research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of the crystal structure of K2Hg(SCN)4

aAnorganische Chemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg
*Correspondence e-mail: florian.kraus@chemie.uni-marburg.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 12 June 2017; accepted 19 June 2017; online 27 June 2017)

Single crystals of K2Hg(SCN)4 [dipotassium tetra­thio­cyanato­mercurate(II)] were grown from aqueous solutions of potassium thio­cyanate and mercury(II) thio­cyanate and studied by single-crystal X-ray diffraction. In comparison with the previously reported structure model [Zvonkova (1952[Zvonkova, Z. V. (1952). Zh. Fiz. Khim. 26, 1798-1803.]). Zh. Fiz. Khim. 26, 1798–1803], all atoms in the crystal structure were located, with lattice parameters and fractional coordinates determined to a much higher precision. In the (crystal) structure, the HgII atom is located on a twofold rotation axis and is coordinated in the form of a distorted tetra­hedron by four S atoms of the thio­cyanate anions. The K+ cation shows a coordination number of eight.

1. Chemical context

In search for suitable educts for fluorination we thought that K2Hg(SCN)4 would be a well-suited candidate. Once we had obtained the compound, we noticed that the original structure determination (Zvonkova, 1952[Zvonkova, Z. V. (1952). Zh. Fiz. Khim. 26, 1798-1803.]) was of low precision with the light atoms (C and N) not determined, so we redetermined the crystal structure to much higher precision and accuracy.

K2Hg(SCN)4 was first synthesized in 1901 (Rosenheim & Cohn, 1901[Rosenheim, A. & Cohn, R. (1901). Z. Anorg. Allg. Chem. 27, 270-303.]) by adding an aqueous solution of potassium thio­cyanate to a boiling solution of mercury(II) thio­cyanate and crystallization upon cooling to room temperature. The crystal structure has been known since 1952 (Zvonkova, 1952[Zvonkova, Z. V. (1952). Zh. Fiz. Khim. 26, 1798-1803.]) and IR spectra were first measured in 1962 (Tramer, 1962[Tramer, A. (1962). J. Chem. Phys. 59, 637-654.]). Related compounds of the type A2Hg(SCN)4 with A = Rb, Cs, NH4, NMe4 are also known (Larbot & Beauchamp, 1973[Larbot, A. & Beauchamp, A. L. (1973). Rev. Chim. Miner. 10, 465-472.]; Tramer, 1962[Tramer, A. (1962). J. Chem. Phys. 59, 637-654.]). The HgII atom in K2Hg(SCN)4 is coordinated in the form of a distorted tetra­hedron by four S atoms in a fashion similar to the HgII atom in the structure of CoHg(SCN)4 (Jefferey & Rose, 1968[Jeffery, J. W. & Rose, K. M. (1968). Acta Cryst. B24, 653-662.]). Such tetra­hedrally coordinated HgII atoms are also known, for example, for the halide and pseudo-halide compounds A2HgX4, viz. Cs2HgBr4 (Pakhomov et al., 1978[Pakhomov, V. I., Fedorova, N. M. & Ivanova Korfini, I. N. (1978). Sov. J. Coord. Chem. 4, 1356-1357.]; Altermatt et al., 1984[Altermatt, D., Arend, H., Gramlich, V., Niggli, A. & Petter, W. (1984). Acta Cryst. B40, 347-350.]; Pinheiro et al., 1998[Pinheiro, C. B., Jório, A., Pimenta, M. A. & Speziali, N. L. (1998). Acta Cryst. B54, 197-203.]), Cs2HgCl4 (Linde et al., 1983[Linde, S. A., Mikhailova, A. Y., Pakhomov, V. I., Kirilenko, V. V. & Shulga, V. G. (1983). Koord. Khim. 9, 998-999.]; Pakhomov et al. 1992a[Pakhomov, V. I., Goryunov, A. V., Ivanova Korfini, I. N., Boguslavskii, A. A. & Lotfullin, R. S. (1992a). Russ. J. Inorg. Chem. 37, 259-261.],b[Pakhomov, V. I., Goryunov, A. V., Gladkii, V. V., Ivanova Korfini, I. N. & Kallaev, S. N. (1992b). Russ. J. Inorg. Chem. 37, 731-734.]; Bagautdinov & Brown, 2000[Bagautdinov, B. S. & Brown, I. D. (2000). J. Phys. Condens. Matter, 12, 8111-8125.]), Cs2HgI4 (Zandbergen et al., 1979[Zandbergen, H. W., Verschoor, G. C. & IJdo, D. J. W. (1979). Acta Cryst. B35, 1425-1427.]; Pakhomov & Fedorov, 1973[Pakhomov, V. I. & Fedorov, P. M. (1973). Sov. Phys. Crystallogr. 17, 833-836.]), K2Hg(CN)4 (Gerlach & Powell, 1986[Gerlach, P. N. & Powell, B. M. (1986). J. Chem. Phys. 85, 6004-6009.]; Dickinson, 1922[Dickinson, R. G. (1922). J. Am. Chem. Soc. 44, 744-786.]) and Rb2Hg(CN)4 (Klüfers et al., 1981[Klüfers, P., Fuess, H. & Haussühl, S. (1981). Z. Kristallogr. 156, 255-263.]).

2. Structural commentary

The lattice parameters obtained by our room-temperature single-crystal structure determination (Table 1[link]) agree with those obtained previously (a = 11.04, b = 9.22, c = 13.18 Å, β = 106.30°, Z = 4; Zvonkova, 1952[Zvonkova, Z. V. (1952). Zh. Fiz. Khim. 26, 1798-1803.]). K2Hg(SCN)4 crystallizes in the monoclinic crystal system in space group C2/c (No. 15). The HgII atom is located on a twofold rotation axis (Wyckoff position 4e) and is coordinated in the form of a distorted tetra­hedron by four S atoms of the thio­cyanate anions (Fig. 1[link]). The S—Hg—S angles are in the range 105.02 (2)–114.67 (3)° and the Hg—S distances are 2.5380 (8) and 2.5550 (7) Å, both in good agreement with the previously reported data (S—Hg—S angle: 102–118°, Hg—S distance: 2.54 (2); Zvonkova, 1952[Zvonkova, Z. V. (1952). Zh. Fiz. Khim. 26, 1798-1803.]). The Hg—S distance is slightly longer than those of the sixfold-coordinated HgII atom in Hg(SCN)2 [2.381 (6) Å] (Beauchamp & Goutier, 1972[Beauchamp, A. L. & Goutier, D. (1972). Can. J. Chem. 50, 977-981.]) and lies within the range of Hg—S distances [2.3954 (11)–2.7653 (6) Å] for the threefold coordinated HgII atom in KHg(SCN)3 (Weil & Häusler, 2014[Weil, M. & Häusler, T. (2014). Acta Cryst. E70, i46.]).

Table 1
Experimental details

Crystal data
Chemical formula K2Hg(SCN)4
Mr 511.11
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 10.8154 (9), 9.3243 (7), 13.3313 (11)
β (°) 106.648 (6)
V3) 1288.05 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 13.21
Crystal size (mm) 0.24 × 0.15 × 0.12
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Integration (X-RED32 and X-SHAPE; Stoe & Cie, 2009[Stoe & Cie (2009). X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.103, 0.344
No. of measured, independent and observed [I > 2σ(I)] reflections 14009, 2710, 2298
Rint 0.043
(sin θ/λ)max−1) 0.798
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.053, 1.08
No. of reflections 2710
No. of parameters 70
Δρmax, Δρmin (e Å−3) 1.15, −0.75
Computer programs: X-AREA (Stoe & Cie, 2011[Stoe & Cie (2011). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.]), X-RED (Stoe & Cie, 2009[Stoe & Cie (2011). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2015[Brandenburg, K. (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 1]
Figure 1
A section of the crystal structure of K2Hg(SCN)4, showing the [Hg(SCN)4]2− anion and the K+ cation. Displacement ellipsoids are shown at the 70% probability level at 293 K. [Symmetry code: (i) −x, y, [1\over2] − z].

As may be expected, the two unique SCN anions are almost linear [178.0 (3), 178.2 (3)°], and the angles are comparable with those reported for Hg(SCN)2 [177.5 (13)°; Beauchamp & Goutier, 1972[Beauchamp, A. L. & Goutier, D. (1972). Can. J. Chem. 50, 977-981.]] or KHg(SCN)3 [176.41 (4)–179.8 (3)°; Weil & Häusler, 2014[Weil, M. & Häusler, T. (2014). Acta Cryst. E70, i46.]]. The S—C [1.656 (3), 1.665 (3) Å] and C—N [1.153 (5), 1.152 (4) Å] distances are comparable as well [S—C: 1.62 (2), C—N: 1.18 (3) Å] (Beauchamp & Goutier, 1972[Beauchamp, A. L. & Goutier, D. (1972). Can. J. Chem. 50, 977-981.]) [S—C: 1.657 (4)–1.675 (3) Å, C—N: 1.140 (4)–1.145 (5) Å] (Weil & Häusler, 2014[Weil, M. & Häusler, T. (2014). Acta Cryst. E70, i46.]). The Hg—S—C angles in the title salt are 98.59 (10) and 97.06 (10)°, respectively. In comparison with the coordination polyhedron of the HgII atom and the structural feature of the SCN anions in CoHg(SCN)4 [Hg—S: 2.558–2.614 Å, S—C: 1.635–1.720 Å, C—N: 1.200–1.322 Å, S—Hg—S angles: 105.1 (1), 108.7 (1)°, Hg—S—C angle: 97.3 (5)°] (Jefferey & Rose, 1968[Jeffery, J. W. & Rose, K. M. (1968). Acta Cryst. B24, 653-662.]), the respective angles and distances of the complex [Hg(SCN)4]2− anion presented here agree well. In total, a [Hg(SCN)4]2− anion is surrounded by twelve potassium atoms.

The K+ cation shows a coordination number of eight, with disparate bond lengths that can be associated with a [4 + 3 + 1] coordination. Four K—N distances are in the range 2.816 (4)–3.031 (5) Å, three K—S distances are in the range 3.4466 (11)–3.5315 (12) Å and there is one very long K—N distance of 3.793 (5) Å. Therefore, the resulting coordination polyhedron is of an odd shape. The K+ cation is coordinated in total by five [Hg(SCN)4]2− units, three of these in a monodentate manner (two via N atoms and one via the S atom of the thio­cyanate anions) and the other two in a bidentate mode (via the N and S atoms of neighboring thio­cyanate anions). Overall, a complex three-dimensional framework results. The crystal structure of the title compound is shown in Fig. 2[link].

[Figure 2]
Figure 2
The crystal structure of K2Hg(SCN)4 viewed along [110]. Displacement ellipsoids are shown at the 70% probability level at 293 K. Bonds involving the K+ cation are omitted for clarity.

3. Synthesis and crystallization

Potassium tetra­thio­cyanato­mercurate(II) was synthesized by slowly adding a potassium thio­cyanate solution (2.076 g, 21.36 mmol in 10 ml H2O) to a boiling solution of mercury(II) thio­cyanate (3.176 g, 10.03 mmol in 10 ml H2O). After the formed mercury sulfide had been filtered off through a Büchner funnel, the solution was concentrated on a hot plate until crystallization set in. The crystallized product was collected on a Büchner funnel and the filtrate was allowed to stand at room temperature until crystals of much better quality were obtained. A selected colorless single crystal was investigated by X-ray diffraction. Mercury(II) thio­cyanate was prepared as reported previously (Hermes, 1866[Hermes, O. (1866). J. Prakt. Chem. 97, 465-482.]) using mercury(II) nitrate and potasium thio­cyanate and was recrystallized out of ethanol.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. As a starting model for the structure refinement, the atomic coordinates of the previously reported K2Hg(SCN)4 structure model were used (Zvonkova, 1952[Zvonkova, Z. V. (1952). Zh. Fiz. Khim. 26, 1798-1803.]). The positions of the C and N atoms were located from a difference-Fourier map.

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2011); cell refinement: X-AREA (Stoe & Cie, 2011); data reduction: X-RED (Stoe & Cie, 2009); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2015); software used to prepare material for publication: publCIF (Westrip, 2010).

Dipotassium tetrathiocyanatomercurate(II) top
Crystal data top
K2Hg(SCN)4F(000) = 936
Mr = 511.11Dx = 2.636 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 10.8154 (9) ÅCell parameters from 25154 reflections
b = 9.3243 (7) Åθ = 2.9–35.0°
c = 13.3313 (11) ŵ = 13.21 mm1
β = 106.648 (6)°T = 293 K
V = 1288.05 (18) Å3Block, colourless
Z = 40.24 × 0.15 × 0.12 mm
Data collection top
Stoe IPDS 2T
diffractometer
2710 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2298 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.043
Detector resolution: 6.67 pixels mm-1θmax = 34.6°, θmin = 2.9°
rotation method scansh = 1717
Absorption correction: integration
(X-RED32 and X-SHAPE; Stoe & Cie, 2009)
k = 1414
Tmin = 0.103, Tmax = 0.344l = 2121
14009 measured reflections
Refinement top
Refinement on F2Primary atom site location: other
Least-squares matrix: fullSecondary atom site location: other
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.022P)2 + 1.7P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.053(Δ/σ)max = 0.001
S = 1.08Δρmax = 1.15 e Å3
2710 reflectionsΔρmin = 0.75 e Å3
70 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0086 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg0.00000.52099 (2)0.25000.03803 (7)
K0.16185 (7)1.04695 (8)0.43195 (7)0.04817 (17)
S10.10639 (7)0.68302 (8)0.40531 (6)0.03720 (14)
S20.18135 (7)0.36527 (10)0.22498 (7)0.04701 (18)
C10.0130 (3)0.6793 (3)0.4611 (2)0.0332 (5)
C20.3046 (3)0.4505 (3)0.3055 (3)0.0387 (6)
N10.0940 (3)0.6801 (3)0.5013 (3)0.0462 (6)
N20.3926 (3)0.5077 (4)0.3607 (4)0.0615 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg0.02612 (7)0.05275 (11)0.03471 (8)0.0000.00789 (5)0.000
K0.0336 (3)0.0491 (4)0.0637 (4)0.0053 (3)0.0169 (3)0.0164 (3)
S10.0294 (3)0.0399 (3)0.0426 (3)0.0077 (2)0.0107 (2)0.0070 (3)
S20.0350 (3)0.0567 (5)0.0486 (4)0.0053 (3)0.0108 (3)0.0162 (3)
C10.0307 (11)0.0271 (11)0.0399 (12)0.0003 (9)0.0070 (9)0.0026 (9)
C20.0304 (12)0.0385 (15)0.0475 (14)0.0066 (10)0.0115 (10)0.0066 (11)
N10.0408 (13)0.0437 (14)0.0586 (17)0.0011 (11)0.0215 (12)0.0039 (12)
N20.0346 (14)0.0530 (19)0.087 (3)0.0011 (12)0.0023 (14)0.0011 (16)
Geometric parameters (Å, º) top
Hg—S22.5380 (8)K—Kiv4.4669 (15)
Hg—S2i2.5380 (8)S1—C11.665 (3)
Hg—S1i2.5550 (7)S1—Kv3.5316 (12)
Hg—S12.5551 (7)S2—C21.656 (3)
K—N2ii2.816 (4)S2—Kviii3.4865 (12)
K—N1iii2.823 (3)C1—N11.152 (4)
K—N1iv2.860 (3)C1—Kiv3.529 (3)
K—N2v3.031 (5)C2—N21.153 (5)
K—C2vi3.408 (3)C2—Kviii3.408 (3)
K—C2v3.414 (3)C2—Kv3.414 (3)
K—S13.4466 (11)N1—Kix2.823 (3)
K—S2vi3.4865 (12)N1—Kiv2.860 (3)
K—S1v3.5315 (12)N2—Kx2.816 (4)
K—C1iv3.529 (3)N2—Kv3.031 (5)
K—Kvii4.3913 (14)
S2—Hg—S2i110.21 (4)S1—K—C1iv131.89 (5)
S2—Hg—S1i114.67 (3)S2vi—K—C1iv161.89 (6)
S2i—Hg—S1i105.02 (2)S1v—K—C1iv121.11 (5)
S2—Hg—S1105.02 (2)N2ii—K—Kvii122.43 (8)
S2i—Hg—S1114.67 (3)N1iii—K—Kvii39.71 (6)
S1i—Hg—S1107.50 (4)N1iv—K—Kvii39.09 (6)
N2ii—K—N1iii161.33 (10)N2v—K—Kvii86.73 (7)
N2ii—K—N1iv83.58 (10)C2vi—K—Kvii117.52 (6)
N1iii—K—N1iv78.80 (9)C2v—K—Kvii70.39 (6)
N2ii—K—N2v80.42 (13)S1—K—Kvii159.02 (4)
N1iii—K—N2v100.55 (9)S2vi—K—Kvii116.01 (3)
N1iv—K—N2v74.44 (9)S1v—K—Kvii97.01 (3)
N2ii—K—C2vi91.55 (12)C1iv—K—Kvii53.40 (5)
N1iii—K—C2vi94.70 (8)N2ii—K—Kiv41.99 (10)
N1iv—K—C2vi128.94 (9)N1iii—K—Kiv136.17 (7)
N2v—K—C2vi154.57 (9)N1iv—K—Kiv75.38 (6)
N2ii—K—C2v98.21 (12)N2v—K—Kiv38.43 (7)
N1iii—K—C2v81.16 (8)C2vi—K—Kiv129.03 (5)
N1iv—K—C2v68.68 (8)C2v—K—Kiv56.66 (5)
N2v—K—C2v19.47 (8)S1—K—Kiv73.46 (2)
C2vi—K—C2v161.02 (7)S2vi—K—Kiv136.14 (3)
N2ii—K—S172.82 (7)S1v—K—Kiv97.61 (3)
N1iii—K—S1125.84 (7)C1iv—K—Kiv58.43 (5)
N1iv—K—S1148.83 (6)Kvii—K—Kiv107.42 (3)
N2v—K—S181.66 (7)C1—S1—Hg97.06 (10)
C2vi—K—S172.91 (5)C1—S1—K96.25 (9)
C2v—K—S194.40 (6)Hg—S1—K133.66 (3)
N2ii—K—S2vi111.59 (10)C1—S1—Kv102.56 (10)
N1iii—K—S2vi80.81 (6)Hg—S1—Kv102.38 (3)
N1iv—K—S2vi146.21 (6)K—S1—Kv117.55 (2)
N2v—K—S2vi136.13 (7)C2—S2—Hg98.59 (10)
C2vi—K—S2vi27.76 (5)C2—S2—Kviii73.50 (11)
C2v—K—S2vi133.75 (5)Hg—S2—Kviii109.15 (3)
S1—K—S2vi63.89 (2)N1—C1—S1178.0 (3)
N2ii—K—S1v127.71 (8)N1—C1—Kiv46.43 (18)
N1iii—K—S1v68.47 (7)S1—C1—Kiv131.85 (12)
N1iv—K—S1v123.33 (7)N2—C2—S2178.2 (3)
N2v—K—S1v68.09 (7)N2—C2—Kviii100.5 (3)
C2vi—K—S1v99.48 (6)S2—C2—Kviii78.74 (12)
C2v—K—S1v61.72 (5)N2—C2—Kv61.1 (3)
S1—K—S1v62.45 (2)S2—C2—Kv119.82 (14)
S2vi—K—S1v72.06 (2)Kviii—C2—Kv160.38 (10)
N2ii—K—C1iv71.53 (9)C1—N1—Kix127.6 (2)
N1iii—K—C1iv92.39 (7)C1—N1—Kiv116.6 (2)
N1iv—K—C1iv16.96 (7)Kix—N1—Kiv101.20 (9)
N2v—K—C1iv61.48 (8)C2—N2—Kx149.3 (3)
C2vi—K—C1iv138.43 (8)C2—N2—Kv99.4 (3)
C2v—K—C1iv60.50 (7)Kx—N2—Kv99.58 (13)
Symmetry codes: (i) x, y, z+1/2; (ii) x1/2, y+1/2, z; (iii) x+1/2, y+1/2, z; (iv) x, y+2, z+1; (v) x+1/2, y+3/2, z+1; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y+5/2, z+1; (viii) x+1/2, y1/2, z+1/2; (ix) x1/2, y1/2, z; (x) x+1/2, y1/2, z.
 

Acknowledgements

FK thanks the DFG for his Heisenberg professorship, Dr Harms for X-ray measurement time and Julia Hassler for the sample preparation.

References

First citationAltermatt, D., Arend, H., Gramlich, V., Niggli, A. & Petter, W. (1984). Acta Cryst. B40, 347–350.  CrossRef CAS IUCr Journals Google Scholar
First citationBagautdinov, B. S. & Brown, I. D. (2000). J. Phys. Condens. Matter, 12, 8111–8125.  CrossRef CAS Google Scholar
First citationBeauchamp, A. L. & Goutier, D. (1972). Can. J. Chem. 50, 977–981.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDickinson, R. G. (1922). J. Am. Chem. Soc. 44, 744–786.  Google Scholar
First citationGerlach, P. N. & Powell, B. M. (1986). J. Chem. Phys. 85, 6004–6009.  CrossRef CAS Google Scholar
First citationHermes, O. (1866). J. Prakt. Chem. 97, 465–482.  CrossRef Google Scholar
First citationJeffery, J. W. & Rose, K. M. (1968). Acta Cryst. B24, 653–662.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKlüfers, P., Fuess, H. & Haussühl, S. (1981). Z. Kristallogr. 156, 255–263.  Google Scholar
First citationLarbot, A. & Beauchamp, A. L. (1973). Rev. Chim. Miner. 10, 465–472.  CAS Google Scholar
First citationLinde, S. A., Mikhailova, A. Y., Pakhomov, V. I., Kirilenko, V. V. & Shulga, V. G. (1983). Koord. Khim. 9, 998–999.  CAS Google Scholar
First citationPakhomov, V. I. & Fedorov, P. M. (1973). Sov. Phys. Crystallogr. 17, 833–836.  Google Scholar
First citationPakhomov, V. I., Fedorova, N. M. & Ivanova Korfini, I. N. (1978). Sov. J. Coord. Chem. 4, 1356–1357.  Google Scholar
First citationPakhomov, V. I., Goryunov, A. V., Gladkii, V. V., Ivanova Korfini, I. N. & Kallaev, S. N. (1992b). Russ. J. Inorg. Chem. 37, 731–734.  Google Scholar
First citationPakhomov, V. I., Goryunov, A. V., Ivanova Korfini, I. N., Boguslavskii, A. A. & Lotfullin, R. S. (1992a). Russ. J. Inorg. Chem. 37, 259–261.  Google Scholar
First citationPinheiro, C. B., Jório, A., Pimenta, M. A. & Speziali, N. L. (1998). Acta Cryst. B54, 197–203.  CrossRef CAS IUCr Journals Google Scholar
First citationRosenheim, A. & Cohn, R. (1901). Z. Anorg. Allg. Chem. 27, 270–303.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2011). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTramer, A. (1962). J. Chem. Phys. 59, 637–654.  CAS Google Scholar
First citationWeil, M. & Häusler, T. (2014). Acta Cryst. E70, i46.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZandbergen, H. W., Verschoor, G. C. & IJdo, D. J. W. (1979). Acta Cryst. B35, 1425–1427.  CrossRef CAS IUCr Journals Google Scholar
First citationZvonkova, Z. V. (1952). Zh. Fiz. Khim. 26, 1798–1803.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds