research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A compressed octa­hedral cobalt(II) complex in the crystal structure of di­aqua­[6,6′-sulfanediylbis(2,2′-bi­pyridine)]cobalt(II) dinitrate

CROSSMARK_Color_square_no_text.svg

aInstitute for Materials Chemistry and Engineering, Kyushu University, 744 Motoka, Nishi-ku, Fukuoka 819-0395, Japan
*Correspondence e-mail: sato@cm.kyushu-u.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 24 May 2017; accepted 7 June 2017; online 13 June 2017)

The asymmetric unit of the title salt, [Co(C20H14N4S)(H2O)2](NO3)2, comprises a [Co(C20H14N4S)(H2O)2]2+ cation and two NO3 anions. In the complex, [Co(C20H14N4S)(H2O)2]2+ cation, the tetra­dentate 6,6′-sulfanediylbis(2,2′-bi­pyridine) ligand coordinates to the CoII cation in the equatorial positions, while two water mol­ecules occupy the axial positions, forming a compressed octa­hedral CoN4O2 coordination sphere. The NO3 anions are linked to the [Co(C20H14N4S)(H2O)2]2+ cations via O—H⋯O hydrogen bonds, yielding a layered arrangement parallel to (001).

1. Chemical context

The control of the mol­ecular structure of coordination compounds is an important task in crystal engineering. It is well known that organic ligands play a significant role in determining the crystal structure of coordination complexes. For example, bidentate 2,2′-bi­pyridine or its derivatives are common ligands that can be employed to assemble functional compounds (Zhang et al., 2014[Zhang, Y.-Z., Ferko, P., Siretanu, D., Ababei, R., Rath, N. P., Shaw, M. J., Clérac, R., Mathonière, C. & Holmes, S. M. (2014). J. Am. Chem. Soc. 136, 16854-16864.]; Kamdar et al., 2016[Kamdar, J. M., Marelius, D. C., Moore, C. E., Rheingold, A. L., Smith, D. K. & Grotjahn, D. B. (2016). ChemCatChem, 8, 3045-3049.]; Pal et al., 2014[Pal, A. K., Nag, S., Ferreira, J. G., Brochery, V., La Ganga, G., Santoro, A., Serroni, S., Campagna, S. & Hanan, G. S. (2014). Inorg. Chem. 53, 1679-1689.]). Linking two 2,2′-bi­pyridine units through a suitable atom leads to a tetra­dentate ligand (Knight et al., 2010[Knight, J. C., Amoroso, A. J., Edwards, P. G., Prabaharan, R. & Singh, N. (2010). Dalton Trans. 39, 8925-8936.]) and, more importantly, the distance of the two 2,2′-bi­pyridine moieties can then be controlled by the type and size of the bridging atom. As a consequence, the coordination geometry of the metal cation can be affected.

[Scheme 1]

Recently, we obtained the title salt, [Co(C20H14N4S)(H2O)2](NO3)2, using a tetra­dentate ligand in which two 2,2′-bi­pyridine moieties are linked by a sulfur atom. Herein, we report the crystal structure of this cobalt complex.

2. Structural commentary

The asymmetric unit of the title salt (Fig. 1[link]) is composed of a [Co(C20H14N4S)(H2O)2]2+ cation and two NO3 anions. The cobalt(II) atom of the complex [Co(C20H14N4S)(H2O)2]2+ cation features a compressed octa­hedral CoN4O2 coordination sphere with the N atoms of the tetra­dentate ligand in equatorial positions and two water mol­ecules located at the trans axial sites. The corresponding Co—O bond lengths are 2.0444 (18) Å and 2.0821 (17) Å, which are obviously shorter than the equatorial Co—N bond lengths [2.1213 (18) −2.1574 (18) Å]. These coordination bond lengths indicate that the CoII cation is in a high-spin state at 123 K, comparable with other high-spin CoII complexes (Li et al., 2016[Li, G. L., Kanegawa, S., Yao, Z. S., Su, S. Q., Wu, S. Q., Huang, Y. G., Kang, S. & Sato, O. (2016). Chem. Eur. J. 22, 17130-17135.]; Knight et al., 2010[Knight, J. C., Amoroso, A. J., Edwards, P. G., Prabaharan, R. & Singh, N. (2010). Dalton Trans. 39, 8925-8936.]; Suckert et al., 2017[Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Acta Cryst. E73, 616-619.]; Zhong et al., 2008[Zhong, Y.-R., Cao, M.-L., Mo, H.-J. & Ye, B.-H. (2008). Cryst. Growth Des. 8, 2282-2290.]; Hathwar et al., 2017[Hathwar, V. R., Stingaciu, M., Richter, B., Overgaard, J. & Iversen, B. B. (2017). Acta Cryst. B73, 304-312.]). The O—Co—O angle is almost linear at 178.59 (7)°. The four equatorial N atoms and the CoII cation are approximately coplanar, with the largest deviation from the least-squares plane being 0.039 Å for N3.

[Figure 1]
Figure 1
The structures of the mol­ecular entities in the structure of the title salt. Displacement ellipsoids are drawn at the 50% probability level.

In a similar CoII complex with the 6,6′-sulfanediylbis(2,2′-bi­pyridine) ligand replaced by the tetra­dentate ligand bis­(2,2′-bipyrid-6′-yl)ketone (Knight et al., 2010[Knight, J. C., Amoroso, A. J., Edwards, P. G., Prabaharan, R. & Singh, N. (2010). Dalton Trans. 39, 8925-8936.]), the CoII cation is slightly convex (0.098 Å) from the plane formed through four coordination N atoms. The Co—O bond lengths of the two axial sites are significantly different at 2.075 (4) Å for that in the convex site and 2.118 (4) Å for that in the concave site. The corresponding O—Co—O bond angle deviates more distinctly from linearity with a value of 172.46 (17)°. The structural differences between the title complex and the similar reported compound are ascribed to the bridging atom between the two 2,2′-bi­pyridine moieties, i.e. an S atom in the title complex versus a C atom of a keto group in the related compound. The bridging bonds [C—S: 1.761 (2) and 1.764 (2) Å] of the title complex are longer than those [C—C: 1.496 (10) and 1.500 (10) Å] in the related complex.

3. Supra­molecular features

The coordinating water mol­ecules act as proton donors, forming O—H⋯O hydrogen bonds with the NO3 anions and leading to an extended layer structure parallel to (001) for the title complex (Fig. 2[link]). For these hydrogen bonds, the O⋯O distances are in the range of 2.688 (2)–2.789 (2) Å, indicating they are of medium strength (Table 1[link]), and are comparable with other hydrogen bonds formed between coordinating water mol­ecules and NO3 anions (Kurdziel et al., 2000[Kurdziel, K., Głowiak, T. & Jezierska, J. (2000). J. Chem. Soc. Dalton Trans. pp. 1095-1100.]; Kunz et al., 2007[Kunz, P. C., Zribi, A., Frank, W. & Kläui, W. (2007). Z. Anorg. Allg. Chem. 633, 955-960.]; Wang et al., 2012[Wang, L., Meng, X.-G., Deng, D.-S., Pei, Y.-M. & Wei, L.-M. (2012). Inorg. Chim. Acta, 387, 181-185.]). There are no inter­molecular ππ inter­actions in the mol­ecular packing of the title complex.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2WB⋯O7i 0.80 (2) 2.02 (2) 2.766 (3) 155 (2)
O2—H2WA⋯O6 0.84 (2) 1.88 (2) 2.698 (2) 168 (3)
O1—H1WB⋯O5ii 0.83 (2) 1.96 (2) 2.789 (2) 179 (3)
O1—H1WA⋯O3 0.80 (2) 1.89 (2) 2.688 (2) 174 (3)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The layer structure in the title salt formed through hydrogen bonds (green dotted lines) between complex cations and nitrate anions.

4. Synthesis and crystallization

The ligand 6,6′-sulfanediylbis(2,2′-bi­pyridine) was synthesized by a method analogous to that for the preparation of 2,2′-sulfanediylbis(1,10-phenanthroline) (Krapcho et al., 2007[Krapcho, A. P., Sparapani, S. & Boxer, M. (2007). Tetrahedron Lett. 48, 5593-5595.]). The title complex was obtained as follows: An ethano­lic solution (10 ml) of CoII(NO3)2·6H2O (29.1 mg, 0.1 mmol) was added to a ethano­lic solution (10 ml) of 6,6′-sulfane­diylbis(2,2′-bi­pyridine) (34.4 mg, 0.1 mmol), which afforded a light-yellow solution, which was stored at ambient conditions. Yellow crystals of the title compound were obtained by slow evaporation of the solvent, yield: ca. 50%.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms bound to carbon atoms were placed geometrically, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). The hydrogen atoms of water mol­ecules were found from difference-Fourier maps and their O—H bond lengths were normalized to 0.82 Å and refined with a common Uiso(H) parameter.

Table 2
Experimental details

Crystal data
Chemical formula [Co(C20H14N4S)(H2O)2](NO3)2
Mr 561.39
Crystal system, space group Monoclinic, P21/c
Temperature (K) 123
a, b, c (Å) 13.412 (3), 11.421 (2), 15.441 (3)
β (°) 110.50 (3)
V3) 2215.4 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.93
Crystal size (mm) 0.15 × 0.14 × 0.11
 
Data collection
Diffractometer Rigaku Saturn724
Absorption correction Multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.893, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 17851, 5045, 3984
Rint 0.044
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.090, 1.06
No. of reflections 5045
No. of parameters 337
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.46, −0.42
Computer programs: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Diaqua[6,6'-sulfanediylbis(2,2'-bipyridine)]cobalt(II) dinitrate top
Crystal data top
[Co(C20H14N4S)(H2O)2](NO3)2F(000) = 1148
Mr = 561.39Dx = 1.683 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.412 (3) ÅCell parameters from 5682 reflections
b = 11.421 (2) Åθ = 3.1–27.5°
c = 15.441 (3) ŵ = 0.93 mm1
β = 110.50 (3)°T = 123 K
V = 2215.4 (9) Å3Block, yellow
Z = 40.15 × 0.14 × 0.11 mm
Data collection top
Rigaku Saturn724
diffractometer
5045 independent reflections
Radiation source: Rotating Anode3984 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.044
dtprofit.ref scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
h = 1717
Tmin = 0.893, Tmax = 1.000k = 1410
17851 measured reflectionsl = 2019
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.040P)2 + 0.524P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
5045 reflectionsΔρmax = 0.46 e Å3
337 parametersΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.34784 (7)0.53580 (6)0.48067 (4)0.0421 (2)
Co10.24302 (2)0.43855 (2)0.24018 (2)0.01606 (9)
O10.39231 (13)0.40239 (14)0.23348 (10)0.0187 (3)
O20.09507 (14)0.47032 (15)0.24506 (13)0.0285 (4)
O30.50179 (13)0.23807 (13)0.35394 (10)0.0236 (4)
O40.54960 (14)0.06402 (14)0.40822 (11)0.0300 (4)
O60.05056 (14)0.33139 (14)0.36815 (11)0.0292 (4)
O50.47102 (14)0.08860 (15)0.26072 (10)0.0297 (4)
O70.02144 (15)0.14605 (15)0.36918 (13)0.0393 (5)
O80.06083 (17)0.2472 (2)0.24938 (13)0.0593 (7)
N50.50719 (15)0.12943 (16)0.34121 (13)0.0198 (4)
N60.00328 (15)0.24137 (17)0.32853 (13)0.0212 (4)
N20.19761 (15)0.26188 (16)0.19352 (12)0.0186 (4)
N40.20317 (14)0.55097 (15)0.12099 (12)0.0166 (4)
N30.29863 (14)0.60458 (15)0.29886 (12)0.0172 (4)
N10.28384 (14)0.34360 (15)0.36610 (12)0.0175 (4)
C70.18108 (19)0.0673 (2)0.24432 (16)0.0238 (5)
H7A0.19230.01490.29290.029*
C80.1315 (2)0.0304 (2)0.15461 (17)0.0276 (6)
H8A0.10850.04660.14190.033*
C60.21437 (17)0.18271 (19)0.26220 (14)0.0176 (5)
C40.30035 (18)0.1515 (2)0.43295 (15)0.0229 (5)
H4A0.29090.07110.42450.027*
C100.15035 (19)0.2232 (2)0.10636 (16)0.0250 (5)
H10A0.13980.27630.05830.030*
C90.1167 (2)0.1098 (2)0.08414 (16)0.0280 (6)
H9A0.08460.08710.02270.034*
C50.26838 (17)0.22627 (19)0.35760 (15)0.0179 (5)
C20.36036 (19)0.3163 (2)0.53060 (16)0.0242 (5)
H2A0.39050.34950.58900.029*
C10.32874 (18)0.3862 (2)0.45197 (15)0.0214 (5)
C30.34627 (19)0.1974 (2)0.52047 (16)0.0262 (5)
H3A0.36740.14860.57190.031*
C140.33856 (18)0.8009 (2)0.26565 (16)0.0220 (5)
H14A0.33700.85780.22210.026*
C160.23741 (17)0.66245 (19)0.13919 (14)0.0175 (5)
C190.11790 (19)0.6048 (2)0.03804 (15)0.0236 (5)
H19A0.07590.58280.09770.028*
C170.21498 (19)0.7466 (2)0.07011 (15)0.0232 (5)
H17A0.24030.82260.08440.028*
C200.14367 (18)0.5253 (2)0.03312 (15)0.0224 (5)
H20A0.11840.44920.01970.027*
C110.34248 (18)0.63032 (19)0.38876 (15)0.0202 (5)
C150.29568 (17)0.69114 (18)0.23791 (14)0.0166 (5)
C180.15527 (19)0.7174 (2)0.01954 (15)0.0242 (5)
H18A0.14050.77260.06660.029*
C130.38377 (18)0.8247 (2)0.35920 (16)0.0249 (5)
H13A0.41320.89790.37930.030*
C120.38477 (19)0.7396 (2)0.42191 (16)0.0240 (5)
H12B0.41300.75440.48510.029*
H1WA0.4237 (19)0.3504 (18)0.2663 (15)0.029*
H1WB0.4339 (18)0.4572 (18)0.2351 (17)0.029*
H2WA0.072 (2)0.430 (2)0.2791 (15)0.029*
H2WB0.0665 (19)0.5317 (17)0.2273 (17)0.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0871 (6)0.0210 (3)0.0148 (3)0.0028 (4)0.0135 (3)0.0002 (3)
Co10.02039 (16)0.01296 (16)0.01403 (17)0.00085 (12)0.00502 (12)0.00167 (12)
O10.0214 (9)0.0152 (8)0.0188 (8)0.0018 (7)0.0061 (7)0.0044 (6)
O20.0270 (10)0.0227 (10)0.0398 (11)0.0072 (8)0.0165 (8)0.0158 (8)
O30.0325 (10)0.0146 (8)0.0223 (9)0.0043 (7)0.0077 (7)0.0010 (7)
O40.0419 (11)0.0178 (9)0.0241 (9)0.0056 (8)0.0038 (8)0.0073 (7)
O60.0407 (11)0.0191 (9)0.0325 (9)0.0100 (8)0.0186 (8)0.0077 (7)
O50.0388 (11)0.0276 (10)0.0172 (9)0.0020 (8)0.0030 (8)0.0066 (7)
O70.0359 (11)0.0206 (9)0.0598 (12)0.0024 (8)0.0148 (9)0.0163 (9)
O80.0515 (14)0.0879 (18)0.0237 (11)0.0330 (13)0.0057 (10)0.0093 (11)
N50.0200 (10)0.0177 (10)0.0228 (10)0.0004 (8)0.0087 (8)0.0011 (8)
N60.0193 (10)0.0231 (11)0.0231 (11)0.0000 (8)0.0097 (9)0.0003 (9)
N20.0214 (10)0.0158 (9)0.0173 (10)0.0014 (8)0.0052 (8)0.0008 (8)
N40.0178 (9)0.0159 (9)0.0149 (9)0.0006 (8)0.0041 (7)0.0011 (7)
N30.0192 (9)0.0161 (9)0.0150 (9)0.0023 (8)0.0045 (8)0.0006 (8)
N10.0206 (10)0.0162 (10)0.0164 (9)0.0025 (8)0.0075 (8)0.0027 (8)
C70.0293 (13)0.0169 (12)0.0281 (13)0.0005 (10)0.0139 (11)0.0028 (10)
C80.0337 (14)0.0179 (12)0.0329 (14)0.0062 (11)0.0138 (11)0.0031 (10)
C60.0184 (11)0.0155 (11)0.0213 (12)0.0029 (9)0.0102 (9)0.0037 (9)
C40.0254 (12)0.0184 (12)0.0254 (13)0.0023 (10)0.0095 (10)0.0076 (10)
C100.0328 (14)0.0204 (12)0.0197 (12)0.0018 (11)0.0064 (10)0.0029 (10)
C90.0340 (14)0.0250 (13)0.0227 (13)0.0054 (11)0.0071 (11)0.0035 (10)
C50.0188 (11)0.0164 (11)0.0219 (12)0.0012 (9)0.0113 (9)0.0032 (9)
C20.0275 (13)0.0272 (13)0.0172 (12)0.0040 (11)0.0069 (10)0.0031 (10)
C10.0252 (12)0.0202 (12)0.0198 (12)0.0029 (10)0.0091 (10)0.0011 (10)
C30.0288 (13)0.0283 (14)0.0207 (12)0.0032 (11)0.0079 (10)0.0112 (10)
C140.0214 (12)0.0185 (12)0.0251 (13)0.0028 (10)0.0070 (10)0.0014 (10)
C160.0165 (11)0.0173 (12)0.0182 (11)0.0013 (9)0.0055 (9)0.0021 (9)
C190.0265 (13)0.0253 (13)0.0149 (11)0.0013 (10)0.0019 (10)0.0008 (10)
C170.0315 (13)0.0155 (11)0.0222 (12)0.0021 (10)0.0089 (10)0.0022 (9)
C200.0271 (13)0.0169 (12)0.0187 (12)0.0019 (10)0.0023 (10)0.0008 (9)
C110.0227 (12)0.0185 (12)0.0183 (12)0.0050 (10)0.0057 (9)0.0006 (9)
C150.0176 (11)0.0145 (11)0.0174 (11)0.0024 (9)0.0059 (9)0.0017 (9)
C180.0296 (13)0.0239 (13)0.0172 (12)0.0022 (10)0.0059 (10)0.0091 (10)
C130.0235 (12)0.0196 (12)0.0284 (13)0.0027 (10)0.0051 (10)0.0065 (10)
C120.0264 (13)0.0244 (13)0.0172 (12)0.0011 (10)0.0027 (10)0.0068 (10)
Geometric parameters (Å, º) top
S2—C11.761 (2)N1—C11.341 (3)
S2—C111.764 (2)N1—C51.355 (3)
Co1—O22.0444 (18)C7—C81.376 (3)
Co1—O12.0821 (17)C7—C61.388 (3)
Co1—N32.1213 (18)C8—C91.376 (3)
Co1—N12.1238 (17)C6—C51.481 (3)
Co1—N42.1523 (18)C4—C31.377 (3)
Co1—N22.1574 (18)C4—C51.384 (3)
O3—N51.262 (2)C10—C91.375 (3)
O4—N51.241 (2)C2—C31.373 (3)
O6—N61.250 (2)C2—C11.390 (3)
O5—N51.255 (2)C14—C151.383 (3)
O7—N61.238 (2)C14—C131.384 (3)
O8—N61.225 (2)C16—C171.388 (3)
N2—C101.346 (3)C16—C151.486 (3)
N2—C61.351 (3)C19—C201.373 (3)
N4—C201.344 (3)C19—C181.373 (3)
N4—C161.349 (3)C17—C181.376 (3)
N3—C111.337 (3)C11—C121.392 (3)
N3—C151.356 (3)C13—C121.369 (3)
C1—S2—C11115.45 (11)C5—N1—Co1115.76 (14)
O2—Co1—O1178.59 (7)C8—C7—C6120.0 (2)
O2—Co1—N391.50 (7)C7—C8—C9118.6 (2)
O1—Co1—N389.90 (7)N2—C6—C7121.7 (2)
O2—Co1—N189.95 (7)N2—C6—C5116.40 (19)
O1—Co1—N190.02 (7)C7—C6—C5121.9 (2)
N3—Co1—N197.24 (7)C3—C4—C5119.4 (2)
O2—Co1—N488.40 (7)N2—C10—C9123.9 (2)
O1—Co1—N491.77 (7)C10—C9—C8118.7 (2)
N3—Co1—N477.10 (7)N1—C5—C4122.4 (2)
N1—Co1—N4174.06 (7)N1—C5—C6115.68 (18)
O2—Co1—N290.81 (7)C4—C5—C6121.9 (2)
O1—Co1—N287.81 (7)C3—C2—C1118.8 (2)
N3—Co1—N2174.08 (7)N1—C1—C2123.3 (2)
N1—Co1—N277.31 (7)N1—C1—S2125.20 (17)
N4—Co1—N2108.41 (7)C2—C1—S2111.39 (17)
O4—N5—O5120.48 (18)C2—C3—C4119.0 (2)
O4—N5—O3119.77 (18)C15—C14—C13119.0 (2)
O5—N5—O3119.74 (18)N4—C16—C17121.8 (2)
O8—N6—O7119.9 (2)N4—C16—C15116.12 (18)
O8—N6—O6120.1 (2)C17—C16—C15122.0 (2)
O7—N6—O6119.96 (19)C20—C19—C18118.8 (2)
C10—N2—C6117.12 (19)C18—C17—C16119.9 (2)
C10—N2—Co1128.32 (15)N4—C20—C19123.9 (2)
C6—N2—Co1114.45 (14)N3—C11—C12123.6 (2)
C20—N4—C16117.03 (18)N3—C11—S2125.44 (17)
C20—N4—Co1127.97 (15)C12—C11—S2110.88 (16)
C16—N4—Co1114.86 (13)N3—C15—C14122.5 (2)
C11—N3—C15117.11 (19)N3—C15—C16115.36 (19)
C11—N3—Co1126.95 (15)C14—C15—C16122.0 (2)
C15—N3—Co1115.77 (14)C19—C18—C17118.6 (2)
C1—N1—C5117.09 (18)C12—C13—C14119.4 (2)
C1—N1—Co1127.03 (15)C13—C12—C11118.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2WB···O7i0.80 (2)2.02 (2)2.766 (3)155 (2)
O2—H2WA···O60.84 (2)1.88 (2)2.698 (2)168 (3)
O1—H1WB···O5ii0.83 (2)1.96 (2)2.789 (2)179 (3)
O1—H1WA···O30.80 (2)1.89 (2)2.688 (2)174 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

GLL thanks the China Scholarship Council for support.

References

First citationHathwar, V. R., Stingaciu, M., Richter, B., Overgaard, J. & Iversen, B. B. (2017). Acta Cryst. B73, 304–312.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKamdar, J. M., Marelius, D. C., Moore, C. E., Rheingold, A. L., Smith, D. K. & Grotjahn, D. B. (2016). ChemCatChem, 8, 3045–3049.  Web of Science CrossRef CAS Google Scholar
First citationKnight, J. C., Amoroso, A. J., Edwards, P. G., Prabaharan, R. & Singh, N. (2010). Dalton Trans. 39, 8925–8936.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrapcho, A. P., Sparapani, S. & Boxer, M. (2007). Tetrahedron Lett. 48, 5593–5595.  Web of Science CrossRef CAS Google Scholar
First citationKunz, P. C., Zribi, A., Frank, W. & Kläui, W. (2007). Z. Anorg. Allg. Chem. 633, 955–960.  Web of Science CSD CrossRef CAS Google Scholar
First citationKurdziel, K., Głowiak, T. & Jezierska, J. (2000). J. Chem. Soc. Dalton Trans. pp. 1095–1100.  Web of Science CSD CrossRef Google Scholar
First citationLi, G. L., Kanegawa, S., Yao, Z. S., Su, S. Q., Wu, S. Q., Huang, Y. G., Kang, S. & Sato, O. (2016). Chem. Eur. J. 22, 17130–17135.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPal, A. K., Nag, S., Ferreira, J. G., Brochery, V., La Ganga, G., Santoro, A., Serroni, S., Campagna, S. & Hanan, G. S. (2014). Inorg. Chem. 53, 1679–1689.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuckert, S., Werner, J., Jess, I. & Näther, C. (2017). Acta Cryst. E73, 616–619.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, L., Meng, X.-G., Deng, D.-S., Pei, Y.-M. & Wei, L.-M. (2012). Inorg. Chim. Acta, 387, 181–185.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y.-Z., Ferko, P., Siretanu, D., Ababei, R., Rath, N. P., Shaw, M. J., Clérac, R., Mathonière, C. & Holmes, S. M. (2014). J. Am. Chem. Soc. 136, 16854–16864.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhong, Y.-R., Cao, M.-L., Mo, H.-J. & Ye, B.-H. (2008). Cryst. Growth Des. 8, 2282–2290.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds