Fragment, colourless |
F(000) = 344 | 0.28 × 0.26 × 0.20 mm |
Bruker Kappa APEX II area-detector diffractometer | 365 independent reflections |
Graphite monochromator | 350 reflections with I > 2σ(I) |
Detector resolution: 9.091 pixels mm-1 | Rint = 0.016 |
ω– and φ–scans | θmax = 34.9°, θmin = 4.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −8→7 |
Tmin = 0.386, Tmax = 0.485 | k = −8→8 |
2371 measured reflections | l = −18→18 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0071P)2 + 0.0846P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.008 | (Δ/σ)max < 0.001 |
wR(F2) = 0.019 | Δρmax = 0.23 e Å−3 |
S = 1.16 | Δρmin = −0.33 e Å−3 |
365 reflections | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
15 parameters | Extinction coefficient: 0.136 (3) |
x | y | z | Uiso*/Ueq | ||
Tc1 | 0.5000 | 0.7500 | 0.1250 | 0.01434 (6) | |
Na1 | 0.0000 | 0.2500 | 0.1250 | 0.02546 (16) | |
O1 | 0.73494 (12) | 0.62442 (11) | 0.04342 (6) | 0.02225 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Tc1 | 0.01355 (6) | 0.01355 (6) | 0.01591 (7) | 0.000 | 0.000 | 0.000 |
Na1 | 0.0261 (2) | 0.0261 (2) | 0.0242 (4) | 0.000 | 0.000 | 0.000 |
O1 | 0.0200 (2) | 0.0225 (2) | 0.0242 (3) | 0.0005 (2) | 0.0050 (2) | −0.0030 (2) |
Tc1—O1i | 1.7183 (6) | Na1—O1vii | 2.5357 (6) |
Tc1—O1 | 1.7183 (6) | Na1—O1iii | 2.6303 (6) |
Tc1—O1ii | 1.7183 (6) | Na1—O1viii | 2.6303 (6) |
Tc1—O1iii | 1.7183 (6) | Na1—O1ix | 2.6303 (6) |
Na1—O1iv | 2.5357 (6) | Na1—O1x | 2.6303 (6) |
Na1—O1v | 2.5357 (6) | O1—Na1vii | 2.5357 (6) |
Na1—O1vi | 2.5357 (6) | O1—Na1xi | 2.6304 (6) |
O1i—Tc1—O1 | 108.45 (2) | O1iii—Na1—Na1xii | 129.245 (14) |
O1i—Tc1—O1ii | 108.45 (2) | O1viii—Na1—Na1xii | 85.049 (14) |
O1—Tc1—O1ii | 111.53 (5) | O1ix—Na1—Na1xii | 38.652 (13) |
O1i—Tc1—O1iii | 111.53 (5) | O1x—Na1—Na1xii | 103.569 (14) |
O1—Tc1—O1iii | 108.45 (2) | O1iv—Na1—Na1xiii | 163.325 (14) |
O1ii—Tc1—O1iii | 108.45 (2) | O1v—Na1—Na1xiii | 65.896 (14) |
O1iv—Na1—O1v | 128.283 (18) | O1vi—Na1—Na1xiii | 40.383 (14) |
O1iv—Na1—O1vi | 128.283 (18) | O1vii—Na1—Na1xiii | 102.250 (15) |
O1v—Na1—O1vi | 76.17 (3) | O1iii—Na1—Na1xiii | 38.652 (13) |
O1iv—Na1—O1vii | 76.17 (3) | O1viii—Na1—Na1xiii | 103.569 (14) |
O1v—Na1—O1vii | 128.283 (18) | O1ix—Na1—Na1xiii | 85.049 (14) |
O1vi—Na1—O1vii | 128.283 (18) | O1x—Na1—Na1xiii | 129.245 (14) |
O1iv—Na1—O1iii | 148.68 (2) | Na1xii—Na1—Na1xiii | 123.539 (1) |
O1v—Na1—O1iii | 67.149 (15) | O1iv—Na1—Na1xiv | 65.896 (14) |
O1vi—Na1—O1iii | 79.04 (2) | O1v—Na1—Na1xiv | 102.250 (15) |
O1vii—Na1—O1iii | 73.993 (11) | O1vi—Na1—Na1xiv | 163.325 (14) |
O1iv—Na1—O1viii | 73.993 (11) | O1vii—Na1—Na1xiv | 40.383 (14) |
O1v—Na1—O1viii | 79.04 (2) | O1iii—Na1—Na1xiv | 85.049 (14) |
O1vi—Na1—O1viii | 67.149 (15) | O1viii—Na1—Na1xiv | 129.245 (14) |
O1vii—Na1—O1viii | 148.68 (2) | O1ix—Na1—Na1xiv | 103.569 (14) |
O1iii—Na1—O1viii | 136.88 (3) | O1x—Na1—Na1xiv | 38.652 (13) |
O1iv—Na1—O1ix | 79.04 (2) | Na1xii—Na1—Na1xiv | 83.973 (2) |
O1v—Na1—O1ix | 148.68 (2) | Na1xiii—Na1—Na1xiv | 123.539 (1) |
O1vi—Na1—O1ix | 73.993 (11) | O1iv—Na1—Na1xv | 102.250 (15) |
O1vii—Na1—O1ix | 67.149 (15) | O1v—Na1—Na1xv | 40.383 (14) |
O1iii—Na1—O1ix | 97.762 (10) | O1vi—Na1—Na1xv | 65.896 (14) |
O1viii—Na1—O1ix | 97.762 (10) | O1vii—Na1—Na1xv | 163.325 (14) |
O1iv—Na1—O1x | 67.149 (15) | O1iii—Na1—Na1xv | 103.569 (14) |
O1v—Na1—O1x | 73.993 (11) | O1viii—Na1—Na1xv | 38.652 (13) |
O1vi—Na1—O1x | 148.68 (2) | O1ix—Na1—Na1xv | 129.245 (14) |
O1vii—Na1—O1x | 79.04 (2) | O1x—Na1—Na1xv | 85.049 (14) |
O1iii—Na1—O1x | 97.762 (10) | Na1xii—Na1—Na1xv | 123.539 (1) |
O1viii—Na1—O1x | 97.762 (10) | Na1xiii—Na1—Na1xv | 83.973 (2) |
O1ix—Na1—O1x | 136.88 (3) | Na1xiv—Na1—Na1xv | 123.539 (1) |
O1iv—Na1—Na1xii | 40.383 (14) | Tc1—O1—Na1vii | 138.27 (3) |
O1v—Na1—Na1xii | 163.325 (14) | Tc1—O1—Na1xi | 118.74 (3) |
O1vi—Na1—Na1xii | 102.250 (15) | Na1vii—O1—Na1xi | 100.96 (2) |
O1vii—Na1—Na1xii | 65.896 (14) |
Symmetry codes: (i) −y+5/4, x+1/4, −z+1/4; (ii) −x+1, −y+3/2, z; (iii) y−1/4, −x+5/4, −z+1/4; (iv) x−1, y−1/2, −z; (v) y−3/4, −x+5/4, z+1/4; (vi) −y+3/4, x−3/4, z+1/4; (vii) −x+1, −y+1, −z; (viii) −y+1/4, x−3/4, −z+1/4; (ix) −x+1, −y+1/2, z; (x) x−1, y, z; (xi) x+1, y, z; (xii) −x, −y, −z; (xiii) −x+1/2, −y+1/2, −z+1/2; (xiv) −x, −y+1, −z; (xv) −x−1/2, −y+1/2, −z+1/2. |
References
Ackerman, M., Kim, E., Weck, P. F., Chernesky, W. & Czerwinski, K. R. (2016). Dalton Trans. 45, 18171–18176. Web of Science CrossRef CAS PubMed Google Scholar
Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Gafurov, M. M. & Aliev, A. R. (2005). J. Struct. Chem. 46, 824–828. Web of Science CrossRef CAS Google Scholar
German, K. E., Grigoriev, M. S. & Kuzina, A. (1987a). Zh. Neorg. Khim. 32, 1089–1095. CAS Google Scholar
German, K. E., Grushevschkaya, L. N., Kryutchkov, S. V., Pustovalov, V. A. & Obruchikov, V. V. (1993). Radiochim. Acta, 63, 221–224. CrossRef CAS Google Scholar
German, K. E., Kryuchkov & S. V., Belyaeva, L. I. (1987b). Izv. Akad. Nauk SSSR Ser. Khim. 10, 2387. Google Scholar
Hoppe, R., Fischer, D. & Schneider, J. (1999). Z. Anorg. Allg. Chem. 625, 1135–1142. CrossRef CAS Google Scholar
Keller, C. & Kanellakopulos, B. (1963). Radiochim. Acta, 1, 107–108. CAS Google Scholar
Kuo, E. Y., Qin, M. J., Thorogood, G. J., Huai, P., Ren, C. L., Lumpkin, G. R. & Middleburgh, S. C. (2017). Modell. Simul. Mater. Sci. Eng. 25, 025011. Web of Science CrossRef Google Scholar
Maruk, A. Ya., Grigor'ev, M. S. & German, K. E. (2010). Russ. J. Coord. Chem. 36, 381–388. Web of Science CrossRef CAS Google Scholar
Palenik, G. J. (1967). Inorg. Chem. 6, 504–507. Google Scholar
Porai-Koshits, M. A. & Aslanov, L. A. (1972). Russ. J. Struct. Chem. 12, 266. Google Scholar
Schwochau, K. (1962). Z. Naturforsch. Teil A, 17, 630. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spitsyn, V. I., Kuzina, A. F., German, K. E. & Grigor'ev, M. S. (1987). Dokl. Akad. Nauk SSSR, 293, 101–104. CAS Google Scholar
Stefanovich, S. Y., Kalinin, V. B., German, K. E. & Elvaer, S. M. (1991). Zh. Neorg. Khim. 36, 2200–2202. CAS Google Scholar
Tarasov, V. P., Kirakosyan, G. A. & German, K. E. (1992). Z. Naturforsch. Teil A, 47, 325–329. CAS Google Scholar
Tarasov, V. P., Kirakosyan, G. A. & German, K. E. (2015). Russ. J. Phys. Chem. B, 9, 185–192. Web of Science CrossRef CAS Google Scholar
Tarasov, V. P., Kirakosyan, G. A., German, K. E. & Grigoriev, M. S. (1991). Russ. J. Coord. Chem. 17, 1643–1653. CAS Google Scholar
Tarasov, V. P., Privalov, V. I., Petrushin, S. A., Kirakosian, G. A. & Kriuchkov, S. V. (1983). Dokl. Akad. Nauk SSSR, 272, 919–920. CAS Google Scholar
Weaver, J., Soderquist, C. Z., Washton, N. M., Lipton, A. S., Gassman, P. L., Lukens, W. W., Kruger, A. A., Wall, N. A. & McCloy, J. S. (2017). Inorg. Chem. 56, 2533–2544. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.