research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of taxodione isolated from Taxodium ascendens (B.)

CROSSMARK_Color_square_no_text.svg

aSchool of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China, and bCollege of Chemistry and Life Science, Qinghai University for Nationalities, Xining 810007, People's Republic of China
*Correspondence e-mail: maxinhua138@163.com, xzyang@mail.scuec.edu.cn

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 17 June 2017; accepted 26 June 2017; online 30 June 2017)

The title compound [systematic name: (4bS)-4-hy­droxy-2-isopropyl-4b,8,8-trimethyl-4b,5,6,7,8,8a-hexa­hydro­phenanthrene-3,9-dione], C20H26O3, is an abietane-type diterpene, which was isolated from Taxodium ascendens (B.). In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming supra­molecular chains propagating along the [001] direction.

1. Chemical context

Taxodium ascendens Brongn belongs to the plant family Taxodiaceae and is native to the south-east of North America and can grow up to 25 m in height. It has yellow or orange–yellow seedballs, which mature in October. The plant is widely spread over southern China (e.g., Zhejiang, Henan, Jiangsu, Hubei and Yunnan Provinces) and because of its tolerance of water and drought, it has been used in the landscape at watersides. Previous chemical investigations of extracts isolated from the seeds of Taxodium ascendens (B.) revealed the presence of diterpenoids with an abietane framework, including as 6,7-de­hydro­royleanone, salvinolone and xanthoperol (Kusumoto et al., 2009[Kusumoto, N., Ashitani, T., Hayasaka, Y., Murayama, T., Ogiyama, K. & Takahashi, K. (2009). J. Chem. Ecol. 35, 635-642.]; González, 2015[González, M. A. (2015). Nat. Prod. Rep. 32, 684-704.]). Terpenoids, and in particular diterpenoids, are one of the most important classes of secondary metabolites found in the family Taxodiaceae, and have captured much attention in recent years due to their diverse bioactivities (Burmistrova et al., 2013[Burmistrova, O., Simões, M. F., Rijo, P., Quintana, J., Bermejo, J. & Estévez, F. (2013). J. Nat. Prod. 76, 1413-1423.]; Iwamoto et al., 2001[Iwamoto, M., Ohtsu, H., Tokuda, H., Nishino, H., Matsunaga, S. & Tanaka, R. (2001). Bioorg. Med. Chem. 9, 1911-1921.]). In addition, the plant contains lignans and flavonoids (Si et al., 2001[Si, Y., Zhang, C.-K., Yao, X.-H. & Tu, Z.-B. (2001). J. Wuhan Bot. Res, 19, 517-520.]; Otto & Wilde, 2001[Otto, A. & Wilde, V. (2001). Bot. Rev. 67, 141-238.]) and anti­bacterial and inhibitory activity has been reported (Starks et al., 2014[Starks, C. M., Norman, V. L., Williams, R. B., Goering, M. G., Rice, S. M., O'Neil-Johnson, M. & Eldridge, G. R. (2014). Nat. Prod. Commun. 9, 1129-1130.]; Zhang et al., 2009[Zhang, Y. M., Tan, N. H., Zeng, G. Z., Adebayo, A. H. & Ji, C. J. (2009). Fitoterapia, 80, 361-363.]). A detailed phytochemical investigation of a petroleum extract of the seeds of Taxodium ascendens Brongn has been carried out and a series of diterpenoids have been isolated, including the title compound taxodione, that show many biological properties including anti­bacterial (Yang et al., 2001[Yang, Z., Kitano, Y., Chiba, K., Shibata, N., Kurokawa, H., Doi, Y., Arakawa, Y. & Tada, M. (2001). Bioorg. Med. Chem. 9, 347-356.]), anti­oxidant (Kolak et al., 2009[Kolak, U., Kabouche, A., Öztürk, M., Kabouche, Z., Topçu, G. & Ulubelen, A. (2009). Phytochem. Anal. 20, 320-327.]), anti­fungal (Topçu & Gören, 2007[Topçu, G. & Gören, A. C. (2007). Rec. Nat. Prod. 1, 1-16.]), and anti­cholinesterase activities (Topcu et al., 2013[Topcu, G., Kolak, U., Ozturk, M., Boga, M., Hatipoglu, S. D., Bahadori, F., Culhaoglu, B. & Dirmenci, T. (2013). Nat. Prod. J, 3, 3-9.]). Moreover, cytotoxic and tumor inhibitory properties of taxodione have been investigated by in vivo experiments (Abou Dahab et al., 2007[Abou Dahab, M. A., El-Bahr, M. K., Taha, H. S., Habib, A. M., Bekheet, S. A., Gabr, A. M. M. & Refaat, A. (2007). J. Appl. Sci. Res. 3, 1987-1996.]). Herein we present the crystal structure of the title compound in order to establish unambiguously the stereochemical features of this natural product. The compound is soluble in chloro­form but has poor solubility in methanol.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title abietane diterpene is shown in Fig. 1[link]. The structure contains one hydroxyl group located at atom C11, two ketone groups at C6 and C12 and three double bonds located between atoms C7 and C8, C9 and C11, and C13 and C14. An intra­molecular O2—H2⋯O3 hydrogen bond (Fig. 1[link]) stabilizes the mol­ecular structure. The C14—C13—C12—C11 [−175.83 (19)°], C2—C13—C12—C17 [−168.47 (17)°], C3—C2—C1—C10 [178.98 (16)°] and C13—C2—C1—C6 [−169.12 (16)] torsion angles describe the geometry at the junctions of the three rings.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing 50% probability displacement ellipsoids. A packing diagram of the title compound, with hydrogen bonds shown as dashed lines.

3. Supra­molecular features

In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming chains along [001] (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.82 2.06 2.554 (2) 118
C11—H11⋯O3i 0.93 2.63 3.502 (2) 156
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The packing of the title compound.

4. Database survey

A search of Cambridge Structural Database found no compounds with a similar structure to the title compound but a series of abietane-type diterpenoids has been reported such as horminone (Xiao et al., 2000[Xiao, C., Ren, A.-L., Lin, H.-W., Qing, L.-X. & Feng, J.-D. (2000). Chin. J. Struct. Chem. 19, 122-125.]) and 7α,12-di­hydroxy-8,12-abietadiene-11,14-dione [or (4bS,8aS,10R)-3,10-dihy­droxy-2-isopropyl-4b,8,8-trimethyl-1,4,4b,5,6,7,8,8a,9,10-deca­hydro­phenanthrene-1,4-dione] (Razak et al., 2010[Razak, I. A., Salae, A. W., Chantrapromma, S., Karalai, C. & Fun, H.-K. (2010). Acta Cryst. E66, o1566-o1567.]).

5. Synthesis and crystallization

Taxodione was isolated from the seeds of Taxodium ascendens collected in Wuhan, China, in December 2015 (SC0725). The air-dried seeds of Taxodium ascendens (4.6 kg) were extracted with 95% EtOH and then treated with petroleum ether, ethyl acetate and n-butyl alcohol to give a PE extract (352 g), EtOAc extract (343 g) and n-BuOH extract (372 g). The EtOAc extract (343 g) was subjected to normal-phase silica gel column chromatography (300-400 mesh) with a gradient solvent system of CH2Cl2–MeOH (1:0–0:1, v/v, containing 0.1% formic acid) to give fifteen major fractions F1–F15. F5 (13 g) was subjected to sephadex LH-20 CC (CH2Cl2–MeOH, 3:1, containing 0.1% formic acid) to afford four fractions F5-1–F5-4. F5-2 was purified by semipreparative HPLC (CNCH3/H2O, 10:90→100:0, 40 min, containing 0.1% formic acid in both phases) to give a yellow solid, which was recrystallized from CH2Cl2:MeOH (7:1) affording yellow prismatic crystals suitable for X-ray diffraction analysis. For the 1H and 13C NMR data of taxodione, see Masahiro et al. (2010[Masahiro, T., Jun, K., Takashi, Y., Tomoyuki, O. & Yusuke, M. (2010). Chem. Pharm. Bull. 58, 818-824.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were positioned with idealized geometry and refined isotropically using a riding model with C—H = 0.97 Å (–CH3, allowing for rotation), C—H = 0.98 Å (–CH2), C—H = 0.99 Å, (–CH), C–H = 0.94 Å (–CH2), and Uiso(H) = 1.5Ueq(CH3) and Uiso(H) = 1.2Ueq(CH,CH2), with the exception of the O—H hydrogen atom, which was refined freely, but with Uiso(H) = 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula C20H26O3
Mr 314.41
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 9.5008 (15), 13.220 (2), 13.584 (2)
V3) 1706.1 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 12903, 3355, 3111
Rint 0.046
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.088, 1.05
No. of reflections 3355
No. of parameters 215
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.20
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(4bS)-4-Hydroxy-2-isopropyl-4b,8,8-trimethyl-4b,5,6,7,8,8a-hexahydrophenanthrene-3,9-dione top
Crystal data top
C20H26O3Dx = 1.224 Mg m3
Mr = 314.41Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 6770 reflections
a = 9.5008 (15) Åθ = 2.6–30.9°
b = 13.220 (2) ŵ = 0.08 mm1
c = 13.584 (2) ÅT = 296 K
V = 1706.1 (5) Å3Prism, yellow
Z = 40.30 × 0.20 × 0.20 mm
F(000) = 680
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.046
φ and ω scansθmax = 26.0°, θmin = 2.2°
12903 measured reflectionsh = 1111
3355 independent reflectionsk = 1616
3111 reflections with I > 2σ(I)l = 1616
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.2288P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.17 e Å3
3355 reflectionsΔρmin = 0.20 e Å3
215 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.062 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.17963 (19)0.52283 (12)1.10546 (10)0.0539 (4)
O10.2584 (2)0.83099 (11)0.64710 (11)0.0647 (5)
C50.2103 (3)1.03778 (15)0.89721 (18)0.0541 (6)
H5A0.29721.03190.93430.065*
H5B0.19471.10900.88410.065*
C40.0911 (3)0.99858 (15)0.95940 (19)0.0583 (7)
H4A0.00311.00600.92380.070*
H4B0.08471.03801.01940.070*
C30.1139 (3)0.88729 (15)0.98514 (16)0.0484 (5)
H3A0.03590.86391.02520.058*
H3B0.19920.88081.02380.058*
C20.12591 (19)0.81999 (13)0.89322 (13)0.0326 (4)
C130.1741 (2)0.71188 (13)0.91885 (13)0.0311 (4)
C120.2329 (2)0.65054 (12)0.83944 (13)0.0322 (4)
C170.2566 (2)0.54251 (13)0.85234 (14)0.0363 (4)
H170.28720.50510.79850.044*
C160.2365 (2)0.49443 (13)0.93772 (13)0.0349 (4)
C180.2533 (2)0.38153 (13)0.95424 (15)0.0409 (5)
H180.30600.37241.01560.049*
C190.3352 (3)0.32924 (15)0.87312 (19)0.0558 (6)
H19A0.42610.36030.86660.084*
H19B0.28480.33530.81210.084*
H19C0.34650.25900.88920.084*
C200.1092 (3)0.33257 (16)0.96823 (19)0.0541 (6)
H20A0.05610.33820.90840.081*
H20B0.05990.36631.02050.081*
H20C0.12100.26250.98470.081*
C140.1554 (2)0.66396 (14)1.00567 (14)0.0358 (4)
O20.10090 (19)0.70666 (12)1.08780 (10)0.0547 (4)
H20.09250.66351.13070.082*
C150.1912 (2)0.55593 (14)1.02095 (14)0.0369 (4)
C60.2279 (2)0.98258 (13)0.79930 (15)0.0403 (5)
C80.1081 (3)1.01246 (17)0.72952 (19)0.0573 (6)
H8A0.11650.97510.66920.086*
H8B0.11351.08360.71580.086*
H8C0.01930.99740.75990.086*
C90.3670 (3)1.01768 (17)0.7533 (2)0.0574 (6)
H9A0.44380.99880.79540.086*
H9B0.36571.08990.74560.086*
H9C0.37860.98640.69000.086*
C10.2375 (2)0.86693 (12)0.82138 (13)0.0320 (4)
H10.32730.85910.85610.038*
C100.2524 (2)0.80036 (13)0.73123 (13)0.0387 (4)
C110.2643 (2)0.69172 (13)0.75146 (13)0.0389 (4)
H110.29490.64930.70120.047*
C70.0201 (2)0.80774 (16)0.84503 (18)0.0471 (5)
H7A0.08050.77010.88820.071*
H7B0.01040.77230.78370.071*
H7C0.06020.87330.83320.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0756 (11)0.0484 (8)0.0378 (8)0.0038 (8)0.0044 (8)0.0116 (7)
O10.1165 (15)0.0410 (7)0.0366 (7)0.0117 (10)0.0151 (10)0.0065 (6)
C50.0723 (16)0.0303 (9)0.0596 (13)0.0035 (10)0.0031 (12)0.0107 (9)
C40.0842 (18)0.0339 (11)0.0567 (13)0.0080 (11)0.0172 (13)0.0137 (10)
C30.0671 (15)0.0355 (10)0.0427 (11)0.0047 (10)0.0112 (11)0.0102 (9)
C20.0355 (9)0.0279 (8)0.0345 (9)0.0024 (7)0.0033 (8)0.0043 (7)
C130.0319 (9)0.0296 (8)0.0319 (9)0.0002 (7)0.0010 (7)0.0032 (7)
C120.0353 (9)0.0287 (8)0.0325 (8)0.0020 (7)0.0003 (7)0.0013 (7)
C170.0443 (10)0.0285 (8)0.0361 (9)0.0015 (8)0.0006 (9)0.0037 (7)
C160.0360 (10)0.0288 (8)0.0398 (9)0.0019 (7)0.0065 (8)0.0030 (7)
C180.0463 (12)0.0293 (8)0.0471 (10)0.0021 (9)0.0104 (10)0.0079 (8)
C190.0617 (14)0.0276 (9)0.0780 (16)0.0029 (9)0.0017 (12)0.0003 (10)
C200.0544 (14)0.0397 (11)0.0681 (14)0.0118 (10)0.0038 (11)0.0094 (11)
C140.0364 (10)0.0369 (9)0.0341 (9)0.0001 (8)0.0029 (7)0.0025 (7)
O20.0766 (12)0.0513 (9)0.0364 (8)0.0070 (8)0.0202 (8)0.0013 (7)
C150.0382 (10)0.0385 (9)0.0340 (10)0.0063 (8)0.0013 (8)0.0053 (8)
C60.0446 (11)0.0264 (8)0.0499 (11)0.0006 (8)0.0003 (9)0.0003 (8)
C80.0666 (15)0.0361 (10)0.0693 (15)0.0112 (10)0.0097 (12)0.0083 (10)
C90.0596 (15)0.0385 (11)0.0740 (15)0.0057 (10)0.0103 (13)0.0092 (11)
C10.0332 (9)0.0260 (8)0.0367 (9)0.0030 (7)0.0013 (8)0.0014 (7)
C100.0497 (11)0.0314 (8)0.0349 (9)0.0050 (9)0.0069 (9)0.0023 (7)
C110.0549 (12)0.0294 (8)0.0325 (8)0.0058 (8)0.0059 (9)0.0046 (7)
C70.0344 (10)0.0387 (10)0.0683 (14)0.0030 (8)0.0027 (10)0.0005 (10)
Geometric parameters (Å, º) top
O3—C151.233 (2)C19—H19A0.9600
O1—C101.214 (2)C19—H19B0.9600
C5—C41.506 (4)C19—H19C0.9600
C5—C61.526 (3)C20—H20A0.9600
C5—H5A0.9700C20—H20B0.9600
C5—H5B0.9700C20—H20C0.9600
C4—C31.528 (3)C14—O21.353 (2)
C4—H4A0.9700C14—C151.483 (3)
C4—H4B0.9700O2—H20.8200
C3—C21.538 (2)C6—C81.533 (3)
C3—H3A0.9700C6—C91.534 (3)
C3—H3B0.9700C6—C11.561 (2)
C2—C131.541 (2)C8—H8A0.9600
C2—C71.542 (3)C8—H8B0.9600
C2—C11.569 (3)C8—H8C0.9600
C13—C141.350 (3)C9—H9A0.9600
C13—C121.461 (2)C9—H9B0.9600
C12—C111.347 (2)C9—H9C0.9600
C12—C171.456 (2)C1—C101.515 (2)
C17—C161.336 (3)C1—H10.9800
C17—H170.9300C10—C111.467 (2)
C16—C151.458 (3)C11—H110.9300
C16—C181.518 (2)C7—H7A0.9600
C18—C191.515 (3)C7—H7B0.9600
C18—C201.527 (3)C7—H7C0.9600
C18—H180.9800
C4—C5—C6114.00 (18)C18—C20—H20B109.5
C4—C5—H5A108.8H20A—C20—H20B109.5
C6—C5—H5A108.8C18—C20—H20C109.5
C4—C5—H5B108.8H20A—C20—H20C109.5
C6—C5—H5B108.8H20B—C20—H20C109.5
H5A—C5—H5B107.6C13—C14—O2125.06 (17)
C5—C4—C3110.7 (2)C13—C14—C15122.97 (17)
C5—C4—H4A109.5O2—C14—C15111.96 (16)
C3—C4—H4A109.5C14—O2—H2109.5
C5—C4—H4B109.5O3—C15—C16123.39 (18)
C3—C4—H4B109.5O3—C15—C14116.86 (18)
H4A—C4—H4B108.1C16—C15—C14119.75 (16)
C4—C3—C2112.45 (18)C5—C6—C8109.54 (18)
C4—C3—H3A109.1C5—C6—C9107.74 (18)
C2—C3—H3A109.1C8—C6—C9108.04 (18)
C4—C3—H3B109.1C5—C6—C1107.90 (16)
C2—C3—H3B109.1C8—C6—C1114.51 (16)
H3A—C3—H3B107.8C9—C6—C1108.91 (16)
C3—C2—C13112.04 (15)C6—C8—H8A109.5
C3—C2—C7109.80 (17)C6—C8—H8B109.5
C13—C2—C7105.41 (15)H8A—C8—H8B109.5
C3—C2—C1109.04 (15)C6—C8—H8C109.5
C13—C2—C1107.86 (14)H8A—C8—H8C109.5
C7—C2—C1112.67 (15)H8B—C8—H8C109.5
C14—C13—C12115.76 (15)C6—C9—H9A109.5
C14—C13—C2126.42 (16)C6—C9—H9B109.5
C12—C13—C2117.50 (15)H9A—C9—H9B109.5
C11—C12—C17117.98 (16)C6—C9—H9C109.5
C11—C12—C13121.04 (15)H9A—C9—H9C109.5
C17—C12—C13120.97 (15)H9B—C9—H9C109.5
C16—C17—C12123.29 (17)C10—C1—C6114.79 (15)
C16—C17—H17118.4C10—C1—C2109.64 (14)
C12—C17—H17118.4C6—C1—C2117.86 (15)
C17—C16—C15116.75 (16)C10—C1—H1104.3
C17—C16—C18125.52 (17)C6—C1—H1104.3
C15—C16—C18117.70 (16)C2—C1—H1104.3
C19—C18—C16113.28 (17)O1—C10—C11119.97 (17)
C19—C18—C20110.95 (18)O1—C10—C1124.87 (17)
C16—C18—C20109.92 (17)C11—C10—C1115.13 (15)
C19—C18—H18107.5C12—C11—C10123.03 (16)
C16—C18—H18107.5C12—C11—H11118.5
C20—C18—H18107.5C10—C11—H11118.5
C18—C19—H19A109.5C2—C7—H7A109.5
C18—C19—H19B109.5C2—C7—H7B109.5
H19A—C19—H19B109.5H7A—C7—H7B109.5
C18—C19—H19C109.5C2—C7—H7C109.5
H19A—C19—H19C109.5H7A—C7—H7C109.5
H19B—C19—H19C109.5H7B—C7—H7C109.5
C18—C20—H20A109.5
C6—C5—C4—C360.6 (3)C17—C16—C15—C146.4 (3)
C5—C4—C3—C258.9 (3)C18—C16—C15—C14172.15 (17)
C4—C3—C2—C13170.16 (19)C13—C14—C15—O3174.55 (19)
C4—C3—C2—C773.1 (2)O2—C14—C15—O36.4 (3)
C4—C3—C2—C150.8 (2)C13—C14—C15—C165.8 (3)
C3—C2—C13—C1426.0 (3)O2—C14—C15—C16173.20 (18)
C7—C2—C13—C1493.4 (2)C4—C5—C6—C872.5 (2)
C1—C2—C13—C14146.02 (18)C4—C5—C6—C9170.2 (2)
C3—C2—C13—C12160.72 (17)C4—C5—C6—C152.8 (3)
C7—C2—C13—C1279.9 (2)C5—C6—C1—C10178.84 (18)
C1—C2—C13—C1240.7 (2)C8—C6—C1—C1056.6 (2)
C14—C13—C12—C11175.83 (19)C9—C6—C1—C1064.5 (2)
C2—C13—C12—C1110.2 (3)C5—C6—C1—C247.3 (2)
C14—C13—C12—C175.5 (3)C8—C6—C1—C274.9 (2)
C2—C13—C12—C17168.47 (17)C9—C6—C1—C2164.01 (18)
C11—C12—C17—C16176.3 (2)C3—C2—C1—C10178.98 (16)
C13—C12—C17—C165.0 (3)C13—C2—C1—C1057.08 (18)
C12—C17—C16—C151.2 (3)C7—C2—C1—C1058.84 (19)
C12—C17—C16—C18177.20 (19)C3—C2—C1—C647.2 (2)
C17—C16—C18—C1916.5 (3)C13—C2—C1—C6169.12 (16)
C15—C16—C18—C19165.18 (19)C7—C2—C1—C675.0 (2)
C17—C16—C18—C20108.3 (2)C6—C1—C10—O10.8 (3)
C15—C16—C18—C2070.1 (2)C2—C1—C10—O1136.1 (2)
C12—C13—C14—O2179.14 (19)C6—C1—C10—C11178.87 (18)
C2—C13—C14—O25.7 (3)C2—C1—C10—C1145.8 (2)
C12—C13—C14—C150.3 (3)C17—C12—C11—C10176.54 (19)
C2—C13—C14—C15173.14 (18)C13—C12—C11—C104.8 (3)
C17—C16—C15—O3174.0 (2)O1—C10—C11—C12167.3 (2)
C18—C16—C15—O37.5 (3)C1—C10—C11—C1214.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.822.062.554 (2)118
C11—H11···O3i0.932.633.502 (2)156
Symmetry code: (i) x+1/2, y+1, z1/2.
 

Funding information

Funding for this research was provided by: Natural Science Foundation of Qinghai Province (grant No. 2016-ZJ-908); National Natural Science Foundation of China grant (grant No. 81573561).

References

First citationAbou Dahab, M. A., El-Bahr, M. K., Taha, H. S., Habib, A. M., Bekheet, S. A., Gabr, A. M. M. & Refaat, A. (2007). J. Appl. Sci. Res. 3, 1987–1996.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurmistrova, O., Simões, M. F., Rijo, P., Quintana, J., Bermejo, J. & Estévez, F. (2013). J. Nat. Prod. 76, 1413–1423.  CrossRef CAS PubMed Google Scholar
First citationGonzález, M. A. (2015). Nat. Prod. Rep. 32, 684–704.  PubMed Google Scholar
First citationIwamoto, M., Ohtsu, H., Tokuda, H., Nishino, H., Matsunaga, S. & Tanaka, R. (2001). Bioorg. Med. Chem. 9, 1911–1921.  CrossRef PubMed CAS Google Scholar
First citationKolak, U., Kabouche, A., Öztürk, M., Kabouche, Z., Topçu, G. & Ulubelen, A. (2009). Phytochem. Anal. 20, 320–327.  CrossRef PubMed CAS Google Scholar
First citationKusumoto, N., Ashitani, T., Hayasaka, Y., Murayama, T., Ogiyama, K. & Takahashi, K. (2009). J. Chem. Ecol. 35, 635–642.  CrossRef PubMed CAS Google Scholar
First citationMasahiro, T., Jun, K., Takashi, Y., Tomoyuki, O. & Yusuke, M. (2010). Chem. Pharm. Bull. 58, 818–824.  PubMed Google Scholar
First citationOtto, A. & Wilde, V. (2001). Bot. Rev. 67, 141–238.  CrossRef Google Scholar
First citationRazak, I. A., Salae, A. W., Chantrapromma, S., Karalai, C. & Fun, H.-K. (2010). Acta Cryst. E66, o1566–o1567.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSi, Y., Zhang, C.-K., Yao, X.-H. & Tu, Z.-B. (2001). J. Wuhan Bot. Res, 19, 517–520.  Google Scholar
First citationStarks, C. M., Norman, V. L., Williams, R. B., Goering, M. G., Rice, S. M., O'Neil-Johnson, M. & Eldridge, G. R. (2014). Nat. Prod. Commun. 9, 1129–1130.  CAS PubMed Google Scholar
First citationTopçu, G. & Gören, A. C. (2007). Rec. Nat. Prod. 1, 1–16.  Google Scholar
First citationTopcu, G., Kolak, U., Ozturk, M., Boga, M., Hatipoglu, S. D., Bahadori, F., Culhaoglu, B. & Dirmenci, T. (2013). Nat. Prod. J, 3, 3–9.  CAS Google Scholar
First citationXiao, C., Ren, A.-L., Lin, H.-W., Qing, L.-X. & Feng, J.-D. (2000). Chin. J. Struct. Chem. 19, 122–125.  Google Scholar
First citationYang, Z., Kitano, Y., Chiba, K., Shibata, N., Kurokawa, H., Doi, Y., Arakawa, Y. & Tada, M. (2001). Bioorg. Med. Chem. 9, 347–356.  CrossRef PubMed CAS Google Scholar
First citationZhang, Y. M., Tan, N. H., Zeng, G. Z., Adebayo, A. H. & Ji, C. J. (2009). Fitoterapia, 80, 361–363.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds