research communications
A compressed octahedral cobalt(II) complex in the
of diaqua[6,6′-sulfanediylbis(2,2′-bipyridine)]cobalt(II) dinitrateaInstitute for Materials Chemistry and Engineering, Kyushu University, 744 Motoka, Nishi-ku, Fukuoka 819-0395, Japan
*Correspondence e-mail: sato@cm.kyushu-u.ac.jp
The 20H14N4S)(H2O)2](NO3)2, comprises a [Co(C20H14N4S)(H2O)2]2+ cation and two NO3− anions. In the complex, [Co(C20H14N4S)(H2O)2]2+ cation, the tetradentate 6,6′-sulfanediylbis(2,2′-bipyridine) ligand coordinates to the CoII cation in the equatorial positions, while two water molecules occupy the axial positions, forming a compressed octahedral CoN4O2 coordination sphere. The NO3− anions are linked to the [Co(C20H14N4S)(H2O)2]2+ cations via O—H⋯O hydrogen bonds, yielding a layered arrangement parallel to (001).
of the title salt, [Co(CKeywords: crystal structure; cobalt complex; 2,2′-bipyridine derivative; compressed octahedral geometry; hydrogen bond.
CCDC reference: 1554624
1. Chemical context
The control of the molecular structure of coordination compounds is an important task in crystal engineering. It is well known that organic ligands play a significant role in determining the et al., 2014; Kamdar et al., 2016; Pal et al., 2014). Linking two 2,2′-bipyridine units through a suitable atom leads to a tetradentate ligand (Knight et al., 2010) and, more importantly, the distance of the two 2,2′-bipyridine moieties can then be controlled by the type and size of the bridging atom. As a consequence, the coordination geometry of the metal cation can be affected.
of coordination complexes. For example, bidentate 2,2′-bipyridine or its derivatives are common ligands that can be employed to assemble functional compounds (ZhangRecently, we obtained the title salt, [Co(C20H14N4S)(H2O)2](NO3)2, using a tetradentate ligand in which two 2,2′-bipyridine moieties are linked by a sulfur atom. Herein, we report the of this cobalt complex.
2. Structural commentary
The ) is composed of a [Co(C20H14N4S)(H2O)2]2+ cation and two NO3− anions. The cobalt(II) atom of the complex [Co(C20H14N4S)(H2O)2]2+ cation features a compressed octahedral CoN4O2 coordination sphere with the N atoms of the tetradentate ligand in equatorial positions and two water molecules located at the trans axial sites. The corresponding Co—O bond lengths are 2.0444 (18) Å and 2.0821 (17) Å, which are obviously shorter than the equatorial Co—N bond lengths [2.1213 (18) −2.1574 (18) Å]. These coordination bond lengths indicate that the CoII cation is in a high-spin state at 123 K, comparable with other high-spin CoII complexes (Li et al., 2016; Knight et al., 2010; Suckert et al., 2017; Zhong et al., 2008; Hathwar et al., 2017). The O—Co—O angle is almost linear at 178.59 (7)°. The four equatorial N atoms and the CoII cation are approximately coplanar, with the largest deviation from the least-squares plane being 0.039 Å for N3.
of the title salt (Fig. 1In a similar CoII complex with the 6,6′-sulfanediylbis(2,2′-bipyridine) ligand replaced by the tetradentate ligand bis(2,2′-bipyrid-6′-yl)ketone (Knight et al., 2010), the CoII cation is slightly convex (0.098 Å) from the plane formed through four coordination N atoms. The Co—O bond lengths of the two axial sites are significantly different at 2.075 (4) Å for that in the convex site and 2.118 (4) Å for that in the concave site. The corresponding O—Co—O bond angle deviates more distinctly from linearity with a value of 172.46 (17)°. The structural differences between the title complex and the similar reported compound are ascribed to the bridging atom between the two 2,2′-bipyridine moieties, i.e. an S atom in the title complex versus a C atom of a keto group in the related compound. The bridging bonds [C—S: 1.761 (2) and 1.764 (2) Å] of the title complex are longer than those [C—C: 1.496 (10) and 1.500 (10) Å] in the related complex.
3. Supramolecular features
The coordinating water molecules act as proton donors, forming O—H⋯O hydrogen bonds with the NO3− anions and leading to an extended layer structure parallel to (001) for the title complex (Fig. 2). For these hydrogen bonds, the O⋯O distances are in the range of 2.688 (2)–2.789 (2) Å, indicating they are of medium strength (Table 1), and are comparable with other hydrogen bonds formed between coordinating water molecules and NO3− anions (Kurdziel et al., 2000; Kunz et al., 2007; Wang et al., 2012). There are no intermolecular π–π interactions in the molecular packing of the title complex.
4. Synthesis and crystallization
The ligand 6,6′-sulfanediylbis(2,2′-bipyridine) was synthesized by a method analogous to that for the preparation of 2,2′-sulfanediylbis(1,10-phenanthroline) (Krapcho et al., 2007). The title complex was obtained as follows: An ethanolic solution (10 ml) of CoII(NO3)2·6H2O (29.1 mg, 0.1 mmol) was added to a ethanolic solution (10 ml) of 6,6′-sulfanediylbis(2,2′-bipyridine) (34.4 mg, 0.1 mmol), which afforded a light-yellow solution, which was stored at ambient conditions. Yellow crystals of the title compound were obtained by slow evaporation of the solvent, yield: ca. 50%.
5. Refinement
Crystal data, data collection and structure . All hydrogen atoms bound to carbon atoms were placed geometrically, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). The hydrogen atoms of water molecules were found from difference-Fourier maps and their O—H bond lengths were normalized to 0.82 Å and refined with a common Uiso(H) parameter.
details are summarized in Table 2Supporting information
CCDC reference: 1554624
https://doi.org/10.1107/S2056989017008428/wm5395sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017008428/wm5395Isup2.hkl
Data collection: CrystalClear (Rigaku, 2008); cell
CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).[Co(C20H14N4S)(H2O)2](NO3)2 | F(000) = 1148 |
Mr = 561.39 | Dx = 1.683 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.412 (3) Å | Cell parameters from 5682 reflections |
b = 11.421 (2) Å | θ = 3.1–27.5° |
c = 15.441 (3) Å | µ = 0.93 mm−1 |
β = 110.50 (3)° | T = 123 K |
V = 2215.4 (9) Å3 | Block, yellow |
Z = 4 | 0.15 × 0.14 × 0.11 mm |
Rigaku Saturn724 diffractometer | 5045 independent reflections |
Radiation source: Rotating Anode | 3984 reflections with I > 2σ(I) |
Detector resolution: 28.5714 pixels mm-1 | Rint = 0.044 |
dtprofit.ref scans | θmax = 27.5°, θmin = 3.1° |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) | h = −17→17 |
Tmin = 0.893, Tmax = 1.000 | k = −14→10 |
17851 measured reflections | l = −20→19 |
Refinement on F2 | 4 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.042 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.090 | w = 1/[σ2(Fo2) + (0.040P)2 + 0.524P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
5045 reflections | Δρmax = 0.46 e Å−3 |
337 parameters | Δρmin = −0.42 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S2 | 0.34784 (7) | 0.53580 (6) | 0.48067 (4) | 0.0421 (2) | |
Co1 | 0.24302 (2) | 0.43855 (2) | 0.24018 (2) | 0.01606 (9) | |
O1 | 0.39231 (13) | 0.40239 (14) | 0.23348 (10) | 0.0187 (3) | |
O2 | 0.09507 (14) | 0.47032 (15) | 0.24506 (13) | 0.0285 (4) | |
O3 | 0.50179 (13) | 0.23807 (13) | 0.35394 (10) | 0.0236 (4) | |
O4 | 0.54960 (14) | 0.06402 (14) | 0.40822 (11) | 0.0300 (4) | |
O6 | 0.05056 (14) | 0.33139 (14) | 0.36815 (11) | 0.0292 (4) | |
O5 | 0.47102 (14) | 0.08860 (15) | 0.26072 (10) | 0.0297 (4) | |
O7 | 0.02144 (15) | 0.14605 (15) | 0.36918 (13) | 0.0393 (5) | |
O8 | −0.06083 (17) | 0.2472 (2) | 0.24938 (13) | 0.0593 (7) | |
N5 | 0.50719 (15) | 0.12943 (16) | 0.34121 (13) | 0.0198 (4) | |
N6 | 0.00328 (15) | 0.24137 (17) | 0.32853 (13) | 0.0212 (4) | |
N2 | 0.19761 (15) | 0.26188 (16) | 0.19352 (12) | 0.0186 (4) | |
N4 | 0.20317 (14) | 0.55097 (15) | 0.12099 (12) | 0.0166 (4) | |
N3 | 0.29863 (14) | 0.60458 (15) | 0.29886 (12) | 0.0172 (4) | |
N1 | 0.28384 (14) | 0.34360 (15) | 0.36610 (12) | 0.0175 (4) | |
C7 | 0.18108 (19) | 0.0673 (2) | 0.24432 (16) | 0.0238 (5) | |
H7A | 0.1923 | 0.0149 | 0.2929 | 0.029* | |
C8 | 0.1315 (2) | 0.0304 (2) | 0.15461 (17) | 0.0276 (6) | |
H8A | 0.1085 | −0.0466 | 0.1419 | 0.033* | |
C6 | 0.21437 (17) | 0.18271 (19) | 0.26220 (14) | 0.0176 (5) | |
C4 | 0.30035 (18) | 0.1515 (2) | 0.43295 (15) | 0.0229 (5) | |
H4A | 0.2909 | 0.0711 | 0.4245 | 0.027* | |
C10 | 0.15035 (19) | 0.2232 (2) | 0.10636 (16) | 0.0250 (5) | |
H10A | 0.1398 | 0.2763 | 0.0583 | 0.030* | |
C9 | 0.1167 (2) | 0.1098 (2) | 0.08414 (16) | 0.0280 (6) | |
H9A | 0.0846 | 0.0871 | 0.0227 | 0.034* | |
C5 | 0.26838 (17) | 0.22627 (19) | 0.35760 (15) | 0.0179 (5) | |
C2 | 0.36036 (19) | 0.3163 (2) | 0.53060 (16) | 0.0242 (5) | |
H2A | 0.3905 | 0.3495 | 0.5890 | 0.029* | |
C1 | 0.32874 (18) | 0.3862 (2) | 0.45197 (15) | 0.0214 (5) | |
C3 | 0.34627 (19) | 0.1974 (2) | 0.52047 (16) | 0.0262 (5) | |
H3A | 0.3674 | 0.1486 | 0.5719 | 0.031* | |
C14 | 0.33856 (18) | 0.8009 (2) | 0.26565 (16) | 0.0220 (5) | |
H14A | 0.3370 | 0.8578 | 0.2221 | 0.026* | |
C16 | 0.23741 (17) | 0.66245 (19) | 0.13919 (14) | 0.0175 (5) | |
C19 | 0.11790 (19) | 0.6048 (2) | −0.03804 (15) | 0.0236 (5) | |
H19A | 0.0759 | 0.5828 | −0.0977 | 0.028* | |
C17 | 0.21498 (19) | 0.7466 (2) | 0.07011 (15) | 0.0232 (5) | |
H17A | 0.2403 | 0.8226 | 0.0844 | 0.028* | |
C20 | 0.14367 (18) | 0.5253 (2) | 0.03312 (15) | 0.0224 (5) | |
H20A | 0.1184 | 0.4492 | 0.0197 | 0.027* | |
C11 | 0.34248 (18) | 0.63032 (19) | 0.38876 (15) | 0.0202 (5) | |
C15 | 0.29568 (17) | 0.69114 (18) | 0.23791 (14) | 0.0166 (5) | |
C18 | 0.15527 (19) | 0.7174 (2) | −0.01954 (15) | 0.0242 (5) | |
H18A | 0.1405 | 0.7726 | −0.0666 | 0.029* | |
C13 | 0.38377 (18) | 0.8247 (2) | 0.35920 (16) | 0.0249 (5) | |
H13A | 0.4132 | 0.8979 | 0.3793 | 0.030* | |
C12 | 0.38477 (19) | 0.7396 (2) | 0.42191 (16) | 0.0240 (5) | |
H12B | 0.4130 | 0.7544 | 0.4851 | 0.029* | |
H1WA | 0.4237 (19) | 0.3504 (18) | 0.2663 (15) | 0.029* | |
H1WB | 0.4339 (18) | 0.4572 (18) | 0.2351 (17) | 0.029* | |
H2WA | 0.072 (2) | 0.430 (2) | 0.2791 (15) | 0.029* | |
H2WB | 0.0665 (19) | 0.5317 (17) | 0.2273 (17) | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S2 | 0.0871 (6) | 0.0210 (3) | 0.0148 (3) | 0.0028 (4) | 0.0135 (3) | −0.0002 (3) |
Co1 | 0.02039 (16) | 0.01296 (16) | 0.01403 (17) | 0.00085 (12) | 0.00502 (12) | 0.00167 (12) |
O1 | 0.0214 (9) | 0.0152 (8) | 0.0188 (8) | 0.0018 (7) | 0.0061 (7) | 0.0044 (6) |
O2 | 0.0270 (10) | 0.0227 (10) | 0.0398 (11) | 0.0072 (8) | 0.0165 (8) | 0.0158 (8) |
O3 | 0.0325 (10) | 0.0146 (8) | 0.0223 (9) | 0.0043 (7) | 0.0077 (7) | 0.0010 (7) |
O4 | 0.0419 (11) | 0.0178 (9) | 0.0241 (9) | 0.0056 (8) | 0.0038 (8) | 0.0073 (7) |
O6 | 0.0407 (11) | 0.0191 (9) | 0.0325 (9) | −0.0100 (8) | 0.0186 (8) | −0.0077 (7) |
O5 | 0.0388 (11) | 0.0276 (10) | 0.0172 (9) | 0.0020 (8) | 0.0030 (8) | −0.0066 (7) |
O7 | 0.0359 (11) | 0.0206 (9) | 0.0598 (12) | 0.0024 (8) | 0.0148 (9) | 0.0163 (9) |
O8 | 0.0515 (14) | 0.0879 (18) | 0.0237 (11) | −0.0330 (13) | −0.0057 (10) | 0.0093 (11) |
N5 | 0.0200 (10) | 0.0177 (10) | 0.0228 (10) | −0.0004 (8) | 0.0087 (8) | −0.0011 (8) |
N6 | 0.0193 (10) | 0.0231 (11) | 0.0231 (11) | 0.0000 (8) | 0.0097 (9) | 0.0003 (9) |
N2 | 0.0214 (10) | 0.0158 (9) | 0.0173 (10) | −0.0014 (8) | 0.0052 (8) | 0.0008 (8) |
N4 | 0.0178 (9) | 0.0159 (9) | 0.0149 (9) | −0.0006 (8) | 0.0041 (7) | 0.0011 (7) |
N3 | 0.0192 (9) | 0.0161 (9) | 0.0150 (9) | 0.0023 (8) | 0.0045 (8) | −0.0006 (8) |
N1 | 0.0206 (10) | 0.0162 (10) | 0.0164 (9) | 0.0025 (8) | 0.0075 (8) | 0.0027 (8) |
C7 | 0.0293 (13) | 0.0169 (12) | 0.0281 (13) | −0.0005 (10) | 0.0139 (11) | 0.0028 (10) |
C8 | 0.0337 (14) | 0.0179 (12) | 0.0329 (14) | −0.0062 (11) | 0.0138 (11) | −0.0031 (10) |
C6 | 0.0184 (11) | 0.0155 (11) | 0.0213 (12) | 0.0029 (9) | 0.0102 (9) | 0.0037 (9) |
C4 | 0.0254 (12) | 0.0184 (12) | 0.0254 (13) | 0.0023 (10) | 0.0095 (10) | 0.0076 (10) |
C10 | 0.0328 (14) | 0.0204 (12) | 0.0197 (12) | −0.0018 (11) | 0.0064 (10) | 0.0029 (10) |
C9 | 0.0340 (14) | 0.0250 (13) | 0.0227 (13) | −0.0054 (11) | 0.0071 (11) | −0.0035 (10) |
C5 | 0.0188 (11) | 0.0164 (11) | 0.0219 (12) | 0.0012 (9) | 0.0113 (9) | 0.0032 (9) |
C2 | 0.0275 (13) | 0.0272 (13) | 0.0172 (12) | 0.0040 (11) | 0.0069 (10) | 0.0031 (10) |
C1 | 0.0252 (12) | 0.0202 (12) | 0.0198 (12) | 0.0029 (10) | 0.0091 (10) | 0.0011 (10) |
C3 | 0.0288 (13) | 0.0283 (14) | 0.0207 (12) | 0.0032 (11) | 0.0079 (10) | 0.0112 (10) |
C14 | 0.0214 (12) | 0.0185 (12) | 0.0251 (13) | −0.0028 (10) | 0.0070 (10) | 0.0014 (10) |
C16 | 0.0165 (11) | 0.0173 (12) | 0.0182 (11) | 0.0013 (9) | 0.0055 (9) | 0.0021 (9) |
C19 | 0.0265 (13) | 0.0253 (13) | 0.0149 (11) | 0.0013 (10) | 0.0019 (10) | 0.0008 (10) |
C17 | 0.0315 (13) | 0.0155 (11) | 0.0222 (12) | −0.0021 (10) | 0.0089 (10) | 0.0022 (9) |
C20 | 0.0271 (13) | 0.0169 (12) | 0.0187 (12) | −0.0019 (10) | 0.0023 (10) | −0.0008 (9) |
C11 | 0.0227 (12) | 0.0185 (12) | 0.0183 (12) | 0.0050 (10) | 0.0057 (9) | 0.0006 (9) |
C15 | 0.0176 (11) | 0.0145 (11) | 0.0174 (11) | 0.0024 (9) | 0.0059 (9) | 0.0017 (9) |
C18 | 0.0296 (13) | 0.0239 (13) | 0.0172 (12) | 0.0022 (10) | 0.0059 (10) | 0.0091 (10) |
C13 | 0.0235 (12) | 0.0196 (12) | 0.0284 (13) | −0.0027 (10) | 0.0051 (10) | −0.0065 (10) |
C12 | 0.0264 (13) | 0.0244 (13) | 0.0172 (12) | 0.0011 (10) | 0.0027 (10) | −0.0068 (10) |
S2—C1 | 1.761 (2) | N1—C1 | 1.341 (3) |
S2—C11 | 1.764 (2) | N1—C5 | 1.355 (3) |
Co1—O2 | 2.0444 (18) | C7—C8 | 1.376 (3) |
Co1—O1 | 2.0821 (17) | C7—C6 | 1.388 (3) |
Co1—N3 | 2.1213 (18) | C8—C9 | 1.376 (3) |
Co1—N1 | 2.1238 (17) | C6—C5 | 1.481 (3) |
Co1—N4 | 2.1523 (18) | C4—C3 | 1.377 (3) |
Co1—N2 | 2.1574 (18) | C4—C5 | 1.384 (3) |
O3—N5 | 1.262 (2) | C10—C9 | 1.375 (3) |
O4—N5 | 1.241 (2) | C2—C3 | 1.373 (3) |
O6—N6 | 1.250 (2) | C2—C1 | 1.390 (3) |
O5—N5 | 1.255 (2) | C14—C15 | 1.383 (3) |
O7—N6 | 1.238 (2) | C14—C13 | 1.384 (3) |
O8—N6 | 1.225 (2) | C16—C17 | 1.388 (3) |
N2—C10 | 1.346 (3) | C16—C15 | 1.486 (3) |
N2—C6 | 1.351 (3) | C19—C20 | 1.373 (3) |
N4—C20 | 1.344 (3) | C19—C18 | 1.373 (3) |
N4—C16 | 1.349 (3) | C17—C18 | 1.376 (3) |
N3—C11 | 1.337 (3) | C11—C12 | 1.392 (3) |
N3—C15 | 1.356 (3) | C13—C12 | 1.369 (3) |
C1—S2—C11 | 115.45 (11) | C5—N1—Co1 | 115.76 (14) |
O2—Co1—O1 | 178.59 (7) | C8—C7—C6 | 120.0 (2) |
O2—Co1—N3 | 91.50 (7) | C7—C8—C9 | 118.6 (2) |
O1—Co1—N3 | 89.90 (7) | N2—C6—C7 | 121.7 (2) |
O2—Co1—N1 | 89.95 (7) | N2—C6—C5 | 116.40 (19) |
O1—Co1—N1 | 90.02 (7) | C7—C6—C5 | 121.9 (2) |
N3—Co1—N1 | 97.24 (7) | C3—C4—C5 | 119.4 (2) |
O2—Co1—N4 | 88.40 (7) | N2—C10—C9 | 123.9 (2) |
O1—Co1—N4 | 91.77 (7) | C10—C9—C8 | 118.7 (2) |
N3—Co1—N4 | 77.10 (7) | N1—C5—C4 | 122.4 (2) |
N1—Co1—N4 | 174.06 (7) | N1—C5—C6 | 115.68 (18) |
O2—Co1—N2 | 90.81 (7) | C4—C5—C6 | 121.9 (2) |
O1—Co1—N2 | 87.81 (7) | C3—C2—C1 | 118.8 (2) |
N3—Co1—N2 | 174.08 (7) | N1—C1—C2 | 123.3 (2) |
N1—Co1—N2 | 77.31 (7) | N1—C1—S2 | 125.20 (17) |
N4—Co1—N2 | 108.41 (7) | C2—C1—S2 | 111.39 (17) |
O4—N5—O5 | 120.48 (18) | C2—C3—C4 | 119.0 (2) |
O4—N5—O3 | 119.77 (18) | C15—C14—C13 | 119.0 (2) |
O5—N5—O3 | 119.74 (18) | N4—C16—C17 | 121.8 (2) |
O8—N6—O7 | 119.9 (2) | N4—C16—C15 | 116.12 (18) |
O8—N6—O6 | 120.1 (2) | C17—C16—C15 | 122.0 (2) |
O7—N6—O6 | 119.96 (19) | C20—C19—C18 | 118.8 (2) |
C10—N2—C6 | 117.12 (19) | C18—C17—C16 | 119.9 (2) |
C10—N2—Co1 | 128.32 (15) | N4—C20—C19 | 123.9 (2) |
C6—N2—Co1 | 114.45 (14) | N3—C11—C12 | 123.6 (2) |
C20—N4—C16 | 117.03 (18) | N3—C11—S2 | 125.44 (17) |
C20—N4—Co1 | 127.97 (15) | C12—C11—S2 | 110.88 (16) |
C16—N4—Co1 | 114.86 (13) | N3—C15—C14 | 122.5 (2) |
C11—N3—C15 | 117.11 (19) | N3—C15—C16 | 115.36 (19) |
C11—N3—Co1 | 126.95 (15) | C14—C15—C16 | 122.0 (2) |
C15—N3—Co1 | 115.77 (14) | C19—C18—C17 | 118.6 (2) |
C1—N1—C5 | 117.09 (18) | C12—C13—C14 | 119.4 (2) |
C1—N1—Co1 | 127.03 (15) | C13—C12—C11 | 118.4 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2WB···O7i | 0.80 (2) | 2.02 (2) | 2.766 (3) | 155 (2) |
O2—H2WA···O6 | 0.84 (2) | 1.88 (2) | 2.698 (2) | 168 (3) |
O1—H1WB···O5ii | 0.83 (2) | 1.96 (2) | 2.789 (2) | 179 (3) |
O1—H1WA···O3 | 0.80 (2) | 1.89 (2) | 2.688 (2) | 174 (3) |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2. |
Acknowledgements
GLL thanks the China Scholarship Council for support.
References
Hathwar, V. R., Stingaciu, M., Richter, B., Overgaard, J. & Iversen, B. B. (2017). Acta Cryst. B73, 304–312. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kamdar, J. M., Marelius, D. C., Moore, C. E., Rheingold, A. L., Smith, D. K. & Grotjahn, D. B. (2016). ChemCatChem, 8, 3045–3049. Web of Science CrossRef CAS Google Scholar
Knight, J. C., Amoroso, A. J., Edwards, P. G., Prabaharan, R. & Singh, N. (2010). Dalton Trans. 39, 8925–8936. Web of Science CSD CrossRef CAS PubMed Google Scholar
Krapcho, A. P., Sparapani, S. & Boxer, M. (2007). Tetrahedron Lett. 48, 5593–5595. Web of Science CrossRef CAS Google Scholar
Kunz, P. C., Zribi, A., Frank, W. & Kläui, W. (2007). Z. Anorg. Allg. Chem. 633, 955–960. Web of Science CSD CrossRef CAS Google Scholar
Kurdziel, K., Głowiak, T. & Jezierska, J. (2000). J. Chem. Soc. Dalton Trans. pp. 1095–1100. Web of Science CSD CrossRef Google Scholar
Li, G. L., Kanegawa, S., Yao, Z. S., Su, S. Q., Wu, S. Q., Huang, Y. G., Kang, S. & Sato, O. (2016). Chem. Eur. J. 22, 17130–17135. Web of Science CSD CrossRef CAS PubMed Google Scholar
Pal, A. K., Nag, S., Ferreira, J. G., Brochery, V., La Ganga, G., Santoro, A., Serroni, S., Campagna, S. & Hanan, G. S. (2014). Inorg. Chem. 53, 1679–1689. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Acta Cryst. E73, 616–619. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wang, L., Meng, X.-G., Deng, D.-S., Pei, Y.-M. & Wei, L.-M. (2012). Inorg. Chim. Acta, 387, 181–185. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, Y.-Z., Ferko, P., Siretanu, D., Ababei, R., Rath, N. P., Shaw, M. J., Clérac, R., Mathonière, C. & Holmes, S. M. (2014). J. Am. Chem. Soc. 136, 16854–16864. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zhong, Y.-R., Cao, M.-L., Mo, H.-J. & Ye, B.-H. (2008). Cryst. Growth Des. 8, 2282–2290. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.