research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­chlorido­(1,2-phenyl­enedi­amine-κ2N,N′)platinum(II)

aDepartment of Chemistry, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan, and bDepartment of Chemistry & Research Center for Smart Molecules, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, Tokyo, 171-8501, Japan
*Correspondence e-mail: cnmatsu@rikkyo.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 31 May 2017; accepted 7 June 2017; online 13 June 2017)

The PtII atom in the title compound, [PtCl2{(C6H4)(NH2)2}], lies on a twofold rotation axis and has a slightly distorted square-planar coordination environment defined by two N atoms of an 1,2-phenyl­enedi­amine ligand and two Cl ions. In the crystal, the planar complex mol­ecules are stacked parallel to the c axis, resulting in a columnar structure. In a column, an infinite almost straight Pt⋯Pt chain is formed, suggesting weak metal–metal inter­actions [Pt⋯Pt = 3.3475 (8) Å]. The crystal packing is stabilized by a three-dimensional N—H⋯Cl hydrogen-bonding network between the amino groups and the Cl ligands of adjacent mol­ecules.

1. Chemical context

The title compound, di­chlorido­(1,2-phenyl­enedi­amine-κ2N,N′)platinum(II) [PtCl2{(C6H4)(NH2)2}], (I)[link], which was originally prepared by Connors et al. (1972[Connors, T. A., Jones, M., Ross, W. C. J., Braddock, P. D., Khokhar, A. R. & Tobe, M. L. (1972). Chem. Biol. Interact. 5, 415-424.]), is a member of the family of derivatives of cis-diamminedi­chlorido­platinum(II), cis-[PtCl2(NH3)2] (cis-platin). Since the discovery of the anti­tumor activity of cis-platin (Rosenberg et al., 1965[Rosenberg, B., Van Camp, L. & Krigas, T. (1965). Nature, 205, 698-699.]), numerous derivatives and analogues of cis-platin have been prepared and investigated. However, reports on the corresponding crystal structures are rather scarce, probably because of the difficulty in obtaining crystals suitable for X-ray analysis, in part owing to poor solubility. Although the anti­tumor activity (Connors et al., 1972[Connors, T. A., Jones, M., Ross, W. C. J., Braddock, P. D., Khokhar, A. R. & Tobe, M. L. (1972). Chem. Biol. Interact. 5, 415-424.]; Meischen et al., 1976[Meischen, S. J., Gale, G. R., Lake, L. M., Frangakis, C. J., Rosenblum, M. G., Walker, E. M., Atkins, L. M. & Smith, A. B. (1976). J. Natl Cancer Inst. 57, 841-845.]) and the chemical stabilities (Köckerbauer & Bednarski, 1996[Köckerbauer, R. & Bednarski, P. J. (1996). J. Inorg. Biochem. 62, 281-298.]) of the title compound have been reported, its crystal structure has not been determined so far. In the course of our study of the deprotonation and redox properties of a platinum complex with 1,2-phenyl­enedi­amine as a ligand (Konno & Matsushita, 2006a[Konno, Y. & Matsushita, N. (2006a). Bull. Chem. Soc. Jpn, 79, 1046-1053.],b[Konno, Y. & Matsushita, N. (2006b). Bull. Chem. Soc. Jpn, 79, 1237-1239.]), we have successfully obtained single crystals of the title compound and report here its crystal structure.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link] is displayed in Fig. 1[link]. The platinum compound (I)[link] is isostructural with the palladium compound [PdCl2{(C6H4)(NH2)2}] reported previously (Konno & Matsushita, 2017[Konno, Y. & Matsushita, N. (2017). IUCrData, 2, x170144.]). The PtII atom lies on a twofold rotation axis. Hence the asymmetric unit comprises half of a [PtCl2{(C6H4)(NH2)2}] mol­ecule, the other half being completed by application of twofold rotation symmetry. The PtII atom is coordinated by two N atoms of an 1,2-phenyl­enedi­amine ligand and by two Cl ions in a slightly distorted square-planar configuration (Table 1[link]). The r.m.s. deviation of the least-squares plane formed by atoms Pt1, N1, C1, C2 and C3 is 0.0121 Å. The structural parameters of the coordination sphere around PtII in the crystal of (I)[link] (Table 1[link]) are consistent with those found in cis-[PtCl2(NH3)2] (Milburn & Truter, 1966[Milburn, G. H. W. & Truter, M. R. (1966). J. Chem. Soc. A, pp. 1609-1616.]), [PtCl2(en)] (en is ethyl­enedi­amine; Iball et al., 1975[Iball, J., MacDougall, M. & Scrimgeour, S. (1975). Acta Cryst. B31, 1672-1674.]), cis-[PtCl2(L)2] (L is cyclo­hexyl­amine; Lock et al., 1980[Lock, C. J. L., Speranzinl, R. A. & Zvagulis, M. (1980). Acta Cryst. B36, 1789-1793.]), [PtCl2(cis-dac)]·0.33-hydrate (dac is 1,2-di­amino­cyclo­hexane; Lock & Pilon, 1981[Lock, C. J. L. & Pilon, P. (1981). Acta Cryst. B37, 45-49.]), cis-[PtCl2(L′)(NH3)] (L′ is cyclo­butyl­amine; Rochon & Melanson, 1986[Rochon, F. D. & Melanson, R. (1986). Acta Cryst. C42, 1291-1294.]), [PtCl2(Me2en)] (Me2en is N,N-di­methyl­ethylenedi­amine; Melanson et al., 1987[Melanson, R., de la Chevrotière, C. & Rochon, F. D. (1987). Acta Cryst. C43, 57-59.]), [PtCl2(tn)] (tn is 1,3-di­amino­propane; Odoko & Okabe, 2006[Odoko, M. & Okabe, N. (2006). Acta Cryst. C62, m136-m139.]), [PtCl2(L′′)] (L′′ is 2-morpholino­ethyl­amine; Shi et al., 2006[Shi, X.-F., Xie, M.-J. & Ng, S. W. (2006). Acta Cryst. E62, m2719-m2720.]), [PtCl2(Me4en)] (Me4en is N,N,N′,N′- tetra­methyl­ethylenedi­amine; Asiri et al., 2012[Asiri, A. M., Arshad, M. N., Ishaq, M., Alamry, K. A. & Bokhari, T. H. (2012). Acta Cryst. E68, m1562.]). Bond lengths and angles of the 1,2-phenyl­enedi­amine moiety (Table 1[link]) are not significantly different from those found in the bis­(1,2-phenyl­enedi­amine)­platinum(II) complex, [Pt(C6H8N2)2]Cl2·2H2O [N—C = 1.450 (2) Å, C—C = 1.365 (6)–1.389 (4) Å; Konno & Matsushita, 2006a[Konno, Y. & Matsushita, N. (2006a). Bull. Chem. Soc. Jpn, 79, 1046-1053.]] or in isostructural di­chlorido­(1,2-phenyl­enedi­amine)­palladium(II) [N—C = 1.458 (2) Å, C—C = 1.371 (3)–1.416 (8) Å; Konno & Matsushita, 2017[Konno, Y. & Matsushita, N. (2017). IUCrData, 2, x170144.]].

Table 1
Selected geometric parameters (Å, °)

Pt1—N1 2.040 (4) C1—C2 1.372 (6)
Pt1—Cl1 2.3213 (13) C1—C1ii 1.386 (9)
Pt1—Pt1i 3.3475 (8) C2—C3 1.377 (11)
N1—C1 1.445 (6) C3—C3ii 1.38 (3)
       
N1—Pt1—N1ii 83.6 (3) Pt1i—Pt1—Pt1iii 176.513 (11)
N1—Pt1—Cl1 91.39 (15) C1—N1—Pt1 110.8 (3)
Cl1ii—Pt1—Cl1 93.69 (7) C2—C1—C1ii 119.8 (3)
N1—Pt1—Pt1i 92.07 (14) C2—C1—N1 122.7 (5)
Cl1—Pt1—Pt1i 93.80 (4) C1ii—C1—N1 117.4 (2)
N1—Pt1—Pt1iii 85.32 (14) C1—C2—C3 120.3 (8)
Cl1—Pt1—Pt1iii 88.59 (4) C2—C3—C3ii 119.8 (6)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
A view of the mol­ecular structure of compound (I)[link], showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms. [Symmetry code: (i) −x + 1, y, −z + [{1\over 2}].]

3. Supra­molecular features

As shown in Fig. 2[link], the neutral planar mol­ecules of (I)[link] stack parallel to the c axis, resulting in a columnar structure. The planar [PtCl2{(C6H4)(NH2)2}] units are arranged in parallel and the 1,2-phenyl­enedi­amine moieties alternate with each other as a result of the c-glide operation. In the column, an infinite, almost straight [Pt⋯Pt⋯Pt = 176.513 (11)°] platinum chain is formed with a short inter­atomic distance [Pt⋯Pt = 3.3475 (8) Å], suggesting weak metal–metal inter­actions. The infinite palladium chain of the isostructural Pd complex is straighter [Pd⋯Pd⋯Pd = 179.232 (7)°] than the platinum chain. The Pt⋯Pt distance in (I)[link] is slightly shorter than those of cis-[PtCl2(NH3)2] [3.372 (2) and 3.409 (2) Å; Milburn & Truter, 1966[Milburn, G. H. W. & Truter, M. R. (1966). J. Chem. Soc. A, pp. 1609-1616.]] or [PtCl2(en)] [3.381 Å; Iball et al., 1975[Iball, J., MacDougall, M. & Scrimgeour, S. (1975). Acta Cryst. B31, 1672-1674.]], and is considerably shorter than that of [PtCl2(tn)] [3.646 Å; Odoko & Okabe, 2006[Odoko, M. & Okabe, N. (2006). Acta Cryst. C62, m136-m139.]], all of which have similar columnar structures.

[Figure 2]
Figure 2
A view of the columnar structure of compound (I)[link]. Light-blue dashed lines represent hydrogen bonds between adjacent mol­ecules in the column. Yellow dashed lines indicate the short contact between Pt atoms in the column. [Symmetry codes: (i) −x + 1, −y + 1, −z; (ii) −x + 1, −y + 1, −z + 1; (iii) x, y, z + 1.]

The inter­molecular Pt⋯Pt distance of (I)[link] suggests that the columnar structure is stabilized by weak metal–metal inter­actions. The columnar structure of (I)[link] is further stabilized by inter­molecular N—H⋯Cl hydrogen bonds between adjacent mol­ecules in the column (Fig. 2[link] and Table 2[link]). Inter­columnar hydrogen bonds also help to stabilize the crystal packing of the columns (Fig. 3[link], and Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1iv 0.90 2.57 3.353 (4) 146
N1—H1B⋯Cl1v 0.90 2.71 3.381 (4) 133
N1—H1B⋯Cl1vi 0.90 2.73 3.320 (5) 124
Symmetry codes: (iv) [x, -y+1, z+{\script{1\over 2}}]; (v) [x, -y+1, z-{\script{1\over 2}}]; (vi) -x, -y+1, -z.
[Figure 3]
Figure 3
The crystal packing of compound (I)[link], viewed along the c axis. Light-blue dashed lines represent inter­columnar hydrogen bonds. Solid orange lines indicate the unit cell.

4. Synthesis and crystallization

Compound (I)[link] was prepared using a method modified from that described by Connors et al. (1972[Connors, T. A., Jones, M., Ross, W. C. J., Braddock, P. D., Khokhar, A. R. & Tobe, M. L. (1972). Chem. Biol. Interact. 5, 415-424.]) as follows. To an aqueous HCl solution (1.0 M, 15 ml) of K2[PtCl4] (0.241 mmol, 100 mg) was slowly added an aqueous HCl solution (1.0 M, 15 ml) of 1,2-phenyl­enedi­amine (0.241 mmol, 26 mg), and then the solution was sealed in a screw-cap vial and was kept at room temperature for one week in the dark. Pale-brown needle-like crystals suitable for X-ray analysis were obtained (yield 52%). Elemental analysis found: C 19.26, H 2.23, N 7.30%; calculated for C6H8Cl2N2Pt: C 19.26, H 2.16, N 7.49%. Elemental analysis was carried out by the Laboratory of Organic Elemental Analysis, Department of Chemistry, Graduate School of Science, The University of Tokyo.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. One reflection (010) was omitted in the final refinement because it was obstructed by the beam-stop. H atoms were placed in geometrically calculated positions and refined as riding, with C(aromatic)—H = 0.93 and N—H = 0.90 Å, and with Uiso(H) = 1.2Ueq(C,N). The maximum and minimum electron density peaks are located 0.80 and 0.74 Å, respectively, from atom Pt1.

Table 3
Experimental details

Crystal data
Chemical formula [PtCl2(C6H8N2)]
Mr 374.13
Crystal system, space group Monoclinic, P2/c
Temperature (K) 296
a, b, c (Å) 7.087 (2), 10.446 (3), 6.6920 (16)
β (°) 116.61 (2)
V3) 442.9 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 16.38
Crystal size (mm) 0.26 × 0.13 × 0.07
 
Data collection
Diffractometer Rigaku R-AXIS RAPID imaging-plate
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.116, 0.304
No. of measured, independent and observed [F2 > 2σ(F2)] reflections 10875, 1587, 1480
Rint 0.030
(sin θ/λ)max−1) 0.757
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.099, 1.18
No. of reflections 1587
No. of parameters 52
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 4.62, −1.74
Computer programs: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), DIAMOND (Brandenburg, 2017[Brandenburg, K. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: RAPID-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2017); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Dichlorido(1,2-phenylenediamine-κ2N,N')platinum(II) top
Crystal data top
[PtCl2(C6H8N2)]F(000) = 340
Mr = 374.13Dx = 2.805 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ycCell parameters from 12924 reflections
a = 7.087 (2) Åθ = 2.0–32.6°
b = 10.446 (3) ŵ = 16.38 mm1
c = 6.6920 (16) ÅT = 296 K
β = 116.61 (2)°Needle, pale brown
V = 442.9 (2) Å30.26 × 0.13 × 0.07 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID imaging-plate
diffractometer
1587 independent reflections
Radiation source: X-ray sealed tube1480 reflections with F2 > 2σ(F2)
Graphite monochromatorRint = 0.030
Detector resolution: 10.00 pixels mm-1θmax = 32.6°, θmin = 3.2°
ω scansh = 1010
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1515
Tmin = 0.116, Tmax = 0.304l = 108
10875 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0669P)2 + 0.3105P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max = 0.001
1587 reflectionsΔρmax = 4.62 e Å3
52 parametersΔρmin = 1.74 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0039 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 2.7022 (0.0123) x - 0.0000 (0.0000) y + 6.6740 (0.0026) z = 0.3174 (0.0059)

* 0.0000 (0.0000) Pt1 * -0.0185 (0.0028) Cl1 * 0.0206 (0.0042) N1 * 0.0050 (0.0039) C1 * -0.0017 (0.0044) C2 * 0.0031 (0.0116) C3 * 0.0185 (0.0028) Cl1_$6 * -0.0206 (0.0042) N1_$6 * -0.0050 (0.0039) C1_$6 * 0.0017 (0.0044) C2_$6 * -0.0031 (0.0116) C3_$6

Rms deviation of fitted atoms = 0.0121

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.50000.504875 (16)0.25000.03029 (13)
Cl10.23327 (19)0.65687 (13)0.1392 (2)0.0429 (3)
N10.2863 (7)0.3592 (4)0.1666 (8)0.0407 (9)
H1A0.21440.36530.24800.049*
H1B0.19340.36570.02130.049*
C10.3910 (7)0.2364 (4)0.2066 (6)0.0400 (8)
C20.2835 (10)0.1225 (5)0.1621 (9)0.0563 (12)
H20.13700.12240.10160.068*
C30.391 (3)0.0081 (5)0.207 (2)0.068 (3)
H30.31820.06900.17800.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02635 (17)0.02835 (16)0.03208 (18)0.0000.00944 (11)0.000
Cl10.0335 (5)0.0383 (5)0.0513 (6)0.0058 (4)0.0140 (4)0.0012 (4)
N10.0347 (18)0.0371 (18)0.043 (2)0.0017 (14)0.0108 (16)0.0011 (15)
C10.050 (2)0.0328 (18)0.0365 (18)0.0028 (15)0.0185 (17)0.0012 (14)
C20.067 (3)0.046 (3)0.054 (3)0.018 (2)0.026 (2)0.005 (2)
C30.112 (10)0.037 (3)0.063 (6)0.017 (3)0.047 (6)0.006 (2)
Geometric parameters (Å, º) top
Pt1—N12.040 (4)N1—H1B0.9000
Pt1—N1i2.040 (4)C1—C21.372 (6)
Pt1—Cl1i2.3213 (13)C1—C1i1.386 (9)
Pt1—Cl12.3213 (13)C2—C31.377 (11)
Pt1—Pt1ii3.3475 (8)C2—H20.9300
Pt1—Pt1iii3.3475 (8)C3—C3i1.38 (3)
N1—C11.445 (6)C3—H30.9300
N1—H1A0.9000
N1—Pt1—N1i83.6 (3)C1—N1—Pt1110.8 (3)
N1—Pt1—Cl1i174.82 (12)C1—N1—H1A109.5
N1i—Pt1—Cl1i91.39 (15)Pt1—N1—H1A109.5
N1—Pt1—Cl191.39 (15)C1—N1—H1B109.5
N1i—Pt1—Cl1174.82 (12)Pt1—N1—H1B109.5
Cl1i—Pt1—Cl193.69 (7)H1A—N1—H1B108.1
N1—Pt1—Pt1ii92.07 (14)C2—C1—C1i119.8 (3)
N1i—Pt1—Pt1ii85.32 (14)C2—C1—N1122.7 (5)
Cl1i—Pt1—Pt1ii88.59 (4)C1i—C1—N1117.4 (2)
Cl1—Pt1—Pt1ii93.80 (4)C1—C2—C3120.3 (8)
N1—Pt1—Pt1iii85.32 (14)C1—C2—H2119.8
N1i—Pt1—Pt1iii92.07 (14)C3—C2—H2119.8
Cl1i—Pt1—Pt1iii93.80 (4)C2—C3—C3i119.8 (6)
Cl1—Pt1—Pt1iii88.59 (4)C2—C3—H3120.1
Pt1ii—Pt1—Pt1iii176.513 (11)C3i—C3—H3120.1
Pt1ii—Pt1—N1—C184.8 (3)Pt1iii—Pt1—N1—C192.9 (3)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1iv0.902.573.353 (4)146
N1—H1B···Cl1v0.902.713.381 (4)133
N1—H1B···Cl1vi0.902.733.320 (5)124
Symmetry codes: (iv) x, y+1, z+1/2; (v) x, y+1, z1/2; (vi) x, y+1, z.
 

Funding information

Funding for this research was provided by: Ministry of Education, Culture, Sports, Science and Technology, MEXT-Supported Program for the Strategic Research Foundation at Private Universities (award No. S1311027).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAsiri, A. M., Arshad, M. N., Ishaq, M., Alamry, K. A. & Bokhari, T. H. (2012). Acta Cryst. E68, m1562.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationConnors, T. A., Jones, M., Ross, W. C. J., Braddock, P. D., Khokhar, A. R. & Tobe, M. L. (1972). Chem. Biol. Interact. 5, 415–424.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIball, J., MacDougall, M. & Scrimgeour, S. (1975). Acta Cryst. B31, 1672–1674.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKöckerbauer, R. & Bednarski, P. J. (1996). J. Inorg. Biochem. 62, 281–298.  PubMed Web of Science Google Scholar
First citationKonno, Y. & Matsushita, N. (2006a). Bull. Chem. Soc. Jpn, 79, 1046–1053.  Web of Science CSD CrossRef CAS Google Scholar
First citationKonno, Y. & Matsushita, N. (2006b). Bull. Chem. Soc. Jpn, 79, 1237–1239.  Web of Science CSD CrossRef CAS Google Scholar
First citationKonno, Y. & Matsushita, N. (2017). IUCrData, 2, x170144.  Google Scholar
First citationLock, C. J. L. & Pilon, P. (1981). Acta Cryst. B37, 45–49.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLock, C. J. L., Speranzinl, R. A. & Zvagulis, M. (1980). Acta Cryst. B36, 1789–1793.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMeischen, S. J., Gale, G. R., Lake, L. M., Frangakis, C. J., Rosenblum, M. G., Walker, E. M., Atkins, L. M. & Smith, A. B. (1976). J. Natl Cancer Inst. 57, 841–845.  CrossRef PubMed CAS Google Scholar
First citationMelanson, R., de la Chevrotière, C. & Rochon, F. D. (1987). Acta Cryst. C43, 57–59.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMilburn, G. H. W. & Truter, M. R. (1966). J. Chem. Soc. A, pp. 1609–1616.  CrossRef Web of Science Google Scholar
First citationOdoko, M. & Okabe, N. (2006). Acta Cryst. C62, m136–m139.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRochon, F. D. & Melanson, R. (1986). Acta Cryst. C42, 1291–1294.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRosenberg, B., Van Camp, L. & Krigas, T. (1965). Nature, 205, 698–699.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, X.-F., Xie, M.-J. & Ng, S. W. (2006). Acta Cryst. E62, m2719–m2720.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds