research communications
N-[(6-bromopyridin-2-yl)(phenyl)methylidene]-2,6-dimethylaniline-κ2N,N′}dichloridozinc dichloromethane hemisolvate
of {aDonald J. Bettinger Department of Chemistry and Biochemistry, Ohio Northern University, 525 S. Main Street, Ada, OH 45810, USA
*Correspondence e-mail: b-wile@onu.edu
The solvated title compound, [ZnCl2(C20H17BrN2)]·0.5CH2Cl2, comprises a bidentate iminopyridine ligand and two Cl atoms bound to a zinc2+ cation in a distorted tetrahedral arrangement. The chelate bond lengths are consistent with localized C=N double bonds and a C—C single bond, as expected for an unreduced ligand bound to a closed-shell transition metal cation. Apart from weak nonclassical C—H⋯Cl hydrogen bonds between the complex molecules and the disordered solvent molecules (occupancy = 0.5), no further significant intermolecular interactions are observed.
Keywords: crystal structure; iminopyridine; redox-active ligand; coordination compound; zinc(II); pyridyl halide.
CCDC reference: 1552501
1. Chemical context
Redox-active ligands bearing an α-iminopyridine core have received much attention in the literature (Bianchini et al., 2007; Lu et al., 2008). While most α-iminopyridine ligands reported to date feature a methyl imine `backbone', a small number of variants featuring more electron-withdrawing phenyl backbones have been reported (Archer et al., 2006; Tondreau et al., 2013; Yang et al., 2010). Single-crystal X-ray diffraction studies have been a critical component in the elucidation of the electronic structure of base metal complexes featuring these redox-active ligands (Bart et al., 2006; Lu et al., 2008; Tondreau et al., 2013). A comparison of the Nimine—Cimine, Cimine—Cipso, and Cipso—Npyridine bond lengths for reduced and unreduced ligands as free bases or closed-shell complexes facilitate conclusions about redox non-innocence for such ligand sets. To this end, the preparation of the titular zinc(II) complex featuring the unreduced ligand was undertaken. Inclusion of a bromine functionality in the remaining ortho position of the pyridine ring allows for the introduction of an additional donor arm that differs from the imine fragment (Zhang & Lu, 2016; He et al., 2016).
2. Structural commentary
The molecular structure of the titular compound is shown in Fig. 1. In this complex, the Zn2+ cation adopts a distorted tetrahedral arrangement (Table 1), being surrounded by two Cl atoms and two N atoms. The N atoms comprise the donor atoms for an α-iminopyridine ligand, forming a five-membered ring when bound to the Zn2+ cation (Zn1—N2—C7—C8—N15). The Zn2+ cation lies 0.3855 (3) Å above the plane defined by the chelate (N2/C7/C8/N15), in a distorted tetrahedral arrangement (τ4 parameter = 0.8999; Yang et al., 2007). Distortions to the geometry about the metal cation and the arrangement of the pyridine and phenyl rings [dihedral angle = 66.62 (13)°] may be attributed to the steric pressure exerted by the ligand substituents, and packing constraints within the unit cell.
|
Bond lengths and angles for the α-iminopyridine fragment (N2/C7/C8/N15) of the ligand are consistent with the depiction as localized C=N double bonds, and as a C—C single bond. A comparison of the observed bond lengths with the average bond lengths for neutral and doubly-reduced α-iminopyridine (α-IP; Lu et al., 2008) and pyridine diimine (PDI; Bart et al., 2006) ligands is given in Table 2.
3. Supramolecular features
One half of a disordered molecule of dichloromethane is present in the et al., 2016; Song et al., 2011). However, a weak C—H⋯Cl interaction binds the disordered solvent molecule to the complex (Table 3). Fig. 2 depicts the packing within the as viewed along the a axis.
close to a center of inversion. While no hydrogen bonding is observed between the complex molecules in this crystal, several short contacts (less than the sum of the van der Waals radii) are observed between neighbouring molecules. Notably, neither dimerization nor stoichiometric binding of solvent to the metal cation is observed for this complex, in contrast to some base metal complexes of similar ligands (Dai4. Synthesis and crystallization
The titular compound was prepared in good yield using the scheme described in Fig. 3. Experimental details are described below for each stage of the synthesis.
4.1. Preparation of (6-bromopyridin-2-yl)phenyl ketone, (2)
Following the method of Kobayashi and co-workers (Ishikawa et al., 2005), to a solution of 2,6-dibromopyridine (1, 10.0 g, 42.2 mmol) in diethyl ether (200 ml) at 195 K, was added n-BuLi (29 ml of a 1.6 M solution in diethyl ether, 46.4 mmol) dropwise over 5 min. The solution was stirred at 195 K for 1 h, after which benzonitrile (4.8 ml, 46.4 mmol) was added dropwise over 5 min. The resultant solution was allowed to warm to room temperature, at which point the yellow solution turned dark red. After 1 h, cold aqueous 3 M HCl (250 ml) was added to the solution causing the dark-red solution to turn yellow, and the organic phase was removed. To the aqueous layer, 3 M NaOH (250 ml) was added, and the mixture was extracted with diethyl ether (3 × 100 ml). The organic fractions were combined, dried over MgSO4, and concentrated under reduced pressure. The product (2) was recrystallized from ethanol, yielding a light-yellow crystalline solid (4.35 g, 16.6 mmol, 39%; m.p. 330–333 K).
4.2. Preparation of N-[(6-bromopyridin-2-yl)(phenyl)methylidene]-2,6-dimethylaniline, (3)
Following the method of Meneghetti et al. (1999), a round-bottomed flask containing 2 (3.00 g, 12.6 mmol), 2,6-dimethylaniline (3.15 ml, 25.2 mmol), ∼30 mg of p-toluenesulfonic acid catalyst, and toluene (300 ml) were fitted with a Dean–Stark apparatus, and brought to reflux for 6 d. The mixture was washed with a saturated aqueous solution of NaHCO3, dried over MgSO4, and concentrated under reduced pressure. The resultant brown (crude) product was purified by (silica 50–70 ml) with a 4:1 (v/v) hexanes–ethyl acetate mixture as eluant (RF = 0.62) to yield 3 as a bright-yellow solid (2.85 g, 8.4 mmol, 67%; m.p. 361–366 K).
4.3. Preparation of {N-[(6-bromopyridin-2-yl)(phenyl)methylidene]-2,6-dimethylaniline-κ2N,N′}dichloridozinc dichloromethane hemisolvate, (3-ZnCl2)
Anhydrous zinc(II) chloride (0.068 g, 0.50 mmol) and 3 (0.237 g, 0.65 mmol) solids were added to a Schlenk flask fitted with a magnetic stirrer bar, and the flask was flushed with argon. Anhydrous tetrahydrofuran (10 ml) was added to the flask, and the solution was allowed to stir for 16 h. The solvent and other volatiles were removed in vacuo, and the residue was rinsed with dry pentane to yield 3-ZnCl2 as a yellow solid (0.251 g, 0.50 mmol, >99%). Single crystals suitable for X-ray diffraction were obtained by diffusion of diethyl ether into a of 3-ZnCl2 in CH2Cl2. 1H NMR (CDCl3, 400 MHz; see also supporting information) δ 8.01 (d, J = 8.0 Hz, 1H, aryl m-CH), 7.95 (t, J = 8.0 Hz, 1H, aryl p-CH), 7.60 (d, J = 7.6 Hz, 1H, aryl m-CH), 7.49 (t, J = 7.2 Hz, 1H, phenyl p-CH), 7.39 (t, J = 7.2 Hz, 2H, phenyl m-CH), 7.21 (d, J = 7.6 Hz, 2H, phenyl o-CH), 7.01–6.92 (m, 3H, pyridine CH), 5.30 (s, 0.5 × 2H, CH2Cl2), 2.30 (s, 6H, CH3). 13C{1H} NMR (CDCl3, 100 MHz, see also supporting information): δ 169.2 (C=N), 150.3 (aryl ipso-C), 144.5, 142.4, 142.2 (aryl p-CH), 133.9 (aryl m-CH), 131.8 (phenyl p-CH), 130.4 (phenyl ipso-C), 128.9 (aryl o-C), 128.8 (phenyl m-CH), 128.6 (pyridine CH), 127.8 (phenyl o-CH), 127.0 (aryl m-CH and pyridine CH), 19.2 (CH3); m.p. 529–537 K. Analysis calculated (%) for C20.5H18N2BrCl3Zn: C 45.26, H 3.33, N 5.15; found: C 45.19, H 3.40, N 5.06.
5. Refinement
Crystal data, data collection and structure . H atoms were placed in calculated positions, and their positions were initially refined using distance and angle restraints. A disordered molecule of dichloromethane was located close to a center of inversion. All atoms from the solvent molecule were refined with a fixed occupancy of 0.5, and SAME and SIMU restraints were employed.
details are summarized in Table 4
|
Supporting information
CCDC reference: 1552501
https://doi.org/10.1107/S2056989017007812/wm5393sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017007812/wm5393Isup2.hkl
NMR spectrum. DOI: https://doi.org/10.1107/S2056989017007812/wm5393sup4.pdf
NMR spectrum. DOI: https://doi.org/10.1107/S2056989017007812/wm5393sup5.pdf
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell
CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).[ZnCl2(C20H17BrN2)]0.5CH2Cl2 | F(000) = 1084 |
Mr = 544.02 | Dx = 1.689 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.7107 Å |
Hall symbol: -P 2ybc | Cell parameters from 12051 reflections |
a = 13.7338 (3) Å | θ = 3.8–29.4° |
b = 11.25476 (16) Å | µ = 3.40 mm−1 |
c = 15.2274 (3) Å | T = 110 K |
β = 114.654 (3)° | Block, colourless |
V = 2139.14 (14) Å3 | 0.55 × 0.40 × 0.32 mm |
Z = 4.0 |
Xcalibur, Ruby, Gemini ultra diffractometer | 5308 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 4127 reflections with I > 2.0σ(I) |
Graphite monochromator | Rint = 0.036 |
Detector resolution: 10.3533 pixels mm-1 | θmax = 29.3°, θmin = 3.8° |
ω scans | h = −18→17 |
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2007) | k = −14→14 |
Tmin = 0.322, Tmax = 0.457 | l = −20→20 |
23484 measured reflections |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | H-atom parameters not refined |
R[F2 > 2σ(F2)] = 0.031 | Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.05P)2 + 0.0P] , where P = (max(Fo2,0) + 2Fc2)/3 |
wR(F2) = 0.080 | (Δ/σ)max = 0.021 |
S = 0.97 | Δρmax = 1.67 e Å−3 |
5308 reflections | Δρmin = −1.68 e Å−3 |
263 parameters | Extinction correction: Larson (1970), Equation 22 |
58 restraints | Extinction coefficient: 50 (10) |
Primary atom site location: structure-invariant direct methods |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Zn1 | 0.24497 (2) | 0.66355 (2) | 0.19030 (2) | 0.0137 | |
N2 | 0.21816 (15) | 0.59443 (17) | 0.05484 (14) | 0.0135 | |
C3 | 0.20764 (19) | 0.6512 (2) | −0.02501 (18) | 0.0160 | |
C4 | 0.1773 (2) | 0.5966 (2) | −0.11413 (18) | 0.0208 | |
C5 | 0.1573 (2) | 0.4766 (2) | −0.11927 (18) | 0.0212 | |
C6 | 0.1680 (2) | 0.4147 (2) | −0.03669 (18) | 0.0174 | |
C7 | 0.19888 (18) | 0.4754 (2) | 0.04920 (17) | 0.0131 | |
C8 | 0.22025 (19) | 0.4160 (2) | 0.14363 (17) | 0.0125 | |
C9 | 0.20005 (19) | 0.2860 (2) | 0.14404 (17) | 0.0142 | |
C10 | 0.0955 (2) | 0.2442 (2) | 0.09284 (18) | 0.0183 | |
C11 | 0.0740 (2) | 0.1235 (2) | 0.09313 (19) | 0.0213 | |
C12 | 0.1553 (2) | 0.0442 (2) | 0.14188 (19) | 0.0223 | |
C13 | 0.2597 (2) | 0.0854 (2) | 0.19275 (19) | 0.0209 | |
C14 | 0.2819 (2) | 0.2055 (2) | 0.19430 (18) | 0.0168 | |
N15 | 0.25598 (15) | 0.48235 (17) | 0.21897 (14) | 0.0123 | |
C16 | 0.29039 (19) | 0.4345 (2) | 0.31477 (17) | 0.0129 | |
C17 | 0.2158 (2) | 0.4167 (2) | 0.35422 (17) | 0.0149 | |
C18 | 0.2548 (2) | 0.3766 (2) | 0.44935 (19) | 0.0194 | |
C19 | 0.3632 (2) | 0.3522 (2) | 0.50168 (18) | 0.0224 | |
C20 | 0.4345 (2) | 0.3712 (2) | 0.46047 (18) | 0.0211 | |
C21 | 0.40003 (19) | 0.4153 (2) | 0.36666 (17) | 0.0161 | |
C22 | 0.4773 (2) | 0.4419 (2) | 0.32364 (18) | 0.0209 | |
C23 | 0.0983 (2) | 0.4407 (2) | 0.2971 (2) | 0.0217 | |
Cl24 | 0.38192 (5) | 0.76686 (6) | 0.28643 (5) | 0.0258 | |
Cl25 | 0.08112 (5) | 0.72624 (5) | 0.16364 (5) | 0.0192 | |
Br26 | 0.23574 (2) | 0.81580 (2) | −0.013723 (19) | 0.0209 | |
C27 | 0.4520 (5) | 0.0542 (4) | 0.4947 (5) | 0.0980 | 0.5000 |
Cl28 | 0.5144 (3) | 0.0784 (2) | 0.4268 (2) | 0.1155 | 0.5000 |
Cl29 | 0.4668 (2) | −0.0462 (2) | 0.5761 (2) | 0.0653 | 0.5000 |
H41 | 0.1690 | 0.6395 | −0.1703 | 0.0212* | |
H51 | 0.1381 | 0.4360 | −0.1755 | 0.0243* | |
H61 | 0.1547 | 0.3338 | −0.0417 | 0.0201* | |
H141 | 0.3514 | 0.2333 | 0.2278 | 0.0201* | |
H131 | 0.3119 | 0.0332 | 0.2240 | 0.0264* | |
H121 | 0.1414 | −0.0357 | 0.1418 | 0.0274* | |
H111 | 0.0035 | 0.0963 | 0.0592 | 0.0263* | |
H101 | 0.0408 | 0.2963 | 0.0596 | 0.0203* | |
H231 | 0.0610 | 0.4295 | 0.3361 | 0.0276* | |
H232 | 0.0836 | 0.5196 | 0.2717 | 0.0276* | |
H233 | 0.0684 | 0.3865 | 0.2432 | 0.0276* | |
H181 | 0.2047 | 0.3684 | 0.4760 | 0.0250* | |
H191 | 0.3882 | 0.3236 | 0.5652 | 0.0242* | |
H201 | 0.5076 | 0.3558 | 0.4952 | 0.0231* | |
H221 | 0.5491 | 0.4250 | 0.3692 | 0.0243* | |
H223 | 0.4709 | 0.5244 | 0.3045 | 0.0243* | |
H222 | 0.4612 | 0.3942 | 0.2662 | 0.0243* | |
H271 | 0.3807 | 0.0434 | 0.4461 | 0.0989* | 0.5000 |
H272 | 0.4780 | 0.1254 | 0.5360 | 0.0989* | 0.5000 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01653 (16) | 0.01006 (14) | 0.01384 (15) | −0.00110 (11) | 0.00568 (12) | −0.00071 (11) |
N2 | 0.0140 (10) | 0.0133 (10) | 0.0141 (10) | 0.0004 (8) | 0.0066 (8) | 0.0013 (8) |
C3 | 0.0145 (12) | 0.0143 (12) | 0.0191 (13) | 0.0003 (9) | 0.0070 (10) | 0.0031 (10) |
C4 | 0.0238 (14) | 0.0236 (13) | 0.0143 (12) | −0.0008 (11) | 0.0073 (11) | 0.0049 (11) |
C5 | 0.0285 (15) | 0.0218 (13) | 0.0115 (12) | −0.0015 (11) | 0.0068 (11) | −0.0007 (10) |
C6 | 0.0186 (13) | 0.0163 (12) | 0.0171 (13) | 0.0000 (10) | 0.0072 (10) | 0.0002 (10) |
C7 | 0.0121 (12) | 0.0133 (11) | 0.0148 (12) | 0.0011 (9) | 0.0064 (9) | 0.0008 (9) |
C8 | 0.0106 (11) | 0.0141 (11) | 0.0135 (12) | 0.0015 (9) | 0.0057 (9) | 0.0005 (9) |
C9 | 0.0202 (13) | 0.0126 (11) | 0.0124 (12) | −0.0012 (10) | 0.0094 (10) | −0.0013 (9) |
C10 | 0.0218 (13) | 0.0160 (12) | 0.0185 (13) | −0.0023 (10) | 0.0097 (11) | −0.0019 (10) |
C11 | 0.0249 (14) | 0.0207 (13) | 0.0208 (14) | −0.0071 (11) | 0.0119 (11) | −0.0047 (11) |
C12 | 0.0410 (17) | 0.0109 (12) | 0.0219 (14) | −0.0064 (11) | 0.0201 (12) | −0.0026 (10) |
C13 | 0.0327 (16) | 0.0158 (12) | 0.0168 (13) | 0.0062 (11) | 0.0128 (12) | 0.0029 (10) |
C14 | 0.0201 (13) | 0.0171 (12) | 0.0130 (12) | 0.0004 (10) | 0.0067 (10) | −0.0012 (10) |
N15 | 0.0120 (10) | 0.0132 (10) | 0.0129 (10) | 0.0007 (8) | 0.0062 (8) | 0.0010 (8) |
C16 | 0.0194 (13) | 0.0086 (11) | 0.0115 (11) | −0.0007 (9) | 0.0072 (10) | −0.0010 (9) |
C17 | 0.0212 (13) | 0.0094 (11) | 0.0170 (12) | −0.0026 (9) | 0.0110 (10) | −0.0027 (9) |
C18 | 0.0293 (15) | 0.0152 (12) | 0.0206 (13) | −0.0055 (11) | 0.0171 (12) | −0.0021 (11) |
C19 | 0.0336 (16) | 0.0184 (13) | 0.0125 (12) | −0.0038 (11) | 0.0069 (11) | 0.0030 (10) |
C20 | 0.0205 (14) | 0.0210 (13) | 0.0163 (13) | −0.0005 (11) | 0.0023 (11) | 0.0004 (11) |
C21 | 0.0188 (13) | 0.0144 (12) | 0.0145 (12) | −0.0023 (10) | 0.0064 (10) | −0.0024 (10) |
C22 | 0.0164 (13) | 0.0271 (14) | 0.0187 (13) | −0.0003 (11) | 0.0069 (11) | 0.0009 (11) |
C23 | 0.0193 (14) | 0.0225 (14) | 0.0283 (15) | −0.0021 (11) | 0.0149 (11) | 0.0013 (11) |
Cl24 | 0.0251 (4) | 0.0216 (3) | 0.0236 (3) | −0.0094 (3) | 0.0032 (3) | −0.0017 (3) |
Cl25 | 0.0188 (3) | 0.0157 (3) | 0.0221 (3) | 0.0015 (2) | 0.0076 (3) | −0.0023 (2) |
Br26 | 0.02633 (16) | 0.01324 (14) | 0.02203 (15) | −0.00216 (10) | 0.00906 (12) | 0.00460 (10) |
C27 | 0.058 (3) | 0.062 (3) | 0.133 (3) | 0.017 (2) | 0.000 (2) | −0.027 (3) |
Cl28 | 0.065 (2) | 0.0416 (13) | 0.160 (3) | 0.0215 (12) | −0.0322 (17) | −0.0336 (16) |
Cl29 | 0.0343 (12) | 0.0717 (18) | 0.0902 (17) | −0.0027 (12) | 0.0261 (12) | −0.0279 (14) |
Zn1—N2 | 2.088 (2) | C14—H141 | 0.929 |
Zn1—N15 | 2.0778 (19) | N15—C16 | 1.438 (3) |
Zn1—Cl24 | 2.1761 (7) | C16—C17 | 1.401 (3) |
Zn1—Cl25 | 2.2281 (7) | C16—C21 | 1.395 (3) |
N2—C3 | 1.327 (3) | C17—C18 | 1.393 (3) |
N2—C7 | 1.361 (3) | C17—C23 | 1.504 (4) |
C3—C4 | 1.386 (4) | C18—C19 | 1.391 (4) |
C3—Br26 | 1.885 (2) | C18—H181 | 0.938 |
C4—C5 | 1.374 (4) | C19—C20 | 1.382 (4) |
C4—H41 | 0.947 | C19—H191 | 0.939 |
C5—C6 | 1.391 (3) | C20—C21 | 1.395 (3) |
C5—H51 | 0.907 | C20—H201 | 0.936 |
C6—C7 | 1.376 (3) | C21—C22 | 1.492 (4) |
C6—H61 | 0.926 | C22—H221 | 0.959 |
C7—C8 | 1.500 (3) | C22—H223 | 0.966 |
C8—C9 | 1.490 (3) | C22—H222 | 0.970 |
C8—N15 | 1.283 (3) | C23—H231 | 0.941 |
C9—C10 | 1.399 (4) | C23—H232 | 0.956 |
C9—C14 | 1.397 (3) | C23—H233 | 0.966 |
C10—C11 | 1.390 (4) | C27—Cl29i | 1.849 (2) |
C10—H101 | 0.921 | C27—Cl28i | 1.846 (2) |
C11—C12 | 1.380 (4) | C27—C27i | 1.753 (2) |
C11—H111 | 0.938 | C27—Cl28 | 1.618 (2) |
C12—C13 | 1.394 (4) | C27—Cl29 | 1.626 (2) |
C12—H121 | 0.919 | C27—H271 | 0.958 |
C13—C14 | 1.384 (3) | C27—H272 | 0.989 |
C13—H131 | 0.894 | ||
N2—Zn1—N15 | 79.01 (8) | C16—C17—C18 | 117.3 (2) |
N2—Zn1—Cl24 | 127.60 (6) | C16—C17—C23 | 121.8 (2) |
N15—Zn1—Cl24 | 114.61 (6) | C18—C17—C23 | 120.9 (2) |
N2—Zn1—Cl25 | 100.92 (6) | C17—C18—C19 | 121.0 (2) |
N15—Zn1—Cl25 | 109.18 (6) | C17—C18—H181 | 116.6 |
Cl24—Zn1—Cl25 | 118.50 (3) | C19—C18—H181 | 122.3 |
Zn1—N2—C3 | 129.22 (17) | C18—C19—C20 | 120.0 (2) |
Zn1—N2—C7 | 112.23 (15) | C18—C19—H191 | 120.2 |
C3—N2—C7 | 118.2 (2) | C20—C19—H191 | 119.8 |
N2—C3—C4 | 123.8 (2) | C19—C20—C21 | 121.2 (2) |
N2—C3—Br26 | 116.74 (18) | C19—C20—H201 | 120.7 |
C4—C3—Br26 | 119.45 (19) | C21—C20—H201 | 118.1 |
C3—C4—C5 | 117.6 (2) | C20—C21—C16 | 117.4 (2) |
C3—C4—H41 | 122.2 | C20—C21—C22 | 121.4 (2) |
C5—C4—H41 | 120.2 | C16—C21—C22 | 121.2 (2) |
C4—C5—C6 | 119.8 (2) | C21—C22—H221 | 110.4 |
C4—C5—H51 | 121.5 | C21—C22—H223 | 109.5 |
C6—C5—H51 | 118.7 | H221—C22—H223 | 110.2 |
C5—C6—C7 | 119.0 (2) | C21—C22—H222 | 110.4 |
C5—C6—H61 | 118.4 | H221—C22—H222 | 108.8 |
C7—C6—H61 | 122.6 | H223—C22—H222 | 107.5 |
C6—C7—N2 | 121.5 (2) | C17—C23—H231 | 110.3 |
C6—C7—C8 | 123.3 (2) | C17—C23—H232 | 113.3 |
N2—C7—C8 | 115.0 (2) | H231—C23—H232 | 107.6 |
C7—C8—C9 | 118.7 (2) | C17—C23—H233 | 110.6 |
C7—C8—N15 | 116.5 (2) | H231—C23—H233 | 107.6 |
C9—C8—N15 | 124.8 (2) | H232—C23—H233 | 107.4 |
C8—C9—C10 | 118.5 (2) | Cl29i—C27—Cl28i | 106.86 (4) |
C8—C9—C14 | 122.0 (2) | Cl29i—C27—C27i | 53.59 (5) |
C10—C9—C14 | 119.4 (2) | Cl28i—C27—C27i | 53.36 (5) |
C9—C10—C11 | 119.8 (2) | Cl29i—C27—Cl28 | 13.11 (5) |
C9—C10—H101 | 120.3 | Cl28i—C27—Cl28 | 119.62 (4) |
C11—C10—H101 | 119.9 | C27i—C27—Cl28 | 66.26 (4) |
C10—C11—C12 | 120.5 (2) | Cl29i—C27—Cl29 | 119.83 (4) |
C10—C11—H111 | 119.3 | Cl28i—C27—Cl29 | 13.31 (5) |
C12—C11—H111 | 120.2 | C27i—C27—Cl29 | 66.24 (4) |
C11—C12—C13 | 119.9 (2) | Cl28—C27—Cl29 | 132.35 (5) |
C11—C12—H121 | 120.7 | Cl29i—C27—H271 | 102.3 |
C13—C12—H121 | 119.4 | Cl28i—C27—H271 | 107.3 |
C12—C13—C14 | 120.1 (2) | C27i—C27—H271 | 118.0 |
C12—C13—H131 | 119.2 | Cl28—C27—H271 | 99.8 |
C14—C13—H131 | 120.7 | Cl29—C27—H271 | 105.3 |
C9—C14—C13 | 120.2 (2) | Cl29i—C27—H272 | 105.3 |
C9—C14—H141 | 119.3 | Cl28i—C27—H272 | 108.5 |
C13—C14—H141 | 120.5 | C27i—C27—H272 | 116.6 |
Zn1—N15—C8 | 114.62 (16) | Cl28—C27—H272 | 97.1 |
Zn1—N15—C16 | 123.06 (15) | Cl29—C27—H272 | 100.4 |
C8—N15—C16 | 122.0 (2) | H271—C27—H272 | 125.2 |
N15—C16—C17 | 119.9 (2) | C27i—Cl28—C27 | 60.38 (4) |
N15—C16—C21 | 116.9 (2) | C27i—Cl29—C27 | 60.17 (4) |
C17—C16—C21 | 123.0 (2) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H41···Cl25ii | 0.95 | 2.75 | 3.666 (3) | 162 |
Symmetry code: (ii) x, −y+3/2, z−1/2. |
Compound | Nimine—Cimine | Cimine—Cipso | Cipso—Npyridine |
α-IPa | 1.28 | 1.47 | 1.35 |
α-IP2- (a | 1.46 | 1.39 | 1.40 |
PDIb | 1.271 (17) | 1.480 (19) | 1.345 (17) |
PDI2-b,c | 1.363 | 1.443 | 1.332 |
This work | 1.283 (3) | 1.500 (4) | 1.361 (5) |
Notes: (a) survey of Lu et al. (2008); (b) Bart et al. (2006); (c) bond lengths confirmed using ab initio studies. |
Acknowledgements
Funding for this work was provided by the Getty College of Arts and Sciences at Ohio Northern University, and Hamilton College. Katherine Manning (Hamilton College) conducted initial experiments to prepare the ligand. Anthony Chianese (Colgate University) assisted with the data collection and
of the titular compound.References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Archer, A. M., Bouwkamp, M. W., Cortez, M.-P., Lobkovsky, E. & Chirik, P. J. (2006). Organometallics, 25, 4269–4278. Web of Science CSD CrossRef CAS Google Scholar
Bart, S. C., Chłopek, K., Bill, E., Bouwkamp, M. W., Lobkovsky, E., Neese, F., Wieghardt, K. & Chirik, P. J. (2006). J. Am. Chem. Soc. 128, 13901–13912. Web of Science CSD CrossRef PubMed CAS Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Bianchini, C., Gatteschi, D., Giambastiani, G., Rios, I. G., Ienco, A., Laschi, F., Mealli, C., Meli, A., Sorace, L., Toti, A. & Vizza, F. (2007). Organometallics, 26, 726–739. Web of Science CrossRef CAS Google Scholar
Dai, Q., Jia, X., Yang, F., Bai, C., Hu, Y. & Zhang, X. (2016). Polymers, 8, 12–26. Web of Science CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
He, F., Danopoulos, A. A. & Braunstein, P. (2016). Organometallics, 35, 198–206. Web of Science CSD CrossRef CAS Google Scholar
Ishikawa, S., Hamada, T., Manabe, K. & Kobayashi, S. (2005). Synthesis, 13, 2176–2182. Google Scholar
Lu, C. C., Bill, E., Weyhermüller, T., Bothe, E. & Wieghardt, K. (2008). J. Am. Chem. Soc. 130, 3181–3197. Web of Science CSD CrossRef PubMed CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Meneghetti, S. P., Lutz, P. J. & Kress, J. (1999). Organometallics, 18, 2734–2737. Web of Science CSD CrossRef CAS Google Scholar
Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Song, S., Zhao, W., Wang, L., Redshaw, C., Wang, F. & Sun, W.-H. (2011). J. Organomet. Chem. 696, 3029–3035. Web of Science CSD CrossRef CAS Google Scholar
Tondreau, A. M., Stieber, S. C. E., Milsmann, C., Lobkovsky, E., Weyhermüller, T., Semproni, S. P. & Chirik, P. J. (2013). Inorg. Chem. 52, 635–646. Web of Science CSD CrossRef CAS PubMed Google Scholar
Yang, C.-H., Peng, Y.-L., Wang, M.-H., Shih, K.-C. & Hsueh, M.-L. (2010). Acta Cryst. E66, m633. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, H. & Lu, Z. (2016). ACS Catal. 6, 6596–6600. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.