research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

C2-isomer of [Pd(tfd)]6 [tfd is S2C2(CF3)2] as its benzene solvate: a new member of the small but growing class of homoleptic palladium(II) monodi­thio­lenes in the form of hexa­meric cubes

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, Ontario, L5L 1C6, Canada, and bDepartment of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
*Correspondence e-mail: ulrich.fekl@utoronto.ca

Edited by M. Zeller, Purdue University, USA (Received 21 May 2017; accepted 26 May 2017; online 2 June 2017)

The title compound, hexa­kis­[μ3-1,2-bis­(tri­fluoro­meth­yl)ethene-1,2-di­thiol­ato]-octa­hedro-hexa­palladium(II), [Pd(C4F6S2)]6, crystallizes as its benzene solvate, [Pd(tfd)]6·2.5C6H6, where tfd is the di­thiol­ene S2C2(CF3)2. The mol­ecular structure of [Pd(tfd)]6 is of the hexa­metallic cube type seen previously in three examples of hexa­meric homoleptic palladium monodi­thiol­ene structures. All structures have in common: (a) the cluster closely approximates a cube containing six PdII atoms, one at the centre of each cube face; (b) 12 S atoms occupy the mid-points of all 12 cube edges, providing for each PdII atom an approximately square-planar S4 environment; (c) each S atom is part of a di­thiol­ene mol­ecule, where the size of the di­thiol­ene ligand necessitates that only sulfur atoms on adjacent cube edges can be part of the same di­thiol­ene. This general cube-type framework has so far given rise to two isomeric types: an S6-symmetric isomer and a C2-chiral type (two isomers that are enanti­omers of each other). The structure of [Pd(tfd)]6 is of the C2-type. Out of the 12 CF3 groups, three are rotationally disordered over two positions. Further, we answer the question of whether additional, previously undiscovered, isomers could follow from the cube rules (a) through (c) above. An exhaustive analysis shows that no additional isomers are possible and that the list of isomers (one S6 isomer, two C2 enanti­omers) is complete. Each isomer type could give rise to an unlimited number of compounds if the specific di­thiol­ene used is varied.

1. Chemical context

Metal–di­thiol­ene complexes (di­thiol­ene = S2C2R2) are relevant for a host of new materials and several metalloenzymes (Stiefel, 2004[Stiefel, E. I. (2004). Editor. Progress in Inorganic Chemistry, Vol. 52, Dithiolene Chemistry: Synthesis, Properties, and Applications. Hoboken, NJ: John Wiley and Sons.]; Harrison et al., 2006[Harrison, D. J., Nguyen, N., Lough, A. J. & Fekl, U. (2006). J. Am. Chem. Soc. 128, 11026-11027.]). Homoleptic complexes normally contain two or three di­thiol­enes per metal, for bis­dithiol­enes M(di­thiol­ene)2 or tris­dithiol­enes M(di­thiol­ene)3. Monomeric homoleptic monodi­thiol­enes of the composition M(di­thiol­ene)1 are unstable and polymerize or oligomerize. A dimeric complex [Ni(S2C2(CF3)2)]2 was recently computed (Dang et al., 2013[Dang, L., Shibl, M. F., Yang, X., Harrison, D. J., Alak, A., Lough, A. J., Fekl, U., Brothers, E. N. & Hall, M. B. (2013). Inorg. Chem. 52, 3711-3723.]). The class of hexa­meric homoleptic palladium monodi­thiol­enes [Pd(di­thiol­ene)]6, where di­thiol­ene = R2C2S2 with any substituent R was suggested by Stiefel and co-workers (Beswick et al., 2002[Beswick, C. L., Terroba, R., Greaney, M. A. & Stiefel, E. I. (2002). J. Am. Chem. Soc. 124, 9664-9665.]), and a charge-neutral hexa­nuclear complex was crystallographically characterized (as its toluene solvate) using the di­thiol­ene S2C2(COOMe)2. The partially reduced complex, with a tetra­phenyl­phospho­nium counter-ion, was later structurally characterized by Stibrany (2012[Stibrany, R. T. (2012). Private communication (refcode XARMOU). CCDC, Cambridge, England.]). A charge-neutral complex Pd(di­thiol­ene)6 with the di­thiol­ene S2C6H2(OMe)2 was reported by Rawson and co-workers (Wrixon et al., 2015[Wrixon, J. D., Hayward, J. J. & Rawson, J. M. (2015). Inorg. Chem. 54, 9384-9386.]). In this work, we generated [Pd(tfd)]6 [where tfd is the di­thiol­ene S2C2(CF3)2] from tfd and the di­benzyl­ideneacetone (dba) complex Pd2dba3 as described below. A crystal was obtained, and the structure was determined by X-ray crystallography.

[Scheme 1]

2. Structural commentary

The molecular structure of [Pd(tfd)]6 is shown in Fig. 1[link], where the second position for the rotationally disordered tri­fluoro­methyl groups (attached to C1, C13, and C14), the second position for disordered atom C15, as well as the benzene solvate mol­ecules are not displayed. The structure has approximate, non-crystallographic, C2 symmetry (C2 through Pd2 and Pd4). The gross features of this cube-like structure will be discussed first, followed by details such as bond lengths. The structure is of the hexa­metallic cube type seen previously in the hexa­meric homoleptic palladium monodi­thiol­enes characterized by Stiefel and co-workers (Beswick et al., 2002[Beswick, C. L., Terroba, R., Greaney, M. A. & Stiefel, E. I. (2002). J. Am. Chem. Soc. 124, 9664-9665.]), Stibrany (Stibrany, 2012[Stibrany, R. T. (2012). Private communication (refcode XARMOU). CCDC, Cambridge, England.]), and Rawson and co-workers (Wrixon et al. 2015[Wrixon, J. D., Hayward, J. J. & Rawson, J. M. (2015). Inorg. Chem. 54, 9384-9386.]). All structures have in common: (a) the cluster closely approximates a cube containing six PdII atoms, one at the centre of each cube face; (b) 12 S atoms occupy the midpoint of all 12 cube edges, providing for each PdII atom an approximately square-planar S4 environment; (c) each S atom is part of a di­thiol­ene mol­ecule, where the size of the di­thiol­ene ligand requires that only sulfurs on adjacent cube edges can be part of the same di­thiol­ene. This general cube-type framework has so far given rise to two isomer types: one S6-symmetric isomer seen for the charge-neutral palladium complex of S2C2(COOMe)2 (Beswick et al., 2002[Beswick, C. L., Terroba, R., Greaney, M. A. & Stiefel, E. I. (2002). J. Am. Chem. Soc. 124, 9664-9665.]) and for a partially reduced complex involving the same ligand (Stibrany, 2012[Stibrany, R. T. (2012). Private communication (refcode XARMOU). CCDC, Cambridge, England.]). The charge-neutral complex Pd(di­thiol­ene)6 with the di­thiol­ene S2C6H2(OMe)2 was found by Rawson and co-workers (Wrixon et al., 2015[Wrixon, J. D., Hayward, J. J. & Rawson, J. M. (2015). Inorg. Chem. 54, 9384-9386.]) to have a different, C2-symmetric, structure. The two isomeric types are shown here schematically, inscribed into a cube (Fig. 2[link]).

[Figure 1]
Figure 1
A view of the mol­ecular structure of [Pd(tfd)]6. Anisotropic displacement ellipsoids are shown at the 30% probability level. The ligand backbones are highlighted.
[Figure 2]
Figure 2
Isomers for [Pd(di­thiol­ene)]6.

The question of whether additional isomers are possible remained open and is answered here (Figs. 3[link] and 4[link]). The starting point is the constraint that 12 donor atoms (such as sulfur) reside at the midpoint of the 12 cube edges and that metal atoms (such as Pd) occupy the centres of all cube faces. The ligand length constraint forbids trans-spanning placement of a chelate bridge, and chelates can only bridge the short distance between adjacent edge positions. All possible isomers following from this framework are explored in an exhaustive fashion (Figs. 3[link] and 4[link]), following the initially arbitrary placement of the first bridge. It results that no additional isomers are possible and that the list of isomers (one S6 isomer, two C2 enanti­omers) is complete. It is worthwhile noting that the S6 isomer cannot have a dipole moment, by virtue of its inversion centre, while the C2 isomer has a dipole.

[Figure 3]
Figure 3
Graphical proof that only one S6 isomer and two (enanti­omeric) C2 isomers are possible for homoleptic palladium monodi­thiol­enes in the form of hexa­meric cubes, given the `cube rules' discussed in the text. Continues in Fig. 4[link].
[Figure 4]
Figure 4
Continued from Fig. 3[link].

With these general results for homoleptic square-planar metal-based short-span chelates in the fom of hexa­meric cubes [M(L2)]6 in hand, we return to discussing the details of the structure of [Pd(tfd)]6 (Fig. 1[link]). It is notable that not all Pd—S distances are the same. Shorter distances, on average 2.294 Å (12 values; standard deviation = 0.008 Å), are found for the Pd—S distances within an approximately planar C2S2Pd five-membered ring. Longer distances, on average 2.364 Å (12 values; standard deviation = 0.01 Å) are found for coordination of an S atom outside its own C2S2Pd ring onto a different PdII atom at an approximately right angle to the five-membered ring. All bonds to Pd2, the Pd atom at the bottom of the Pd5(tfd)4 C4-symmetric `box' (Fig. 2[link]) are long. All bonds to Pd4, the PdII atom in the Pd(tfd)2 `lid' are short. The charge on the tfd ligand can be seen from the C—C distance within the chelate ring, which is short (double bond) for the dianion (ene-di­thiol­ate; C—C distance of 1.35 Å or shorter expected) and long for monoanionic tfd (C—C bond order = 1.5; C—C distance of 1.38 Å expected), as is known from Tang et al. (2009[Tang, J. A., Kogut, E., Norton, D., Lough, A. J., McGarvey, B. R., Fekl, U. & Schurko, R. W. (2009). J. Phys. Chem. B, 113, 3298-3313.]) and Kogut et al. (2006[Kogut, E., Tang, J. A., Lough, A. J., Widdifield, C. M., Schurko, R. W. & Fekl, U. (2006). Inorg. Chem. 45, 8850-8852.]) (see analysis in Hosking et al., 2009[Hosking, S., Lough, A. J. & Fekl, U. (2009). Acta Cryst. E65, m759-m760.]). The chelate C—C bond distances in the current structure of [Pd(tfd)]6 average to 1.339 Å (six values; standard deviation = 0.006 Å) and indicate a dianionic chelate. Charge balance necessitates that all palladium atoms are in the oxidation state 2+, which is also supported by the coordination geometry around each PdII atom, which is approximately square-planar, as expected for a d8 metal centre. The structure may thus be described as a charge-neutral C4-symmetric Pd4(di­thiol­ene)4 tiara capped on one side with a Pd2+ dication and on the other side with a Pd(tfd)22− dianion. While the structure is likely more charge balanced than this zwitterionic description implies, this description suggests a direction of the dipole moment.

3. Supra­molecular features

Mol­ecules of [Pd(tfd)]6 and benzene solvate mol­ecules pack via contacting van der Waals surfaces. There are no particularly short inter­molecular distances (such as hydrogen bonds).

4. Database survey

The three structures discussed (EGIDIH: Beswick et al., 2002[Beswick, C. L., Terroba, R., Greaney, M. A. & Stiefel, E. I. (2002). J. Am. Chem. Soc. 124, 9664-9665.]; XARMOU: Stibrany, 2012[Stibrany, R. T. (2012). Private communication (refcode XARMOU). CCDC, Cambridge, England.]; YUQHUP: Wrixon et al., 2015[Wrixon, J. D., Hayward, J. J. & Rawson, J. M. (2015). Inorg. Chem. 54, 9384-9386.]) are the only structures for hexa­metallic compounds of the type [Pd(di­thiol­ene)]6 in CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), Version 5.38 including updates up to Feb 2017.

5. Synthesis and crystallization

General specifications: All manipulations were carried out under an inert (N2) atmosphere using standard glove box (M. Braun UniLab) and Schlenk techniques. NMR solvents were obtained from Cambridge Isotope Laboratories. Solvents were purified prior to use by vacuum distillation from purple sodium benzo­phenone ketyl. NMR data were obtained on a Bruker Avance III 400 MHz spectrometer. Pd2dba3 was obtained from Sigma–Aldrich. S2C2(CF3)2 (tfd) was synthesized as in Harrison et al. (2006[Harrison, D. J., Nguyen, N., Lough, A. J. & Fekl, U. (2006). J. Am. Chem. Soc. 128, 11026-11027.]).

Synthesis: A pyrex reaction vessel containing 10 ml of toluene, 80 mg of Pd2dba3 (175 µmol of Pd) and 80 µl (350 µmol) of tfd was heated to 353 K overnight. At the end of the reaction, the dark-red solution had turned an intense brown. Solvent and volatiles were removed under vacuum at room temperature, followed by heating to 383 K for 4 h, also under vacuum. NMR spectroscopy (C6D6 solvent) showed a complex mixture, as indicated by multiple 19F resonances, chiefly two intense quartets (JF–F = 14.5 Hz) at −58.7 ppm and −59.3 ppm but also a large number of overlapping signals between −56 and −58 ppm. C2-[Pd(tfd)]6 is clearly not the only species in solution, as it would give rise to six distinct fluorine signals (quartets) in equal intensity. It seems likely that multiple species are in equilibrium in the reaction mixture, and C2-[Pd(tfd)]6 might crystallize from non-polar solvents relatively early due to its dipole moment, which makes it less soluble in non-polar solvents compared to non-polar species. Dissolving the sample in a minimal amount of benzene, followed by storage at 285 K for one week, led to the formation of crystals suitable for X-ray crystallography.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The F atoms of three of the –CF3 groups were refined as disordered over two sets of sites with the ratios of refined occupancies being 0.898 (6):0.102 (6) for F1/F2/F3, 0.784 (7):0.216 (7) for F19/F20/F21 and 0.749 (9):0.251 (9) for F22/F23/F24. Both the major and minor components were refined with anisotropic displacement parameters. In the –CF3 group containing F19/F20/F21, the attached atom C15 was also refined over two sets of sites with occupancies of 0.784 (7) and 0.216 (7). The SIMU command in SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) was used to restrain the anisotropic displacement parameters of the disordered atoms. The asymmetric unit contains 2.5 benzene solvent mol­ecules. One benzene mol­ecule is disordered about an inversion centre and hence has 0.5 occupancy. The RIGU command in SHELXL was used to restrain the anisotropic displacement parameters of the 0.5 occupancy benzene mol­ecule. The H atoms bonded to C atoms were placed in calculated positions C—H = 0.95 Å) and included in the refinement in a riding-motion approximation with Uiso(H) = 1.2Ueq(C).

Table 1
Experimental details

Crystal data
Chemical formula [Pd6(C4F6S2)6]·2.5C6H6
Mr 2190.63
Crystal system, space group Monoclinic, P21/n
Temperature (K) 147
a, b, c (Å) 15.6367 (15), 17.8970 (17), 22.532 (2)
β (°) 104.502 (2)
V3) 6104.6 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.28
Crystal size (mm) 0.26 × 0.18 × 0.12
 
Data collection
Diffractometer Bruker Kappa APEX DUO CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.615, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 52442, 13977, 10755
Rint 0.035
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.091, 1.11
No. of reflections 13977
No. of parameters 955
No. of restraints 390
H-atom treatment H-atom parameters constrained
  w = 1/[σ2(Fo2) + (0.016P)2 + 46.8497P] where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å−3) 2.95, −1.37
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: APEX2; data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Hexakis[µ3-1,2-bis(trifluoromethyl)ethene-1,2-dithiolato]-octahedro-hexapalladium(II) benzene 2.5-solvate top
Crystal data top
[Pd6(C4F6S2)6]·2.5C6H6F(000) = 4164
Mr = 2190.63Dx = 2.384 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 15.6367 (15) ÅCell parameters from 9843 reflections
b = 17.8970 (17) Åθ = 2.6–27.5°
c = 22.532 (2) ŵ = 2.28 mm1
β = 104.502 (2)°T = 147 K
V = 6104.6 (10) Å3Plate, bronze
Z = 40.26 × 0.18 × 0.12 mm
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
10755 reflections with I > 2σ(I)
Radiation source: sealed tube with Bruker Triumph monochromatorRint = 0.035
φ and ω scansθmax = 27.6°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 2020
Tmin = 0.615, Tmax = 0.746k = 2313
52442 measured reflectionsl = 2429
13977 independent reflections
Refinement top
Refinement on F2390 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.016P)2 + 46.8497P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.002
13977 reflectionsΔρmax = 2.95 e Å3
955 parametersΔρmin = 1.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.85082 (2)0.76886 (2)0.12870 (2)0.01462 (8)
Pd20.69610 (3)0.86599 (2)0.02884 (2)0.01675 (9)
Pd30.88930 (3)0.84026 (2)0.00212 (2)0.01563 (8)
Pd40.86910 (3)0.65611 (2)0.01559 (2)0.01621 (8)
Pd50.67829 (2)0.68175 (2)0.04773 (2)0.01439 (8)
Pd60.71858 (3)0.75118 (2)0.08355 (2)0.01713 (9)
S10.77482 (8)0.87687 (7)0.13250 (6)0.0170 (2)
S20.95772 (8)0.84289 (7)0.10438 (6)0.0167 (2)
S30.93246 (8)0.65959 (7)0.11965 (6)0.0167 (2)
S40.74009 (8)0.69237 (7)0.15081 (5)0.0149 (2)
S50.80145 (9)0.94209 (7)0.00043 (6)0.0195 (3)
S60.97628 (8)0.73296 (7)0.00334 (6)0.0180 (3)
S70.76397 (8)0.57656 (7)0.03498 (6)0.0168 (2)
S80.59617 (8)0.78441 (7)0.05793 (6)0.0163 (2)
S90.62407 (8)0.84575 (7)0.07509 (6)0.0192 (3)
S100.82459 (8)0.83395 (7)0.10505 (6)0.0180 (3)
S110.81170 (9)0.64732 (7)0.08874 (6)0.0202 (3)
S120.61665 (9)0.67151 (7)0.05945 (6)0.0184 (3)
F10.8470 (4)1.0803 (2)0.1229 (3)0.0534 (15)0.898 (6)
F20.8460 (5)1.0370 (3)0.2113 (2)0.0607 (16)0.898 (6)
F30.7328 (3)1.0268 (2)0.1361 (3)0.0514 (14)0.898 (6)
F1A0.773 (3)1.056 (2)0.108 (2)0.053 (6)0.102 (6)
F2A0.895 (3)1.073 (2)0.173 (2)0.048 (6)0.102 (6)
F3A0.787 (3)1.019 (2)0.196 (2)0.044 (6)0.102 (6)
F41.0151 (3)1.0393 (2)0.1694 (2)0.0555 (12)
F51.0809 (3)0.9587 (2)0.1285 (2)0.0561 (12)
F60.9840 (3)1.0317 (2)0.07257 (19)0.0524 (11)
F70.9602 (3)0.6236 (2)0.24481 (16)0.0412 (9)
F80.9826 (3)0.5113 (2)0.21972 (18)0.0456 (10)
F90.8612 (3)0.5410 (2)0.24268 (16)0.0400 (9)
F100.8314 (3)0.4306 (2)0.16301 (18)0.0415 (9)
F110.7340 (3)0.4355 (2)0.07866 (18)0.0469 (10)
F120.7111 (3)0.4900 (2)0.1581 (2)0.0499 (11)
F130.6177 (3)0.7686 (3)0.26571 (18)0.0595 (13)
F140.7290 (4)0.6985 (3)0.27256 (17)0.0662 (15)
F150.7436 (3)0.8158 (2)0.26936 (16)0.0475 (10)
F160.4784 (3)0.8280 (2)0.1618 (2)0.0564 (12)
F170.5903 (3)0.8950 (3)0.2033 (2)0.0617 (13)
F180.5304 (3)0.9068 (2)0.10894 (19)0.0540 (12)
C130.7558 (9)0.9641 (5)0.0788 (7)0.0252 (15)0.784 (7)
C150.7020 (6)1.0358 (5)0.0888 (4)0.0387 (18)0.784 (7)
F190.7489 (4)1.0925 (3)0.0989 (4)0.066 (2)0.784 (7)
F200.6305 (4)1.0310 (3)0.1355 (3)0.0591 (18)0.784 (7)
F210.6704 (4)1.0510 (3)0.0405 (3)0.0520 (16)0.784 (7)
C13A0.757 (4)0.9666 (17)0.079 (3)0.032 (4)0.216 (7)
C15A0.7193 (15)1.0451 (13)0.0853 (11)0.041 (3)0.216 (7)
F19A0.7626 (14)1.0918 (11)0.0445 (10)0.065 (5)0.216 (7)
F20A0.7169 (16)1.0759 (12)0.1394 (9)0.057 (5)0.216 (7)
F21A0.6353 (13)1.0436 (12)0.0823 (12)0.061 (5)0.216 (7)
F220.7870 (5)0.8980 (4)0.2219 (2)0.060 (2)0.749 (9)
F230.6536 (4)0.9084 (5)0.2135 (3)0.058 (2)0.749 (9)
F240.7377 (5)1.0031 (4)0.2071 (3)0.0483 (17)0.749 (9)
F22A0.7728 (14)0.9736 (13)0.2162 (9)0.049 (4)0.251 (9)
F23A0.7155 (15)0.8665 (11)0.2199 (8)0.056 (4)0.251 (9)
F24A0.6466 (13)0.9614 (14)0.2020 (9)0.059 (5)0.251 (9)
F251.0181 (3)0.7861 (2)0.15739 (17)0.0396 (9)
F261.0830 (3)0.8072 (2)0.06401 (18)0.0429 (10)
F271.1060 (2)0.7041 (2)0.10540 (18)0.0407 (9)
F280.9689 (3)0.6493 (2)0.19661 (17)0.0453 (10)
F290.8409 (3)0.6047 (2)0.20204 (18)0.0525 (12)
F300.8545 (3)0.7203 (2)0.22092 (16)0.0479 (11)
F310.3878 (3)0.8338 (3)0.0521 (2)0.0592 (13)
F320.4726 (3)0.9211 (3)0.0621 (3)0.0756 (17)
F330.4036 (3)0.8610 (3)0.1401 (2)0.083 (2)
F340.4510 (3)0.6093 (2)0.0710 (2)0.0506 (11)
F350.4151 (3)0.6926 (3)0.01466 (18)0.0495 (11)
F360.3690 (2)0.6994 (2)0.11211 (17)0.0460 (10)
C10.8539 (4)0.9489 (3)0.1357 (3)0.0231 (11)
C20.9320 (4)0.9340 (3)0.1246 (2)0.0196 (11)
C30.8214 (4)1.0246 (3)0.1518 (3)0.0348 (14)
C41.0036 (4)0.9916 (3)0.1231 (3)0.0315 (13)
C50.8808 (4)0.5831 (3)0.1471 (2)0.0198 (11)
C60.8141 (4)0.5462 (3)0.1103 (2)0.0191 (10)
C70.9215 (4)0.5637 (3)0.2139 (3)0.0280 (13)
C80.7717 (4)0.4751 (3)0.1280 (3)0.0279 (13)
C90.6713 (4)0.7557 (3)0.1776 (2)0.0209 (11)
C100.6111 (4)0.7969 (3)0.1377 (2)0.0212 (11)
C110.6903 (4)0.7603 (3)0.2468 (2)0.0270 (12)
C120.5512 (4)0.8566 (3)0.1537 (3)0.0309 (13)
C140.7675 (4)0.9193 (3)0.1231 (3)0.0242 (12)
C160.7327 (4)0.9315 (4)0.1921 (3)0.0346 (14)
C170.9684 (4)0.7189 (3)0.0817 (2)0.0204 (11)
C180.9005 (4)0.6807 (3)0.1173 (3)0.0254 (12)
C191.0447 (4)0.7546 (3)0.1028 (3)0.0286 (13)
C200.8913 (4)0.6641 (4)0.1851 (3)0.0333 (14)
C210.5226 (3)0.8006 (3)0.0753 (2)0.0232 (11)
C220.5192 (4)0.7264 (3)0.0694 (2)0.0229 (11)
C230.4460 (4)0.8544 (4)0.0831 (3)0.0286 (13)
C240.4372 (4)0.6820 (4)0.0670 (3)0.0292 (13)
C1S0.5486 (13)0.3676 (7)0.1795 (6)0.114 (5)
H1SA0.53770.33760.21540.137*
C2S0.4802 (9)0.3953 (6)0.1563 (5)0.091 (4)
H2SA0.42060.38600.17760.109*
C3S0.4977 (8)0.4354 (6)0.1035 (5)0.078 (3)
H3SA0.45010.45150.08750.094*
C4S0.5816 (8)0.4529 (6)0.0732 (5)0.080 (3)
H4SA0.59100.48220.03700.096*
C5S0.6526 (9)0.4301 (8)0.0928 (6)0.105 (4)
H5SA0.71070.44340.07080.126*
C6S0.6388 (11)0.3874 (9)0.1451 (7)0.122 (5)
H6SA0.68790.37060.15910.146*
C7S1.1256 (5)0.8252 (5)0.2648 (3)0.051 (2)
H7SA1.17970.80880.25740.062*
C8S1.1131 (6)0.8993 (5)0.2753 (3)0.054 (2)
H8SA1.15900.93420.27550.065*
C9S1.0345 (6)0.9235 (5)0.2855 (3)0.055 (2)
H9SA1.02640.97480.29320.066*
C10S0.9668 (5)0.8726 (5)0.2844 (3)0.0486 (19)
H10A0.91190.88920.29030.058*
C11S0.9801 (5)0.7991 (4)0.2749 (3)0.0408 (16)
H11A0.93430.76420.27490.049*
C12S1.0593 (5)0.7743 (4)0.2652 (3)0.0438 (17)
H12A1.06810.72270.25880.053*
C13S1.0775 (8)0.5324 (8)0.0644 (5)0.071 (4)0.5
H13A1.11820.54880.10090.085*0.5
C14S1.0094 (9)0.4841 (7)0.0679 (5)0.063 (4)0.5
H14A1.00340.46740.10670.076*0.5
C15S0.9499 (7)0.4602 (7)0.0146 (7)0.058 (4)0.5
H15A0.90330.42710.01690.070*0.5
C16S0.9586 (8)0.4845 (8)0.0422 (5)0.075 (4)0.5
H16A0.91790.46820.07860.089*0.5
C17S1.0267 (9)0.5329 (8)0.0457 (5)0.058 (4)0.5
H17A1.03270.54960.08450.069*0.5
C18S1.0862 (7)0.5568 (7)0.0077 (7)0.074 (5)0.5
H18A1.13280.58990.00530.088*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01603 (19)0.01422 (18)0.01529 (18)0.00025 (14)0.00707 (15)0.00090 (13)
Pd20.01734 (19)0.01621 (19)0.01881 (19)0.00263 (14)0.00848 (16)0.00203 (14)
Pd30.01624 (19)0.01545 (19)0.01734 (19)0.00239 (14)0.00818 (15)0.00321 (14)
Pd40.0200 (2)0.01513 (19)0.01698 (19)0.00253 (14)0.01104 (16)0.00223 (14)
Pd50.01651 (19)0.01516 (18)0.01306 (18)0.00024 (14)0.00665 (15)0.00022 (13)
Pd60.0181 (2)0.0204 (2)0.01470 (18)0.00038 (15)0.00743 (15)0.00177 (14)
S10.0196 (6)0.0151 (6)0.0187 (6)0.0000 (5)0.0089 (5)0.0018 (4)
S20.0147 (6)0.0179 (6)0.0191 (6)0.0007 (4)0.0071 (5)0.0006 (5)
S30.0162 (6)0.0168 (6)0.0190 (6)0.0027 (5)0.0076 (5)0.0035 (5)
S40.0164 (6)0.0169 (6)0.0127 (5)0.0006 (4)0.0061 (5)0.0013 (4)
S50.0206 (6)0.0153 (6)0.0252 (7)0.0033 (5)0.0106 (5)0.0037 (5)
S60.0189 (6)0.0177 (6)0.0209 (6)0.0030 (5)0.0113 (5)0.0035 (5)
S70.0213 (6)0.0136 (6)0.0181 (6)0.0001 (5)0.0097 (5)0.0001 (4)
S80.0165 (6)0.0183 (6)0.0160 (6)0.0018 (5)0.0073 (5)0.0008 (4)
S90.0161 (6)0.0246 (7)0.0185 (6)0.0021 (5)0.0074 (5)0.0057 (5)
S100.0179 (6)0.0220 (7)0.0165 (6)0.0028 (5)0.0087 (5)0.0063 (5)
S110.0268 (7)0.0202 (7)0.0176 (6)0.0001 (5)0.0128 (5)0.0017 (5)
S120.0191 (6)0.0221 (7)0.0147 (6)0.0032 (5)0.0055 (5)0.0004 (5)
F10.065 (3)0.019 (2)0.093 (4)0.000 (2)0.052 (3)0.006 (2)
F20.094 (5)0.046 (3)0.042 (3)0.019 (3)0.017 (3)0.023 (2)
F30.038 (3)0.023 (2)0.098 (4)0.0080 (18)0.027 (3)0.008 (2)
F1A0.064 (11)0.025 (10)0.077 (11)0.013 (10)0.031 (11)0.014 (10)
F2A0.064 (11)0.026 (10)0.064 (11)0.005 (10)0.034 (10)0.013 (10)
F3A0.056 (11)0.024 (10)0.060 (11)0.001 (10)0.030 (10)0.018 (10)
F40.067 (3)0.046 (3)0.055 (3)0.034 (2)0.017 (2)0.015 (2)
F50.032 (2)0.040 (2)0.101 (4)0.0098 (18)0.025 (2)0.000 (2)
F60.058 (3)0.051 (3)0.048 (2)0.028 (2)0.013 (2)0.017 (2)
F70.055 (3)0.039 (2)0.0246 (18)0.0074 (18)0.0003 (17)0.0047 (15)
F80.046 (2)0.043 (2)0.043 (2)0.0202 (18)0.0028 (19)0.0157 (18)
F90.051 (2)0.046 (2)0.0264 (19)0.0060 (18)0.0172 (18)0.0131 (16)
F100.050 (2)0.0226 (19)0.053 (2)0.0005 (16)0.014 (2)0.0164 (16)
F110.062 (3)0.030 (2)0.046 (2)0.0234 (19)0.010 (2)0.0023 (17)
F120.053 (3)0.040 (2)0.071 (3)0.0028 (19)0.045 (2)0.013 (2)
F130.045 (3)0.115 (4)0.029 (2)0.005 (2)0.029 (2)0.009 (2)
F140.127 (5)0.052 (3)0.020 (2)0.030 (3)0.020 (2)0.0067 (18)
F150.054 (3)0.062 (3)0.0247 (19)0.020 (2)0.0075 (18)0.0139 (18)
F160.035 (2)0.054 (3)0.096 (4)0.0072 (19)0.045 (2)0.001 (2)
F170.060 (3)0.063 (3)0.061 (3)0.019 (2)0.012 (2)0.037 (2)
F180.075 (3)0.043 (2)0.056 (3)0.033 (2)0.040 (2)0.014 (2)
C130.027 (3)0.021 (3)0.033 (3)0.009 (3)0.017 (3)0.015 (3)
C150.044 (4)0.030 (4)0.048 (4)0.021 (3)0.021 (3)0.014 (3)
F190.073 (4)0.027 (3)0.105 (6)0.012 (3)0.037 (4)0.027 (4)
F200.051 (3)0.064 (4)0.057 (4)0.039 (3)0.004 (3)0.016 (3)
F210.068 (4)0.048 (3)0.046 (3)0.041 (3)0.026 (3)0.012 (3)
C13A0.035 (6)0.026 (6)0.039 (6)0.013 (6)0.018 (6)0.016 (6)
C15A0.046 (5)0.033 (5)0.049 (5)0.018 (5)0.018 (5)0.018 (5)
F19A0.075 (9)0.036 (8)0.074 (9)0.028 (7)0.001 (8)0.014 (8)
F20A0.076 (9)0.038 (8)0.055 (8)0.020 (7)0.012 (8)0.033 (7)
F21A0.055 (8)0.056 (8)0.069 (9)0.024 (7)0.014 (8)0.023 (8)
F220.072 (5)0.083 (5)0.028 (3)0.040 (4)0.020 (3)0.016 (3)
F230.040 (3)0.088 (6)0.036 (3)0.025 (4)0.009 (3)0.022 (3)
F240.067 (4)0.040 (4)0.037 (3)0.010 (3)0.013 (3)0.028 (3)
F22A0.047 (9)0.057 (9)0.041 (8)0.013 (7)0.005 (7)0.031 (7)
F23A0.075 (10)0.055 (8)0.032 (7)0.009 (8)0.001 (7)0.014 (7)
F24A0.046 (8)0.074 (10)0.048 (8)0.001 (8)0.004 (7)0.021 (8)
F250.048 (2)0.042 (2)0.039 (2)0.0030 (17)0.0293 (19)0.0157 (17)
F260.050 (2)0.040 (2)0.049 (2)0.0169 (18)0.030 (2)0.0025 (18)
F270.034 (2)0.043 (2)0.055 (2)0.0116 (16)0.0312 (19)0.0087 (18)
F280.051 (2)0.057 (3)0.040 (2)0.0063 (19)0.034 (2)0.0085 (18)
F290.070 (3)0.062 (3)0.036 (2)0.023 (2)0.031 (2)0.0237 (19)
F300.062 (3)0.062 (3)0.0216 (19)0.017 (2)0.0141 (19)0.0102 (17)
F310.044 (3)0.071 (3)0.077 (3)0.018 (2)0.041 (2)0.016 (2)
F320.034 (2)0.043 (3)0.147 (5)0.012 (2)0.018 (3)0.009 (3)
F330.073 (3)0.139 (5)0.034 (2)0.076 (4)0.005 (2)0.021 (3)
F340.033 (2)0.037 (2)0.084 (3)0.0099 (17)0.017 (2)0.007 (2)
F350.041 (2)0.076 (3)0.037 (2)0.021 (2)0.0197 (19)0.004 (2)
F360.0226 (19)0.074 (3)0.035 (2)0.0152 (18)0.0040 (16)0.0093 (19)
C10.023 (3)0.019 (3)0.027 (3)0.005 (2)0.007 (2)0.002 (2)
C20.022 (3)0.015 (3)0.021 (3)0.001 (2)0.005 (2)0.0029 (19)
C30.041 (3)0.023 (3)0.049 (4)0.001 (2)0.027 (3)0.008 (3)
C40.032 (3)0.023 (3)0.041 (4)0.011 (2)0.011 (3)0.002 (3)
C50.027 (3)0.015 (3)0.020 (3)0.006 (2)0.011 (2)0.0058 (19)
C60.025 (3)0.012 (2)0.024 (3)0.0019 (19)0.011 (2)0.0034 (19)
C70.034 (3)0.023 (3)0.025 (3)0.000 (2)0.004 (3)0.008 (2)
C80.031 (3)0.024 (3)0.032 (3)0.004 (2)0.014 (3)0.009 (2)
C90.028 (3)0.021 (3)0.017 (3)0.001 (2)0.012 (2)0.001 (2)
C100.023 (3)0.024 (3)0.021 (3)0.003 (2)0.014 (2)0.001 (2)
C110.035 (3)0.033 (3)0.015 (3)0.001 (2)0.011 (2)0.002 (2)
C120.033 (3)0.033 (3)0.032 (3)0.002 (3)0.017 (3)0.004 (3)
C140.019 (3)0.028 (3)0.027 (3)0.000 (2)0.008 (2)0.012 (2)
C160.033 (3)0.042 (4)0.030 (3)0.008 (3)0.009 (3)0.016 (3)
C170.023 (3)0.022 (3)0.019 (3)0.006 (2)0.013 (2)0.005 (2)
C180.031 (3)0.028 (3)0.024 (3)0.007 (2)0.019 (3)0.001 (2)
C190.037 (3)0.025 (3)0.031 (3)0.004 (2)0.021 (3)0.004 (2)
C200.043 (4)0.038 (4)0.024 (3)0.002 (3)0.018 (3)0.007 (3)
C210.014 (3)0.036 (3)0.018 (3)0.006 (2)0.000 (2)0.000 (2)
C220.025 (3)0.027 (3)0.016 (3)0.002 (2)0.003 (2)0.000 (2)
C230.019 (3)0.036 (4)0.031 (3)0.005 (2)0.006 (2)0.007 (2)
C240.024 (3)0.039 (4)0.025 (3)0.001 (2)0.008 (3)0.005 (2)
C1S0.204 (18)0.071 (8)0.070 (8)0.025 (10)0.041 (10)0.021 (6)
C2S0.122 (10)0.058 (7)0.083 (8)0.049 (7)0.005 (7)0.011 (6)
C3S0.086 (8)0.070 (7)0.081 (7)0.022 (6)0.025 (6)0.014 (6)
C4S0.088 (8)0.079 (7)0.068 (7)0.021 (6)0.012 (6)0.010 (5)
C5S0.089 (9)0.137 (12)0.085 (9)0.005 (8)0.015 (7)0.013 (8)
C6S0.133 (13)0.124 (13)0.125 (13)0.025 (10)0.064 (11)0.003 (10)
C7S0.040 (4)0.077 (6)0.035 (4)0.002 (4)0.004 (3)0.002 (4)
C8S0.058 (5)0.070 (6)0.032 (4)0.017 (4)0.007 (4)0.007 (4)
C9S0.081 (6)0.045 (5)0.034 (4)0.006 (4)0.004 (4)0.001 (3)
C10S0.052 (5)0.063 (5)0.031 (4)0.010 (4)0.010 (3)0.002 (3)
C11S0.041 (4)0.052 (5)0.026 (3)0.003 (3)0.002 (3)0.000 (3)
C12S0.048 (4)0.048 (4)0.032 (4)0.001 (3)0.004 (3)0.005 (3)
C13S0.070 (7)0.060 (7)0.082 (7)0.032 (5)0.016 (5)0.014 (5)
C14S0.065 (7)0.059 (7)0.068 (7)0.028 (5)0.020 (5)0.007 (5)
C15S0.061 (7)0.041 (6)0.071 (6)0.032 (5)0.016 (5)0.010 (5)
C16S0.075 (7)0.068 (7)0.081 (7)0.030 (6)0.019 (5)0.007 (5)
C17S0.061 (6)0.050 (6)0.064 (7)0.038 (5)0.019 (5)0.002 (5)
C18S0.069 (7)0.067 (8)0.085 (7)0.028 (6)0.019 (5)0.005 (5)
Geometric parameters (Å, º) top
Pd1—S12.2819 (13)F22—C161.349 (8)
Pd1—S22.3040 (13)F23—C161.279 (9)
Pd1—S42.3564 (12)F24—C161.333 (9)
Pd1—S32.3718 (13)F22A—C161.195 (18)
Pd1—Pd53.2516 (6)F23A—C161.32 (2)
Pd2—S82.3486 (13)F24A—C161.41 (2)
Pd2—S52.3554 (13)F25—C191.321 (7)
Pd2—S92.3586 (14)F26—C191.322 (7)
Pd2—S12.3599 (13)F27—C191.331 (7)
Pd3—S52.2883 (13)F28—C201.331 (7)
Pd3—S102.2892 (13)F29—C201.322 (7)
Pd3—S62.3574 (13)F30—C201.328 (8)
Pd3—S22.3706 (13)F31—C231.330 (7)
Pd3—Pd63.2528 (6)F32—C231.312 (8)
Pd4—S62.2892 (13)F33—C231.294 (7)
Pd4—S72.2979 (13)F34—C241.327 (7)
Pd4—S112.3021 (14)F35—C241.323 (7)
Pd4—S32.3065 (13)F36—C241.313 (7)
Pd5—S82.2858 (13)C1—C21.333 (7)
Pd5—S42.2892 (13)C1—C31.522 (8)
Pd5—S72.3695 (13)C2—C41.528 (7)
Pd5—S122.3725 (13)C5—C61.334 (8)
Pd6—S92.2860 (13)C5—C71.521 (7)
Pd6—S122.3026 (13)C6—C81.532 (7)
Pd6—S102.3620 (13)C9—C101.347 (8)
Pd6—S112.3822 (14)C9—C111.515 (7)
S1—C11.775 (5)C10—C121.523 (7)
S2—C21.767 (5)C14—C161.529 (8)
S3—C51.778 (5)C17—C181.346 (8)
S4—C91.770 (5)C17—C191.530 (8)
S5—C131.774 (15)C18—C201.527 (8)
S5—C13A1.78 (6)C21—C221.339 (8)
S6—C171.757 (5)C21—C231.513 (7)
S7—C61.768 (5)C22—C241.519 (8)
S8—C101.768 (5)C1S—C2S1.395 (18)
S9—C211.779 (6)C1S—C6S1.47 (2)
S10—C141.765 (6)C1S—H1SA0.9500
S11—C181.774 (6)C2S—C3S1.356 (15)
S12—C221.779 (6)C2S—H2SA0.9500
F1—C31.307 (8)C3S—C4S1.356 (14)
F2—C31.317 (8)C3S—H3SA0.9500
F3—C31.343 (8)C4S—C5S1.355 (16)
F1A—C31.23 (5)C4S—H4SA0.9500
F2A—C31.43 (4)C5S—C6S1.375 (18)
F3A—C31.25 (4)C5S—H5SA0.9500
F4—C41.324 (7)C6S—H6SA0.9500
F5—C41.323 (7)C7S—C8S1.370 (12)
F6—C41.316 (7)C7S—C12S1.380 (11)
F7—C71.338 (7)C7S—H7SA0.9500
F8—C71.321 (7)C8S—C9S1.376 (12)
F9—C71.334 (7)C8S—H8SA0.9500
F10—C81.326 (7)C9S—C10S1.390 (12)
F11—C81.327 (7)C9S—H9SA0.9500
F12—C81.323 (7)C10S—C11S1.358 (10)
F13—C111.317 (7)C10S—H10A0.9500
F14—C111.323 (7)C11S—C12S1.384 (10)
F15—C111.314 (7)C11S—H11A0.9500
F16—C121.303 (7)C12S—H12A0.9500
F17—C121.324 (7)C13S—C14S1.3900
F18—C121.328 (7)C13S—C18S1.3900
C13—C141.328 (15)C13S—H13A0.9500
C13—C151.519 (9)C14S—C15S1.3900
C15—F191.306 (10)C14S—H14A0.9500
C15—F211.331 (9)C15S—C16S1.3900
C15—F201.334 (10)C15S—H15A0.9500
C13A—C141.35 (5)C16S—C17S1.3900
C13A—C15A1.518 (16)C16S—H16A0.9500
C15A—F19A1.301 (17)C17S—C18S1.3900
C15A—F20A1.330 (17)C17S—H17A0.9500
C15A—F21A1.331 (16)C18S—H18A0.9500
S1—Pd1—S286.42 (5)F8—C7—F9108.5 (5)
S1—Pd1—S493.84 (5)F8—C7—F7107.3 (5)
S2—Pd1—S4178.49 (5)F9—C7—F7105.9 (5)
S1—Pd1—S3176.57 (5)F8—C7—C5111.9 (5)
S2—Pd1—S390.89 (5)F9—C7—C5112.2 (5)
S4—Pd1—S388.80 (4)F7—C7—C5110.7 (4)
S1—Pd1—Pd593.47 (4)F12—C8—F10107.8 (5)
S2—Pd1—Pd5133.76 (4)F12—C8—F11108.1 (5)
S4—Pd1—Pd544.74 (3)F10—C8—F11106.0 (5)
S3—Pd1—Pd586.86 (3)F12—C8—C6112.3 (5)
S8—Pd2—S5176.83 (5)F10—C8—C6111.6 (5)
S8—Pd2—S989.77 (5)F11—C8—C6110.8 (5)
S5—Pd2—S990.25 (5)C10—C9—C11125.5 (5)
S8—Pd2—S189.64 (4)C10—C9—S4120.4 (4)
S5—Pd2—S190.08 (5)C11—C9—S4114.0 (4)
S9—Pd2—S1175.18 (5)C9—C10—C12126.5 (5)
S5—Pd3—S1086.63 (5)C9—C10—S8120.1 (4)
S5—Pd3—S6178.23 (5)C12—C10—S8113.4 (4)
S10—Pd3—S693.32 (5)F15—C11—F13107.7 (5)
S5—Pd3—S295.05 (5)F15—C11—F14106.6 (5)
S10—Pd3—S2178.23 (5)F13—C11—F14106.9 (5)
S6—Pd3—S284.98 (5)F15—C11—C9112.4 (5)
S5—Pd3—Pd689.34 (4)F13—C11—C9112.1 (5)
S10—Pd3—Pd646.55 (3)F14—C11—C9110.8 (5)
S6—Pd3—Pd689.35 (4)F16—C12—F17108.7 (5)
S2—Pd3—Pd6132.79 (3)F16—C12—F18108.4 (5)
S6—Pd4—S7178.58 (5)F17—C12—F18105.3 (5)
S6—Pd4—S1188.12 (5)F16—C12—C10111.5 (5)
S7—Pd4—S1192.14 (5)F17—C12—C10112.5 (5)
S6—Pd4—S391.43 (5)F18—C12—C10110.1 (4)
S7—Pd4—S388.23 (5)C13—C14—C16126.7 (7)
S11—Pd4—S3176.66 (5)C13A—C14—C16125.9 (18)
S8—Pd5—S486.35 (4)C13—C14—S10120.4 (6)
S8—Pd5—S7178.63 (5)C13A—C14—S10121.3 (17)
S4—Pd5—S794.66 (5)C16—C14—S10112.8 (4)
S8—Pd5—S1293.96 (5)F22A—C16—F23A114.1 (15)
S4—Pd5—S12178.97 (5)F23—C16—F24109.2 (6)
S7—Pd5—S1285.01 (5)F23—C16—F22109.8 (7)
S8—Pd5—Pd188.07 (3)F24—C16—F22102.5 (6)
S4—Pd5—Pd146.43 (3)F22A—C16—F24A106.1 (14)
S7—Pd5—Pd191.96 (3)F23A—C16—F24A100.7 (14)
S12—Pd5—Pd1132.58 (3)F22A—C16—C14117.4 (11)
S9—Pd6—S1286.49 (5)F23—C16—C14113.7 (5)
S9—Pd6—S1093.11 (5)F23A—C16—C14109.6 (8)
S12—Pd6—S10178.24 (5)F24—C16—C14111.5 (6)
S9—Pd6—S11176.11 (5)F22—C16—C14109.5 (5)
S12—Pd6—S1189.78 (5)F24A—C16—C14107.3 (9)
S10—Pd6—S1190.59 (5)C18—C17—C19125.9 (5)
S9—Pd6—Pd392.67 (4)C18—C17—S6121.1 (4)
S12—Pd6—Pd3133.57 (4)C19—C17—S6112.9 (4)
S10—Pd6—Pd344.72 (3)C17—C18—C20123.9 (5)
S11—Pd6—Pd389.13 (4)C17—C18—S11121.9 (4)
C1—S1—Pd1104.64 (19)C20—C18—S11114.2 (4)
C1—S1—Pd2106.59 (19)F25—C19—F26107.3 (5)
Pd1—S1—Pd292.32 (4)F25—C19—F27108.2 (5)
C2—S2—Pd1104.11 (18)F26—C19—F27107.4 (5)
C2—S2—Pd3101.83 (18)F25—C19—C17112.3 (5)
Pd1—S2—Pd393.38 (5)F26—C19—C17110.5 (4)
C5—S3—Pd4102.48 (18)F27—C19—C17110.9 (5)
C5—S3—Pd1107.66 (17)F29—C20—F30107.3 (6)
Pd4—S3—Pd190.36 (4)F29—C20—F28106.9 (5)
C9—S4—Pd5105.15 (18)F30—C20—F28108.0 (5)
C9—S4—Pd1104.00 (18)F29—C20—C18110.3 (5)
Pd5—S4—Pd188.83 (4)F30—C20—C18112.3 (5)
C13—S5—Pd3104.7 (3)F28—C20—C18111.9 (5)
C13A—S5—Pd3105.4 (11)C22—C21—C23126.4 (5)
C13—S5—Pd2105.7 (5)C22—C21—S9120.5 (4)
C13A—S5—Pd2107.2 (19)C23—C21—S9113.1 (4)
Pd3—S5—Pd290.51 (5)C21—C22—C24125.2 (5)
C17—S6—Pd4103.37 (19)C21—C22—S12120.4 (4)
C17—S6—Pd3103.45 (18)C24—C22—S12114.3 (4)
Pd4—S6—Pd392.05 (5)F33—C23—F32108.3 (6)
C6—S7—Pd4101.93 (18)F33—C23—F31107.4 (5)
C6—S7—Pd5104.86 (17)F32—C23—F31105.0 (5)
Pd4—S7—Pd589.08 (4)F33—C23—C21111.4 (5)
C10—S8—Pd5105.62 (18)F32—C23—C21111.5 (5)
C10—S8—Pd2106.13 (18)F31—C23—C21112.9 (5)
Pd5—S8—Pd292.40 (5)F36—C24—F35108.3 (5)
C21—S9—Pd6104.98 (19)F36—C24—F34107.1 (5)
C21—S9—Pd2106.06 (18)F35—C24—F34106.4 (5)
Pd6—S9—Pd292.21 (5)F36—C24—C22112.2 (5)
C14—S10—Pd3105.1 (2)F35—C24—C22111.6 (5)
C14—S10—Pd6104.44 (18)F34—C24—C22110.9 (5)
Pd3—S10—Pd688.73 (4)C2S—C1S—C6S116.1 (11)
C18—S11—Pd4101.9 (2)C2S—C1S—H1SA122.0
C18—S11—Pd6107.36 (19)C6S—C1S—H1SA122.0
Pd4—S11—Pd689.04 (4)C3S—C2S—C1S120.8 (12)
C22—S12—Pd6104.49 (19)C3S—C2S—H2SA119.6
C22—S12—Pd5101.71 (18)C1S—C2S—H2SA119.6
Pd6—S12—Pd593.64 (5)C4S—C3S—C2S121.4 (12)
C14—C13—C15125.0 (11)C4S—C3S—H3SA119.3
C14—C13—S5121.1 (6)C2S—C3S—H3SA119.3
C15—C13—S5113.9 (9)C5S—C4S—C3S122.3 (12)
F19—C15—F21108.9 (8)C5S—C4S—H4SA118.9
F19—C15—F20107.9 (8)C3S—C4S—H4SA118.9
F21—C15—F20104.3 (7)C4S—C5S—C6S118.7 (13)
F19—C15—C13111.7 (8)C4S—C5S—H5SA120.6
F21—C15—C13110.9 (8)C6S—C5S—H5SA120.6
F20—C15—C13112.8 (8)C5S—C6S—C1S120.6 (13)
C14—C13A—C15A129 (4)C5S—C6S—H6SA119.7
C14—C13A—S5119.4 (16)C1S—C6S—H6SA119.7
C15A—C13A—S5112 (3)C8S—C7S—C12S119.9 (8)
F19A—C15A—F20A105.7 (19)C8S—C7S—H7SA120.1
F19A—C15A—F21A109 (2)C12S—C7S—H7SA120.1
F20A—C15A—F21A104.6 (19)C7S—C8S—C9S120.3 (8)
F19A—C15A—C13A114 (2)C7S—C8S—H8SA119.8
F20A—C15A—C13A113 (2)C9S—C8S—H8SA119.8
F21A—C15A—C13A110 (2)C8S—C9S—C10S119.9 (8)
C2—C1—C3126.7 (5)C8S—C9S—H9SA120.0
C2—C1—S1120.6 (4)C10S—C9S—H9SA120.0
C3—C1—S1112.7 (4)C11S—C10S—C9S119.5 (8)
C1—C2—C4125.4 (5)C11S—C10S—H10A120.3
C1—C2—S2120.7 (4)C9S—C10S—H10A120.3
C4—C2—S2113.7 (4)C10S—C11S—C12S120.8 (7)
F1A—C3—F3A112 (3)C10S—C11S—H11A119.6
F1—C3—F2109.3 (6)C12S—C11S—H11A119.6
F1—C3—F3105.7 (6)C7S—C12S—C11S119.5 (7)
F2—C3—F3106.4 (6)C7S—C12S—H12A120.2
F1A—C3—F2A106 (3)C11S—C12S—H12A120.2
F3A—C3—F2A105 (3)C14S—C13S—C18S120.0
F1A—C3—C1113.3 (18)C14S—C13S—H13A120.0
F3A—C3—C1110.8 (18)C18S—C13S—H13A120.0
F1—C3—C1113.5 (5)C15S—C14S—C13S120.0
F2—C3—C1111.3 (6)C15S—C14S—H14A120.0
F3—C3—C1110.3 (5)C13S—C14S—H14A120.0
F2A—C3—C1109.3 (16)C14S—C15S—C16S120.0
F6—C4—F5109.3 (5)C14S—C15S—H15A120.0
F6—C4—F4106.6 (5)C16S—C15S—H15A120.0
F5—C4—F4105.9 (5)C15S—C16S—C17S120.0
F6—C4—C2111.9 (5)C15S—C16S—H16A120.0
F5—C4—C2110.9 (5)C17S—C16S—H16A120.0
F4—C4—C2112.0 (5)C16S—C17S—C18S120.0
C6—C5—C7124.8 (5)C16S—C17S—H17A120.0
C6—C5—S3121.2 (4)C18S—C17S—H17A120.0
C7—C5—S3114.0 (4)C17S—C18S—C13S120.0
C5—C6—C8124.8 (5)C17S—C18S—H18A120.0
C5—C6—S7122.3 (4)C13S—C18S—H18A120.0
C8—C6—S7112.9 (4)
 

Acknowledgements

We thank Neilson Nguyen (U of T) for help with the synthesis of tfd.

Funding information

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada; University of Toronto.

References

First citationBeswick, C. L., Terroba, R., Greaney, M. A. & Stiefel, E. I. (2002). J. Am. Chem. Soc. 124, 9664–9665.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDang, L., Shibl, M. F., Yang, X., Harrison, D. J., Alak, A., Lough, A. J., Fekl, U., Brothers, E. N. & Hall, M. B. (2013). Inorg. Chem. 52, 3711–3723.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrison, D. J., Nguyen, N., Lough, A. J. & Fekl, U. (2006). J. Am. Chem. Soc. 128, 11026–11027.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHosking, S., Lough, A. J. & Fekl, U. (2009). Acta Cryst. E65, m759–m760.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKogut, E., Tang, J. A., Lough, A. J., Widdifield, C. M., Schurko, R. W. & Fekl, U. (2006). Inorg. Chem. 45, 8850–8852.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStibrany, R. T. (2012). Private communication (refcode XARMOU). CCDC, Cambridge, England.  Google Scholar
First citationStiefel, E. I. (2004). Editor. Progress in Inorganic Chemistry, Vol. 52, Dithiolene Chemistry: Synthesis, Properties, and Applications. Hoboken, NJ: John Wiley and Sons.  Google Scholar
First citationTang, J. A., Kogut, E., Norton, D., Lough, A. J., McGarvey, B. R., Fekl, U. & Schurko, R. W. (2009). J. Phys. Chem. B, 113, 3298–3313.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWrixon, J. D., Hayward, J. J. & Rawson, J. M. (2015). Inorg. Chem. 54, 9384–9386.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds