research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{1,1′-Bis[(pyridin-2-yl)meth­yl]-2,2′-bipiperid­yl}(perchlorato)copper(II) perchlorate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Tufts University, Medford, Massachusetts 02155, USA, and bBruker AXS Inc., 5465 E. Cheryl Parkway, Madison, WI 53711, USA
*Correspondence e-mail: elena.rybak-akimova@tufts.edu

Edited by M. Zeller, Purdue University, USA (Received 3 June 2017; accepted 23 June 2017; online 30 June 2017)

The title complex, [CuII(ClO4)(mesoPYBP)](ClO4) {PYBP = 1,1′-bis­[(pyridin-2-yl)meth­yl]-2,2′-bipiperidyl, C22H30N4}, was prepared and found to crystallize with two crystallographically independent complex salt moieties. The metal atoms of the cations adopt a pseudo-square-pyramidal coordination geometry, where the tetra­dentate amino­pyridine ligands (PYBP) are wrapped around the Cu atoms in the equatorial plane. The Cu—O bonds involving an O atom of the coordinating perchlorate anion are approximately perpendicular to the plane. The two remaining non-coordinating perchlorate anions are involved in several C—H⋯O hydrogen bonds with the PYBP ligand and balance the total charge of the complex salt. The two crystallographically independent moieties are related to each other via a pseudo-translation along the a-axis direction. Exact translational symmetry is broken by (i) a difference in the conformation of one of the piperidine rings, featuring a chair conformation in one of the cations, and a sterically disfavored boat conformation in the other; and (ii) by modulation of the non-coordinating perchlorate anions.

1. Chemical context

The design and synthesis of a family of linear tetra­dentate amino­pyridine ligands, featuring a di­amine derivative backbone (e.g. 1,2-cyclo­hexyldi­amine or 2,2′-dipyrrolid­yl) and two picolyl arms attached to the amine nitro­gen atoms, have frequently been discussed (Murphy & Stack, 2006[Murphy, A. & Stack, T. D. P. (2006). J. Mol. Catal. A Chem. 251, 78-88.]; Yazerski et al., 2014[Yazerski, V. A., Spannring, P., Gatineau, D., Woerde, C. H. M., Wieclawska, S. M., Lutz, M., Kleijn, H. & Gebbink, R. J. M. K. (2014). Org. Biomol. Chem. 12, 2062-2070.]). Common examples of linear tetra­dentate amino­pyridine ligands are shown in Fig. 1[link]. The Fe and Mn complexes bearing this type of ligand show good catalytic activity for olefin epoxidation (Lyakin et al., 2012[Lyakin, O. Y., Ottenbacher, R. V., Bryliakov, K. P. & Talsi, E. P. (2012). ACS Catal. 2, 1196-1202.]; Mikhalyova et al., 2012[Mikhalyova, E. A., Makhlynets, O. V., Palluccio, T. D., Filatov, A. S. & Rybak-Akimova, E. V. (2012). Chem. Commun. 48, 687-689.]), as well as aromatic (Makhlynets & Rybak-Akimova, 2010[Makhlynets, O. V. & Rybak-Akimova, E. V. (2010). Chem. Eur. J. 16, 13995-14006.]) and aliphatic (Ottenbacher et al., 2015[Ottenbacher, R. V., Talsi, E. P. & Bryliakov, K. P. (2015). ACS Catal. 5, 39-44.]) C—H activation. Related copper(II) complexes with amino­pyridine ligands have also been synthesized and characterized (Singh et al., 2017[Singh, N., Niklas, J., Poluektov, O., Van Heuvelen, K. M. & Mukherjee, A. (2017). Inorg. Chim. Acta, 455, 221-230.]; Kani et al., 2000[Kani, Y., Ohba, S., Kunita, M. & Nishida, Y. (2000). Acta Cryst. C56, e197.]; Liebov et al., 2011[Liebov, B. K., Weigle, C. E., Keinath, K. V., Leap, J. E., Pike, R. D. & Keane, J. M. (2011). Inorg. Chem. 50, 4677-4679.]). Potential applications of these complexes include fluorescent sensing of NO. The copper(II) ion in complexes with an appended fluoro­phore is readily reduced by nitric oxide with concomitant fluorescence enhancement (Kumar et al. 2013a[Kumar, P., Kalita, A. & Mondal, B. (2013a). Dalton Trans. 42, 5731-5739.],b[Kumar, P., Kalita, A. & Mondal, B. (2013b). Inorg. Chim. Acta, 404, 88-96.]).

[Scheme 1]
[Figure 1]
Figure 1
Common examples of linear tetra­dentate amino­pyridine ligands.

2. Structural commentary

The title compound crystallizes with two crystallographically independent moieties, consisting of a [CuII(ClO4)(mesoPYBP)] {PYBP = 1,1′-bis­[(pyridin-2-yl)meth­yl]-2,2′-bipiperidyl} cation and another non-coordinating ClO4 anion [PYBP = N,N′-di-(2-picol­yl)-2,2′-dipiperid­yl]. Like some other CuII amino­pyridine complexes (Singh et al., 2017[Singh, N., Niklas, J., Poluektov, O., Van Heuvelen, K. M. & Mukherjee, A. (2017). Inorg. Chim. Acta, 455, 221-230.]; Kani et al., 2000[Kani, Y., Ohba, S., Kunita, M. & Nishida, Y. (2000). Acta Cryst. C56, e197.]; Liebov et al., 2011[Liebov, B. K., Weigle, C. E., Keinath, K. V., Leap, J. E., Pike, R. D. & Keane, J. M. (2011). Inorg. Chem. 50, 4677-4679.]), the cationic complex consists of a five-coordinate Cu ion in a distorted square-pyramidal geometry.

The tetra­dentate mesoPYBP ligand surrounds the metal ion in the basal plane (Fig. 2[link]). One of the two remaining octa­hedral sites is occupied by the oxygen atom of a coordinating perchlorate anion, while the other site remains vacant. Another perchlorate anion in the outer sphere balances the net charge and connects nearby complex cations via C—H⋯O hydrogen bonds. The two chemically equivalent moieties are related to each other via a pseudo-translation by half a unit cell along the a-axis direction (Fig. 3[link]). Similar to recently discussed crystal structures of Cu–N2/Py2 complexes (Singh, et al. 2017[Singh, N., Niklas, J., Poluektov, O., Van Heuvelen, K. M. & Mukherjee, A. (2017). Inorg. Chim. Acta, 455, 221-230.]), the exact translational symmetry is broken by slightly different conformations of the two complex cations.

[Figure 2]
Figure 2
An ORTEP diagram of the mol­ecular structure of [Cu(mesoPYBP)(ClO4)](ClO4), showing the atom-labeling scheme, with ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 3]
Figure 3
Crystal packing of the title complex viewed along a axis: the Cu1 (red) and Cu2 (green) moieties are related by pseudo-translation along the a axis. The mol­ecular parts contributing to the pseudosymmetry are highlighted. H atoms and all atom labels have been omitted for clarity.

As shown in Fig. 3[link], one of the cations (the red Cu1 moiety) has both piperidine rings in a chair conformation, while the other complex cation (the green Cu2 moiety) has one piperidine ring in a sterically disfavored boat conformation (shown in light green). The reason the second cation adopts this unfavorable conformation can be tentatively traced back to the packing inter­actions of the cations and perchlorate anions. The non-coordinating perchlorate anions (shown in light red/green) are modulated along the direction of the pseudo-translation, allowing for the formation of more favorable C—H⋯O inter­actions between the C—H units of the pyridyl segments and the perchlorate oxygen atoms (see Supra­molecular features section), thus leading to a more favorable packing of the structure as a whole. As a result of the different conformations in the two complex cations, the Cu2—Nbp bonds [2.0226 (16) and 2.0078 (16) Å] differ by 0.015 Å, but the Cu2—Npy bonds [1.9901 (16) and 1.9890 (16) Å] are similar. In contrast, the piperidine rings of the other mol­ecule (Cu1 moiety) are both in the more favorable chair conformation; the Cu1—Nbp distances [2.0349 (16) and 2.0365 (16) Å] are similar, but the Cu1—Npy distances [1.9808 (16) and 2.0309 (16) Å] differ. These Cu—N distances fall into the range of some other CuII amino­pyridine complexes (1.98– 2.03 Å; Singh et al., 2017[Singh, N., Niklas, J., Poluektov, O., Van Heuvelen, K. M. & Mukherjee, A. (2017). Inorg. Chim. Acta, 455, 221-230.]; Kani et al., 2000[Kani, Y., Ohba, S., Kunita, M. & Nishida, Y. (2000). Acta Cryst. C56, e197.]; Liebov et al., 2011[Liebov, B. K., Weigle, C. E., Keinath, K. V., Leap, J. E., Pike, R. D. & Keane, J. M. (2011). Inorg. Chem. 50, 4677-4679.]). The metal-coordinating perchlorate ions are only weakly bound, as expected for a d9 copper(II) complex, with Cu1—O and Cu2—O distances of 2.2038 (14) and 2.3438 (15) Å, respectively.

3. Supra­molecular features

Details of hydrogen-bonding parameters are listed in Table 1[link]. There are in total twelve C—H⋯O hydrogen bonds, between aromatic and aliphatic C—H units and perchlorate O atoms (Fig. 4[link]). Among these hydrogen bonds, only three involve the inner-sphere perchlorato ligand (C6—H6A⋯O3ii; C17—H17B⋯O4ii; C28—H28B⋯O12iv); all of these hydrogen bonds are inter­molecular, linking with the hydrogen atoms on the pyridine α-carbons of the adjacent Cu-mesoPYBP cations. The perchlorate close to the Cu1 moiety forms six hydrogen bonds with four adjacent complex cations (both Cu1 and Cu2), while that close to the Cu2 moiety only forms three hydrogen bonds with two adjacent complex cations (Cu2 only). This difference in hydrogen-bonding environments of the two outer-sphere perchlorates breaks the symmetry between them and between the cation moieties. All C⋯O distances of the C—H⋯O inter­actions (3.08–3.29 Å) are roughly equal to or shorter than the sum of van der Waals radii of the corres­ponding atoms (3.25 Å), indicating normal strength inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O8 0.95 2.62 3.259 (3) 125
C3—H3⋯O7i 0.95 2.55 3.265 (3) 133
C6—H6A⋯O3ii 0.99 2.58 3.259 (2) 125
C11—H11⋯O8ii 1.00 2.38 3.179 (3) 137
C12—H12⋯O6iii 1.00 2.40 3.236 (2) 141
C17—H17B⋯O4ii 0.99 2.57 3.291 (2) 130
C23—H23⋯O13 0.95 2.43 3.162 (3) 134
C25—H25⋯O5 0.95 2.31 3.164 (3) 149
C26—H26⋯O7 0.95 2.50 3.269 (3) 138
C28—H28B⋯O12iv 0.99 2.57 3.225 (3) 124
C34—H34⋯O15iv 1.00 2.42 3.182 (2) 132
C43—H43⋯O14 0.95 2.47 3.084 (3) 122
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 4]
Figure 4
Crystal packing of the title complex viewed approximately down the b axis. Hydrogen bonds are shown as dashed orange lines. H atoms and all atom labels, except those involved in C—H⋯O hydrogen bonds, have been omitted for clarity.

4. Synthesis and crystallization

The synthesis of the mesoPYBP ligand involves two steps. A detailed synthetic procedure for (2R,2′S)-2,2′-bi­piperidine-1,1′-diium dibromide (mesoBP·2HBr) via reductive hydrogenation of 2,2′-dipyridyl was reported by Herrmann et al. (2006[Herrmann, W. A., Baskakov, D., Herdtweck, E., Hoffmann, S. D., Bunlaksananusorn, T., Rampf, F. & Rodefeld, L. (2006). Organometallics, 25, 2449-2456.]) and Yang et al. (2013[Yang, G., Noll, B. C. & Rybak-Akimova, E. V. (2013). Acta Cryst. E69, o1711.]). 1.81 g mesoBP·2HBr was dissolved in 8 mL H2O, and 8 mL of 5 M NaOH solution was added, followed by addition of 10 mL of CH2Cl2. With vigorous stirring, 4 mL of an aqueous solution containing 1.86 g picolyl chloride hydro­chloride was added dropwise, and the reaction mixture was stirred for about four days. The two layers were separated, and the aqueous layer was extracted with CH2Cl2. The organic layers were combined and the solvent was evaporated under vacuum. The ligand was purified by adding concentrated HBr and subsequent recrystallization from EtOH. 1H NMR (CDCl3): 8.60 (d, 2H); 8.24 (t, 2H); 7.80 (d, 2H); 7.73 (t, 2H); 4.25 (d, 2H); 3.55 (s, 2H); 3.07 (d, 2H); 2.84 (s, 2H); 2.05 (d, 2H); 1.78 (m, 4H); 1.66 (m, 4H); 1.51 (m, 2H). 13C NMR (CDCl3): 161.3; 149.0; 136.5; 122.5; 121.6; 63.8; 60.3; 54.2; 27.7; 24.9; 24.8. The mesoPYBP·xHBr was basified with excess NaOH in aqueous solution, and extracted with CH2Cl2. The CH2Cl2 solution was dried over MgSO4 and solvents were removed by rotary evaporation, giving mesoPYBP as a colorless oil (yield: 1.47g, 76%).

Under ambient atmosphere, 0.70 g (2 mmol) mesoPYBP ligand was dissolved in 2 mL MeCN. 0.74 g (2 mmol) Cu(ClO4)2·6H2O (MW = 370.54g mol−1) was dissolved in minimal MeCN. The solutions were combined and stirred for two days; any precipitate was removed by filtration and discarded. 1.22 g (85%) [CuII(mesoPYBP)(ClO4)](ClO4) was obtained as dark-blue crystals by slow evaporation of the MeCN solution. The crystals decomposed and became black within 15 minutes at 503 K (caution: heating perchlorate-containing compounds may lead to explosion). UV–Vis λmax: 625 nm (molar absorptivity: 0.59 L mol−1 cm−1). IR (in KBr pellet) νmax: 3071, 2958, 1610, 1444, 1081, 1025, 780 cm−1.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed at calculated geometries and allowed to ride on their parent C atoms. The C—H distances were set to 0.99 Å for CH2, 1.00 Å for CH and 0.95 Å for aromatic CH bonds. Isotropic displacement parameters were set to 1.2 times of the equivalent isotropic displacement parameter of the parent atom.

Table 2
Experimental details

Crystal data
Chemical formula [Cu(ClO4)(C22H30N4)]ClO4
Mr 612.94
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 18.4079 (7), 14.0001 (5), 19.9387 (7)
β (°) 106.531 (1)
V3) 4926.1 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.16
Crystal size (mm) 0.26 × 0.17 × 0.17
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.752, 0.832
No. of measured, independent and observed [I > 2σ(I)] reflections 144743, 12921, 9894
Rint 0.062
(sin θ/λ)max−1) 0.680
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.091, 1.04
No. of reflections 12921
No. of parameters 667
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.73, −0.33
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

{1,1'-Bis[(pyridin-2-yl)methyl]-2,2'-bipiperidyl}(perchlorato)copper(II) perchlorate top
Crystal data top
[Cu(ClO4)(C22H30N4)]ClO4F(000) = 2536
Mr = 612.94Dx = 1.653 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 18.4079 (7) ÅCell parameters from 9672 reflections
b = 14.0001 (5) Åθ = 2.9–28.6°
c = 19.9387 (7) ŵ = 1.16 mm1
β = 106.531 (1)°T = 100 K
V = 4926.1 (3) Å3Block, clear dark blue
Z = 80.26 × 0.17 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
12921 independent reflections
Radiation source: sealed tube9894 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
φ and ω scansθmax = 28.9°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2425
Tmin = 0.752, Tmax = 0.832k = 1919
144743 measured reflectionsl = 2627
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0444P)2 + 3.2192P]
where P = (Fo2 + 2Fc2)/3
12921 reflections(Δ/σ)max = 0.001
667 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.02444 (2)0.68277 (2)0.31076 (2)0.00959 (6)
Cl10.08984 (3)0.45819 (3)0.32748 (2)0.01394 (10)
O10.10311 (8)0.56114 (10)0.32272 (8)0.0177 (3)
O20.05659 (10)0.44218 (12)0.38324 (9)0.0306 (4)
O30.16136 (9)0.41064 (11)0.34111 (9)0.0253 (4)
O40.03949 (9)0.42629 (11)0.26271 (8)0.0255 (4)
N10.03644 (9)0.65169 (12)0.21421 (8)0.0121 (3)
N20.07905 (9)0.68126 (11)0.32858 (8)0.0105 (3)
N30.06521 (9)0.74269 (11)0.40726 (8)0.0102 (3)
N40.10057 (9)0.77156 (11)0.28661 (8)0.0109 (3)
C10.01454 (11)0.60979 (14)0.16256 (10)0.0143 (4)
H10.03590.58670.17200.017*
C20.06345 (12)0.59934 (14)0.09607 (10)0.0158 (4)
H20.04650.57080.06000.019*
C30.13776 (12)0.63123 (15)0.08274 (11)0.0163 (4)
H30.17240.62440.03750.020*
C40.16070 (12)0.67310 (14)0.13633 (10)0.0142 (4)
H40.21130.69510.12850.017*
C50.10869 (11)0.68225 (14)0.20133 (10)0.0128 (4)
C60.12721 (11)0.72662 (14)0.26330 (10)0.0131 (4)
H6A0.11740.79620.26440.016*
H6B0.18140.71670.25970.016*
C70.10848 (11)0.58239 (14)0.33443 (10)0.0126 (4)
H7A0.06950.54590.36950.015*
H7B0.11730.54950.28880.015*
C80.18186 (11)0.58191 (15)0.35551 (11)0.0168 (4)
H8A0.22210.61520.31950.020*
H8B0.19840.51530.35890.020*
C90.16941 (12)0.63173 (16)0.42585 (11)0.0185 (4)
H9A0.13170.59570.46250.022*
H9B0.21760.63330.43870.022*
C100.14101 (11)0.73401 (15)0.42194 (11)0.0169 (4)
H10A0.12620.76130.46970.020*
H10B0.18360.77280.39330.020*
C110.07351 (11)0.74408 (14)0.39108 (10)0.0116 (4)
H110.07600.81110.37320.014*
C120.00505 (11)0.73466 (14)0.44545 (10)0.0116 (4)
H120.01130.79110.47730.014*
C130.01545 (11)0.64557 (15)0.49124 (10)0.0155 (4)
H13A0.02110.64750.51920.019*
H13B0.00400.58840.46080.019*
C140.09498 (12)0.63660 (15)0.54021 (11)0.0176 (4)
H14A0.09870.57940.57020.021*
H14B0.10760.69360.57080.021*
C150.14985 (12)0.62794 (15)0.49577 (11)0.0183 (4)
H15A0.20230.62090.52640.022*
H15B0.13730.57080.46540.022*
C160.14381 (11)0.71641 (15)0.45137 (11)0.0160 (4)
H16A0.17630.70760.41990.019*
H16B0.16460.77090.48260.019*
C170.07262 (11)0.84384 (13)0.38524 (10)0.0114 (4)
H17A0.09840.88300.42650.014*
H17B0.02180.87140.36370.014*
C180.11812 (11)0.84388 (14)0.33317 (10)0.0116 (4)
C190.17292 (11)0.91093 (14)0.33209 (10)0.0138 (4)
H190.18570.95970.36660.017*
C200.20890 (11)0.90567 (14)0.27970 (10)0.0142 (4)
H200.24690.95070.27790.017*
C210.18860 (11)0.83379 (14)0.23020 (10)0.0136 (4)
H210.21100.83040.19280.016*
C220.13520 (11)0.76678 (14)0.23583 (10)0.0133 (4)
H220.12280.71610.20290.016*
Cu20.49341 (2)0.17766 (2)0.19964 (2)0.01095 (6)
Cl30.41163 (3)0.05475 (3)0.18440 (3)0.01515 (10)
O90.41362 (9)0.04702 (10)0.19910 (8)0.0223 (3)
O100.44337 (11)0.07054 (13)0.12767 (10)0.0412 (5)
O110.33464 (9)0.08692 (11)0.16571 (9)0.0275 (4)
O120.45447 (10)0.10456 (12)0.24556 (9)0.0360 (4)
N50.40939 (9)0.25668 (11)0.21435 (8)0.0115 (3)
N60.45302 (9)0.22413 (12)0.09988 (8)0.0126 (3)
N70.59457 (9)0.16475 (11)0.18103 (8)0.0108 (3)
N80.55271 (9)0.14352 (12)0.29660 (9)0.0140 (3)
C230.37548 (11)0.25160 (15)0.26563 (10)0.0146 (4)
H230.39140.20410.30080.018*
C240.31802 (11)0.31360 (15)0.26878 (11)0.0168 (4)
H240.29570.30970.30620.020*
C250.29354 (11)0.38124 (15)0.21670 (11)0.0183 (4)
H250.25370.42390.21750.022*
C260.32803 (11)0.38601 (15)0.16321 (11)0.0165 (4)
H260.31180.43150.12670.020*
C270.38641 (11)0.32336 (14)0.16405 (10)0.0131 (4)
C280.42904 (12)0.32362 (14)0.10987 (10)0.0141 (4)
H28A0.39620.34880.06510.017*
H28B0.47410.36540.12540.017*
C290.38561 (12)0.16527 (15)0.06126 (11)0.0187 (4)
H29A0.34290.17860.08090.022*
H29B0.39850.09670.06880.022*
C300.36060 (13)0.18549 (16)0.01677 (11)0.0213 (5)
H30A0.34420.25290.02490.026*
H30B0.31690.14430.03970.026*
C310.42578 (13)0.16654 (17)0.04895 (11)0.0239 (5)
H31A0.41270.11110.08100.029*
H31B0.43220.22280.07680.029*
C320.50065 (12)0.14641 (16)0.00728 (11)0.0194 (4)
H32A0.49820.08330.02890.023*
H32B0.54290.14520.01430.023*
C330.51477 (12)0.22413 (14)0.06317 (10)0.0145 (4)
H330.50980.28630.03750.017*
C340.59262 (11)0.22733 (14)0.11918 (10)0.0134 (4)
H340.59800.29420.13760.016*
C350.66139 (12)0.21106 (15)0.09117 (11)0.0178 (4)
H35A0.65150.24260.04500.021*
H35B0.70610.24240.12330.021*
C360.68059 (12)0.10575 (15)0.08316 (11)0.0181 (4)
H36A0.64120.07710.04370.022*
H36B0.72970.10140.07230.022*
C370.68517 (11)0.05028 (15)0.14978 (11)0.0165 (4)
H37A0.72850.07380.18800.020*
H37B0.69360.01830.14230.020*
C380.61207 (11)0.06226 (13)0.17035 (10)0.0126 (4)
H38A0.56960.03440.13330.015*
H38B0.61640.02640.21410.015*
C390.64847 (11)0.20258 (14)0.24607 (10)0.0143 (4)
H39A0.64740.27330.24540.017*
H39B0.70060.18160.24880.017*
C400.62661 (11)0.16657 (14)0.30854 (10)0.0130 (4)
C410.67797 (12)0.15686 (14)0.37396 (11)0.0168 (4)
H410.72950.17460.38150.020*
C420.65307 (12)0.12073 (15)0.42832 (11)0.0185 (4)
H420.68720.11400.47380.022*
C430.57783 (12)0.09455 (15)0.41542 (11)0.0179 (4)
H430.55980.06880.45180.021*
C440.52923 (12)0.10627 (15)0.34899 (10)0.0163 (4)
H440.47780.08750.34010.020*
Cl20.13663 (3)0.53482 (3)0.09108 (2)0.01590 (10)
O50.17327 (11)0.54635 (16)0.16497 (9)0.0475 (6)
O60.10631 (10)0.62578 (12)0.06535 (9)0.0315 (4)
O70.19014 (9)0.50453 (14)0.05582 (9)0.0357 (5)
O80.07645 (11)0.46716 (13)0.08013 (11)0.0414 (5)
Cl40.35586 (3)0.04176 (3)0.41789 (2)0.01382 (10)
O130.32469 (9)0.08657 (11)0.35075 (8)0.0247 (4)
O140.42674 (9)0.08605 (12)0.45328 (9)0.0279 (4)
O150.36737 (10)0.05777 (11)0.40840 (9)0.0320 (4)
O160.30413 (8)0.05344 (12)0.45972 (8)0.0232 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01092 (12)0.00992 (12)0.00883 (11)0.00099 (9)0.00425 (9)0.00156 (9)
Cl10.0153 (2)0.0108 (2)0.0154 (2)0.00036 (18)0.00400 (18)0.00081 (18)
O10.0192 (8)0.0103 (7)0.0243 (8)0.0011 (6)0.0070 (6)0.0006 (6)
O20.0443 (11)0.0272 (9)0.0278 (9)0.0037 (8)0.0222 (8)0.0020 (7)
O30.0180 (8)0.0125 (7)0.0416 (10)0.0043 (6)0.0025 (7)0.0011 (7)
O40.0267 (9)0.0212 (8)0.0226 (8)0.0024 (7)0.0027 (7)0.0052 (7)
N10.0143 (8)0.0110 (8)0.0123 (8)0.0019 (6)0.0058 (7)0.0007 (6)
N20.0122 (8)0.0102 (8)0.0099 (8)0.0012 (6)0.0046 (6)0.0003 (6)
N30.0117 (8)0.0098 (8)0.0092 (8)0.0024 (6)0.0029 (6)0.0012 (6)
N40.0115 (8)0.0105 (8)0.0101 (8)0.0004 (6)0.0022 (6)0.0003 (6)
C10.0160 (10)0.0125 (10)0.0165 (10)0.0027 (8)0.0082 (8)0.0006 (8)
C20.0210 (11)0.0147 (10)0.0132 (10)0.0051 (8)0.0076 (8)0.0022 (8)
C30.0205 (11)0.0164 (10)0.0115 (10)0.0055 (8)0.0038 (8)0.0029 (8)
C40.0162 (10)0.0133 (10)0.0127 (9)0.0001 (8)0.0036 (8)0.0030 (8)
C50.0151 (9)0.0107 (9)0.0134 (9)0.0003 (8)0.0055 (8)0.0024 (7)
C60.0146 (9)0.0133 (10)0.0115 (9)0.0036 (8)0.0040 (8)0.0026 (8)
C70.0140 (9)0.0115 (9)0.0125 (9)0.0016 (7)0.0040 (8)0.0007 (7)
C80.0137 (10)0.0204 (11)0.0164 (10)0.0042 (8)0.0046 (8)0.0025 (8)
C90.0142 (10)0.0261 (12)0.0180 (11)0.0015 (9)0.0091 (8)0.0019 (9)
C100.0155 (10)0.0217 (11)0.0161 (10)0.0042 (8)0.0085 (8)0.0015 (8)
C110.0129 (9)0.0118 (9)0.0105 (9)0.0024 (7)0.0037 (7)0.0001 (7)
C120.0129 (9)0.0132 (10)0.0105 (9)0.0002 (7)0.0063 (7)0.0016 (7)
C130.0168 (10)0.0194 (10)0.0103 (9)0.0012 (8)0.0039 (8)0.0041 (8)
C140.0200 (11)0.0196 (11)0.0118 (10)0.0004 (9)0.0026 (8)0.0054 (8)
C150.0189 (11)0.0187 (11)0.0163 (10)0.0035 (8)0.0033 (8)0.0018 (8)
C160.0117 (9)0.0222 (11)0.0137 (10)0.0041 (8)0.0030 (8)0.0021 (8)
C170.0151 (9)0.0092 (9)0.0109 (9)0.0017 (7)0.0055 (7)0.0018 (7)
C180.0121 (9)0.0107 (9)0.0113 (9)0.0016 (7)0.0024 (7)0.0027 (7)
C190.0147 (10)0.0101 (9)0.0156 (10)0.0008 (8)0.0029 (8)0.0010 (8)
C200.0114 (9)0.0131 (10)0.0168 (10)0.0012 (7)0.0017 (8)0.0036 (8)
C210.0118 (9)0.0173 (10)0.0121 (9)0.0015 (8)0.0040 (7)0.0031 (8)
C220.0152 (10)0.0141 (10)0.0110 (9)0.0018 (8)0.0045 (8)0.0007 (7)
Cu20.01328 (12)0.01163 (12)0.00875 (11)0.00174 (9)0.00442 (9)0.00256 (9)
Cl30.0146 (2)0.0129 (2)0.0184 (2)0.00165 (18)0.00546 (19)0.00010 (18)
O90.0307 (9)0.0131 (7)0.0255 (8)0.0051 (6)0.0117 (7)0.0009 (6)
O100.0549 (12)0.0363 (11)0.0472 (12)0.0129 (9)0.0382 (10)0.0172 (9)
O110.0146 (8)0.0214 (8)0.0426 (10)0.0051 (6)0.0019 (7)0.0022 (7)
O120.0332 (10)0.0255 (9)0.0371 (10)0.0049 (8)0.0098 (8)0.0081 (8)
N50.0120 (8)0.0108 (8)0.0105 (8)0.0012 (6)0.0010 (6)0.0008 (6)
N60.0169 (8)0.0118 (8)0.0095 (8)0.0039 (7)0.0043 (7)0.0005 (6)
N70.0148 (8)0.0085 (8)0.0107 (8)0.0003 (6)0.0061 (6)0.0005 (6)
N80.0144 (8)0.0159 (9)0.0124 (8)0.0028 (7)0.0048 (7)0.0017 (7)
C230.0166 (10)0.0152 (10)0.0118 (9)0.0019 (8)0.0037 (8)0.0005 (8)
C240.0144 (10)0.0180 (10)0.0177 (10)0.0038 (8)0.0037 (8)0.0042 (8)
C250.0119 (10)0.0175 (10)0.0226 (11)0.0009 (8)0.0003 (8)0.0045 (9)
C260.0161 (10)0.0149 (10)0.0159 (10)0.0001 (8)0.0002 (8)0.0004 (8)
C270.0131 (9)0.0112 (9)0.0131 (9)0.0027 (7)0.0006 (7)0.0016 (7)
C280.0187 (10)0.0109 (9)0.0120 (9)0.0008 (8)0.0035 (8)0.0019 (7)
C290.0229 (11)0.0168 (11)0.0150 (10)0.0077 (8)0.0032 (9)0.0015 (8)
C300.0250 (12)0.0214 (11)0.0146 (10)0.0032 (9)0.0008 (9)0.0020 (9)
C310.0315 (13)0.0264 (12)0.0108 (10)0.0033 (10)0.0013 (9)0.0030 (9)
C320.0251 (11)0.0198 (11)0.0130 (10)0.0022 (9)0.0048 (9)0.0029 (8)
C330.0215 (10)0.0122 (10)0.0114 (9)0.0005 (8)0.0070 (8)0.0018 (8)
C340.0212 (10)0.0103 (9)0.0112 (9)0.0023 (8)0.0089 (8)0.0014 (7)
C350.0226 (11)0.0158 (10)0.0193 (11)0.0053 (8)0.0128 (9)0.0004 (8)
C360.0187 (10)0.0194 (11)0.0208 (11)0.0015 (8)0.0133 (9)0.0024 (9)
C370.0154 (10)0.0145 (10)0.0220 (11)0.0000 (8)0.0091 (8)0.0020 (8)
C380.0149 (10)0.0093 (9)0.0143 (10)0.0012 (7)0.0056 (8)0.0001 (7)
C390.0160 (10)0.0129 (10)0.0146 (10)0.0024 (8)0.0054 (8)0.0013 (8)
C400.0166 (10)0.0090 (9)0.0139 (10)0.0005 (7)0.0049 (8)0.0011 (7)
C410.0188 (10)0.0149 (10)0.0161 (10)0.0005 (8)0.0037 (8)0.0008 (8)
C420.0247 (11)0.0177 (10)0.0119 (10)0.0058 (9)0.0032 (8)0.0013 (8)
C430.0223 (11)0.0209 (11)0.0128 (10)0.0067 (9)0.0085 (8)0.0058 (8)
C440.0178 (10)0.0173 (10)0.0155 (10)0.0051 (8)0.0074 (8)0.0049 (8)
Cl20.0177 (2)0.0153 (2)0.0144 (2)0.00492 (19)0.00411 (19)0.00103 (18)
O50.0500 (12)0.0691 (15)0.0169 (9)0.0306 (11)0.0009 (8)0.0063 (9)
O60.0397 (10)0.0210 (9)0.0356 (10)0.0080 (7)0.0135 (8)0.0125 (7)
O70.0188 (8)0.0560 (12)0.0328 (10)0.0023 (8)0.0081 (7)0.0250 (9)
O80.0522 (12)0.0215 (9)0.0630 (13)0.0147 (8)0.0366 (11)0.0078 (9)
Cl40.0155 (2)0.0131 (2)0.0130 (2)0.00116 (18)0.00433 (18)0.00055 (18)
O130.0328 (9)0.0248 (9)0.0173 (8)0.0013 (7)0.0086 (7)0.0078 (7)
O140.0175 (8)0.0371 (10)0.0300 (9)0.0103 (7)0.0085 (7)0.0118 (8)
O150.0502 (11)0.0169 (8)0.0250 (9)0.0078 (8)0.0043 (8)0.0031 (7)
O160.0184 (8)0.0351 (9)0.0187 (8)0.0021 (7)0.0095 (6)0.0066 (7)
Geometric parameters (Å, º) top
Cu1—O12.2038 (14)Cu2—N81.9890 (16)
Cu1—N11.9808 (16)Cl3—O91.4530 (15)
Cu1—N22.0349 (16)Cl3—O101.4302 (18)
Cu1—N32.0365 (16)Cl3—O111.4316 (15)
Cu1—N42.0309 (16)Cl3—O121.4311 (17)
Cl1—O11.4695 (14)N5—C231.343 (2)
Cl1—O21.4311 (16)N5—C271.347 (3)
Cl1—O31.4306 (15)N6—C281.491 (3)
Cl1—O41.4301 (15)N6—C291.506 (3)
N1—C11.343 (2)N6—C331.517 (2)
N1—C51.351 (3)N7—C341.505 (2)
N2—C61.492 (2)N7—C381.499 (2)
N2—C71.503 (2)N7—C391.488 (2)
N2—C111.505 (2)N8—C401.352 (3)
N3—C121.516 (2)N8—C441.344 (3)
N3—C161.509 (2)C23—H230.9500
N3—C171.500 (2)C23—C241.383 (3)
N4—C181.349 (2)C24—H240.9500
N4—C221.343 (2)C24—C251.383 (3)
C1—H10.9500C25—H250.9500
C1—C21.382 (3)C25—C261.389 (3)
C2—H20.9500C26—H260.9500
C2—C31.391 (3)C26—C271.384 (3)
C3—H30.9500C27—C281.505 (3)
C3—C41.386 (3)C28—H28A0.9900
C4—H40.9500C28—H28B0.9900
C4—C51.381 (3)C29—H29A0.9900
C5—C61.506 (3)C29—H29B0.9900
C6—H6A0.9900C29—C301.518 (3)
C6—H6B0.9900C30—H30A0.9900
C7—H7A0.9900C30—H30B0.9900
C7—H7B0.9900C30—C311.536 (3)
C7—C81.525 (3)C31—H31A0.9900
C8—H8A0.9900C31—H31B0.9900
C8—H8B0.9900C31—C321.535 (3)
C8—C91.524 (3)C32—H32A0.9900
C9—H9A0.9900C32—H32B0.9900
C9—H9B0.9900C32—C331.526 (3)
C9—C101.534 (3)C33—H331.0000
C10—H10A0.9900C33—C341.547 (3)
C10—H10B0.9900C34—H341.0000
C10—C111.542 (3)C34—C351.539 (3)
C11—H111.0000C35—H35A0.9900
C11—C121.546 (3)C35—H35B0.9900
C12—H121.0000C35—C361.535 (3)
C12—C131.525 (3)C36—H36A0.9900
C13—H13A0.9900C36—H36B0.9900
C13—H13B0.9900C36—C371.520 (3)
C13—C141.516 (3)C37—H37A0.9900
C14—H14A0.9900C37—H37B0.9900
C14—H14B0.9900C37—C381.523 (3)
C14—C151.526 (3)C38—H38A0.9900
C15—H15A0.9900C38—H38B0.9900
C15—H15B0.9900C39—H39A0.9900
C15—C161.508 (3)C39—H39B0.9900
C16—H16A0.9900C39—C401.501 (3)
C16—H16B0.9900C40—C411.383 (3)
C17—H17A0.9900C41—H410.9500
C17—H17B0.9900C41—C421.387 (3)
C17—C181.508 (3)C42—H420.9500
C18—C191.383 (3)C42—C431.384 (3)
C19—H190.9500C43—H430.9500
C19—C201.389 (3)C43—C441.381 (3)
C20—H200.9500C44—H440.9500
C20—C211.384 (3)Cl2—O51.4442 (18)
C21—H210.9500Cl2—O61.4260 (16)
C21—C221.386 (3)Cl2—O71.4278 (16)
C22—H220.9500Cl2—O81.4264 (18)
Cu2—O92.3438 (15)Cl4—O131.4415 (15)
Cu2—N51.9901 (16)Cl4—O141.4355 (16)
Cu2—N62.0226 (16)Cl4—O151.4302 (16)
Cu2—N72.0078 (16)Cl4—O161.4426 (15)
N1—Cu1—O196.20 (6)N8—Cu2—O989.24 (6)
N1—Cu1—N282.45 (6)N8—Cu2—N5103.00 (7)
N1—Cu1—N3164.41 (7)N8—Cu2—N6168.41 (7)
N1—Cu1—N498.15 (6)N8—Cu2—N782.92 (7)
N2—Cu1—O1126.30 (6)O10—Cl3—O9108.58 (10)
N2—Cu1—N387.19 (6)O10—Cl3—O11110.02 (11)
N3—Cu1—O199.32 (6)O10—Cl3—O12110.39 (12)
N4—Cu1—O191.27 (6)O11—Cl3—O9109.11 (10)
N4—Cu1—N2142.29 (6)O12—Cl3—O9109.25 (10)
N4—Cu1—N383.01 (6)O12—Cl3—O11109.46 (11)
O2—Cl1—O1108.63 (9)Cl3—O9—Cu2138.24 (10)
O3—Cl1—O1107.93 (9)C23—N5—Cu2129.19 (14)
O3—Cl1—O2110.69 (11)C23—N5—C27119.21 (17)
O4—Cl1—O1108.97 (9)C27—N5—Cu2111.60 (13)
O4—Cl1—O2110.01 (10)C28—N6—Cu2102.07 (11)
O4—Cl1—O3110.56 (10)C28—N6—C29110.32 (16)
Cl1—O1—Cu1130.44 (9)C28—N6—C33110.81 (15)
C1—N1—Cu1129.13 (14)C29—N6—Cu2110.23 (12)
C1—N1—C5119.14 (17)C29—N6—C33112.00 (15)
C5—N1—Cu1111.68 (13)C33—N6—Cu2110.99 (12)
C6—N2—Cu1101.34 (11)C34—N7—Cu2106.98 (12)
C6—N2—C7108.77 (15)C38—N7—Cu2111.13 (12)
C6—N2—C11110.92 (14)C38—N7—C34113.38 (15)
C7—N2—Cu1113.53 (11)C39—N7—Cu2103.32 (11)
C7—N2—C11114.52 (15)C39—N7—C34111.19 (15)
C11—N2—Cu1106.99 (11)C39—N7—C38110.33 (15)
C12—N3—Cu1108.57 (11)C40—N8—Cu2111.12 (13)
C16—N3—Cu1118.99 (12)C44—N8—Cu2129.77 (14)
C16—N3—C12113.91 (14)C44—N8—C40119.06 (17)
C17—N3—Cu198.75 (11)N5—C23—H23119.1
C17—N3—C12110.92 (14)N5—C23—C24121.90 (19)
C17—N3—C16104.40 (15)C24—C23—H23119.1
C18—N4—Cu1110.03 (12)C23—C24—H24120.5
C22—N4—Cu1130.98 (13)C25—C24—C23119.0 (2)
C22—N4—C18118.95 (17)C25—C24—H24120.5
N1—C1—H1119.1C24—C25—H25120.4
N1—C1—C2121.75 (19)C24—C25—C26119.14 (19)
C2—C1—H1119.1C26—C25—H25120.4
C1—C2—H2120.5C25—C26—H26120.6
C1—C2—C3119.08 (19)C27—C26—C25118.89 (19)
C3—C2—H2120.5C27—C26—H26120.6
C2—C3—H3120.4N5—C27—C26121.78 (19)
C4—C3—C2119.17 (19)N5—C27—C28114.74 (17)
C4—C3—H3120.4C26—C27—C28123.47 (18)
C3—C4—H4120.6N6—C28—C27109.16 (16)
C5—C4—C3118.75 (19)N6—C28—H28A109.8
C5—C4—H4120.6N6—C28—H28B109.8
N1—C5—C4122.09 (18)C27—C28—H28A109.8
N1—C5—C6114.54 (17)C27—C28—H28B109.8
C4—C5—C6123.37 (18)H28A—C28—H28B108.3
N2—C6—C5108.85 (15)N6—C29—H29A109.0
N2—C6—H6A109.9N6—C29—H29B109.0
N2—C6—H6B109.9N6—C29—C30112.80 (17)
C5—C6—H6A109.9H29A—C29—H29B107.8
C5—C6—H6B109.9C30—C29—H29A109.0
H6A—C6—H6B108.3C30—C29—H29B109.0
N2—C7—H7A109.0C29—C30—H30A109.5
N2—C7—H7B109.0C29—C30—H30B109.5
N2—C7—C8113.12 (16)C29—C30—C31110.53 (18)
H7A—C7—H7B107.8H30A—C30—H30B108.1
C8—C7—H7A109.0C31—C30—H30A109.5
C8—C7—H7B109.0C31—C30—H30B109.5
C7—C8—H8A109.7C30—C31—H31A109.2
C7—C8—H8B109.7C30—C31—H31B109.2
H8A—C8—H8B108.2H31A—C31—H31B107.9
C9—C8—C7109.79 (16)C32—C31—C30111.86 (18)
C9—C8—H8A109.7C32—C31—H31A109.2
C9—C8—H8B109.7C32—C31—H31B109.2
C8—C9—H9A109.6C31—C32—H32A109.8
C8—C9—H9B109.6C31—C32—H32B109.8
C8—C9—C10110.16 (17)H32A—C32—H32B108.2
H9A—C9—H9B108.1C33—C32—C31109.47 (18)
C10—C9—H9A109.6C33—C32—H32A109.8
C10—C9—H9B109.6C33—C32—H32B109.8
C9—C10—H10A108.4N6—C33—C32110.92 (16)
C9—C10—H10B108.4N6—C33—H33106.0
C9—C10—C11115.50 (16)N6—C33—C34108.61 (15)
H10A—C10—H10B107.5C32—C33—H33106.0
C11—C10—H10A108.4C32—C33—C34118.57 (17)
C11—C10—H10B108.4C34—C33—H33106.0
N2—C11—C10113.86 (16)N7—C34—C33112.09 (15)
N2—C11—H11105.5N7—C34—H34105.5
N2—C11—C12111.11 (15)N7—C34—C35112.40 (16)
C10—C11—H11105.5C33—C34—H34105.5
C10—C11—C12114.29 (16)C35—C34—C33115.00 (16)
C12—C11—H11105.5C35—C34—H34105.5
N3—C12—C11108.21 (15)C34—C35—H35A108.6
N3—C12—H12107.1C34—C35—H35B108.6
N3—C12—C13112.09 (15)H35A—C35—H35B107.6
C11—C12—H12107.1C36—C35—C34114.67 (16)
C13—C12—C11114.99 (16)C36—C35—H35A108.6
C13—C12—H12107.1C36—C35—H35B108.6
C12—C13—H13A109.0C35—C36—H36A109.5
C12—C13—H13B109.0C35—C36—H36B109.5
H13A—C13—H13B107.8H36A—C36—H36B108.0
C14—C13—C12112.76 (17)C37—C36—C35110.90 (17)
C14—C13—H13A109.0C37—C36—H36A109.5
C14—C13—H13B109.0C37—C36—H36B109.5
C13—C14—H14A110.1C36—C37—H37A109.6
C13—C14—H14B110.1C36—C37—H37B109.6
C13—C14—C15108.06 (17)C36—C37—C38110.21 (17)
H14A—C14—H14B108.4H37A—C37—H37B108.1
C15—C14—H14A110.1C38—C37—H37A109.6
C15—C14—H14B110.1C38—C37—H37B109.6
C14—C15—H15A109.9N7—C38—C37112.68 (16)
C14—C15—H15B109.9N7—C38—H38A109.1
H15A—C15—H15B108.3N7—C38—H38B109.1
C16—C15—C14108.97 (17)C37—C38—H38A109.1
C16—C15—H15A109.9C37—C38—H38B109.1
C16—C15—H15B109.9H38A—C38—H38B107.8
N3—C16—H16A108.3N7—C39—H39A109.8
N3—C16—H16B108.3N7—C39—H39B109.8
C15—C16—N3116.14 (17)N7—C39—C40109.50 (16)
C15—C16—H16A108.3H39A—C39—H39B108.2
C15—C16—H16B108.3C40—C39—H39A109.8
H16A—C16—H16B107.4C40—C39—H39B109.8
N3—C17—H17A110.0N8—C40—C39115.35 (17)
N3—C17—H17B110.0N8—C40—C41121.76 (18)
N3—C17—C18108.44 (15)C41—C40—C39122.89 (18)
H17A—C17—H17B108.4C40—C41—H41120.5
C18—C17—H17A110.0C40—C41—C42118.9 (2)
C18—C17—H17B110.0C42—C41—H41120.5
N4—C18—C17113.71 (16)C41—C42—H42120.4
N4—C18—C19122.12 (18)C43—C42—C41119.14 (19)
C19—C18—C17124.17 (17)C43—C42—H42120.4
C18—C19—H19120.6C42—C43—H43120.4
C18—C19—C20118.81 (18)C44—C43—C42119.19 (19)
C20—C19—H19120.6C44—C43—H43120.4
C19—C20—H20120.5N8—C44—C43121.84 (19)
C21—C20—C19119.02 (18)N8—C44—H44119.1
C21—C20—H20120.5C43—C44—H44119.1
C20—C21—H21120.4O6—Cl2—O5106.77 (11)
C20—C21—C22119.21 (18)O6—Cl2—O7110.02 (11)
C22—C21—H21120.4O6—Cl2—O8109.30 (11)
N4—C22—C21121.80 (18)O7—Cl2—O5110.38 (11)
N4—C22—H22119.1O8—Cl2—O5110.33 (13)
C21—C22—H22119.1O8—Cl2—O7109.99 (11)
N5—Cu2—O985.54 (6)O13—Cl4—O16109.50 (9)
N5—Cu2—N683.25 (7)O14—Cl4—O13109.54 (10)
N5—Cu2—N7151.39 (7)O14—Cl4—O16108.91 (9)
N6—Cu2—O9101.07 (6)O15—Cl4—O13109.63 (10)
N7—Cu2—O9122.81 (6)O15—Cl4—O14109.74 (11)
N7—Cu2—N687.02 (7)O15—Cl4—O16109.50 (10)
Cu1—N1—C1—C2175.28 (14)Cu2—N5—C23—C24178.98 (14)
Cu1—N1—C5—C4176.50 (15)Cu2—N5—C27—C26179.37 (15)
Cu1—N1—C5—C63.5 (2)Cu2—N5—C27—C280.6 (2)
Cu1—N2—C6—C546.04 (16)Cu2—N6—C28—C2744.90 (16)
Cu1—N2—C7—C8173.81 (12)Cu2—N6—C29—C30170.51 (14)
Cu1—N2—C11—C10167.28 (13)Cu2—N6—C33—C32110.08 (15)
Cu1—N2—C11—C1236.51 (17)Cu2—N6—C33—C3421.90 (18)
Cu1—N3—C12—C1134.01 (17)Cu2—N7—C34—C3338.73 (17)
Cu1—N3—C12—C1393.82 (15)Cu2—N7—C34—C35170.07 (13)
Cu1—N3—C16—C1586.24 (19)Cu2—N7—C38—C37174.97 (13)
Cu1—N3—C17—C1852.50 (15)Cu2—N7—C39—C4041.98 (17)
Cu1—N4—C18—C174.93 (19)Cu2—N8—C40—C395.7 (2)
Cu1—N4—C18—C19175.14 (15)Cu2—N8—C40—C41174.63 (15)
Cu1—N4—C22—C21177.14 (14)Cu2—N8—C44—C43174.34 (15)
O2—Cl1—O1—Cu154.85 (14)O10—Cl3—O9—Cu236.13 (18)
O3—Cl1—O1—Cu1174.91 (11)O11—Cl3—O9—Cu2156.04 (13)
O4—Cl1—O1—Cu164.99 (14)O12—Cl3—O9—Cu284.32 (16)
N1—C1—C2—C31.4 (3)N5—C23—C24—C251.6 (3)
N1—C5—C6—N230.3 (2)N5—C27—C28—N632.0 (2)
N2—C7—C8—C959.0 (2)N6—C29—C30—C3158.1 (2)
N2—C11—C12—N347.6 (2)N6—C33—C34—N740.4 (2)
N2—C11—C12—C1378.6 (2)N6—C33—C34—C35170.37 (16)
N3—C12—C13—C1452.1 (2)N7—C34—C35—C3645.8 (2)
N3—C17—C18—N440.7 (2)N7—C39—C40—N825.4 (2)
N3—C17—C18—C19139.32 (19)N7—C39—C40—C41154.29 (18)
N4—C18—C19—C202.5 (3)N8—C40—C41—C421.3 (3)
C1—N1—C5—C41.0 (3)C23—N5—C27—C260.9 (3)
C1—N1—C5—C6179.06 (17)C23—N5—C27—C28179.11 (17)
C1—C2—C3—C40.3 (3)C23—C24—C25—C260.9 (3)
C2—C3—C4—C50.3 (3)C24—C25—C26—C270.6 (3)
C3—C4—C5—N10.0 (3)C25—C26—C27—N51.5 (3)
C3—C4—C5—C6179.92 (18)C25—C26—C27—C28178.48 (18)
C4—C5—C6—N2149.75 (18)C26—C27—C28—N6147.94 (18)
C5—N1—C1—C21.7 (3)C27—N5—C23—C240.7 (3)
C6—N2—C7—C874.19 (19)C28—N6—C29—C3077.5 (2)
C6—N2—C11—C1083.02 (19)C28—N6—C33—C32137.26 (17)
C6—N2—C11—C12146.20 (16)C28—N6—C33—C3490.76 (18)
C7—N2—C6—C573.84 (19)C29—N6—C28—C2772.24 (19)
C7—N2—C11—C1040.5 (2)C29—N6—C33—C3213.6 (2)
C7—N2—C11—C1290.23 (19)C29—N6—C33—C34145.58 (16)
C7—C8—C9—C1057.4 (2)C29—C30—C31—C328.0 (3)
C8—C9—C10—C1149.8 (2)C30—C31—C32—C3350.1 (2)
C9—C10—C11—N241.2 (2)C31—C32—C33—N662.5 (2)
C9—C10—C11—C1288.0 (2)C31—C32—C33—C34170.86 (17)
C10—C11—C12—N3178.10 (15)C32—C33—C34—N787.4 (2)
C10—C11—C12—C1351.9 (2)C32—C33—C34—C3542.6 (2)
C11—N2—C6—C5159.35 (15)C33—N6—C28—C27163.14 (15)
C11—N2—C7—C850.5 (2)C33—N6—C29—C3046.4 (2)
C11—C12—C13—C14176.20 (16)C33—C34—C35—C3684.0 (2)
C12—N3—C16—C1543.8 (2)C34—N7—C38—C3754.4 (2)
C12—N3—C17—C18166.32 (15)C34—N7—C39—C40156.41 (16)
C12—C13—C14—C1562.0 (2)C34—C35—C36—C3750.2 (2)
C13—C14—C15—C1660.5 (2)C35—C36—C37—C3854.9 (2)
C14—C15—C16—N353.3 (2)C36—C37—C38—N758.0 (2)
C16—N3—C12—C11169.10 (15)C38—N7—C34—C3384.1 (2)
C16—N3—C12—C1341.3 (2)C38—N7—C34—C3547.2 (2)
C16—N3—C17—C1870.58 (18)C38—N7—C39—C4076.89 (19)
C17—N3—C12—C1173.46 (18)C39—N7—C34—C33150.87 (16)
C17—N3—C12—C13158.70 (16)C39—N7—C34—C3577.8 (2)
C17—N3—C16—C15164.99 (17)C39—N7—C38—C3771.0 (2)
C17—C18—C19—C20177.39 (18)C39—C40—C41—C42178.41 (19)
C18—N4—C22—C210.3 (3)C40—N8—C44—C432.7 (3)
C18—C19—C20—C210.2 (3)C40—C41—C42—C430.7 (3)
C19—C20—C21—C222.6 (3)C41—C42—C43—C440.9 (3)
C20—C21—C22—N42.4 (3)C42—C43—C44—N80.8 (3)
C22—N4—C18—C17177.15 (16)C44—N8—C40—C39176.75 (17)
C22—N4—C18—C192.8 (3)C44—N8—C40—C412.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O80.952.623.259 (3)125
C3—H3···O7i0.952.553.265 (3)133
C6—H6A···O3ii0.992.583.259 (2)125
C11—H11···O8ii1.002.383.179 (3)137
C12—H12···O6iii1.002.403.236 (2)141
C17—H17B···O4ii0.992.573.291 (2)130
C23—H23···O130.952.433.162 (3)134
C25—H25···O50.952.313.164 (3)149
C26—H26···O70.952.503.269 (3)138
C28—H28B···O12iv0.992.573.225 (3)124
C34—H34···O15iv1.002.423.182 (2)132
C43—H43···O140.952.473.084 (3)122
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x+1, y+1/2, z+1/2.
 

Acknowledgements

Financial support by the National Science Foundation (CHE1412909 and MRI1229426) is gratefully acknowledged.

Funding information

Funding for this research was provided by: NSF (grant No. 1412909/CHE to E.V. Rybak-Akimova; grant No. 1229426/MRI to A.Utz).

References

First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHerrmann, W. A., Baskakov, D., Herdtweck, E., Hoffmann, S. D., Bunlaksananusorn, T., Rampf, F. & Rodefeld, L. (2006). Organometallics, 25, 2449–2456.  Web of Science CSD CrossRef CAS Google Scholar
First citationKani, Y., Ohba, S., Kunita, M. & Nishida, Y. (2000). Acta Cryst. C56, e197.  CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKumar, P., Kalita, A. & Mondal, B. (2013a). Dalton Trans. 42, 5731–5739.  CrossRef CAS PubMed Google Scholar
First citationKumar, P., Kalita, A. & Mondal, B. (2013b). Inorg. Chim. Acta, 404, 88–96.  CrossRef CAS Google Scholar
First citationLiebov, B. K., Weigle, C. E., Keinath, K. V., Leap, J. E., Pike, R. D. & Keane, J. M. (2011). Inorg. Chem. 50, 4677–4679.  CrossRef CAS PubMed Google Scholar
First citationLyakin, O. Y., Ottenbacher, R. V., Bryliakov, K. P. & Talsi, E. P. (2012). ACS Catal. 2, 1196–1202.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMakhlynets, O. V. & Rybak-Akimova, E. V. (2010). Chem. Eur. J. 16, 13995–14006.  CrossRef CAS PubMed Google Scholar
First citationMikhalyova, E. A., Makhlynets, O. V., Palluccio, T. D., Filatov, A. S. & Rybak-Akimova, E. V. (2012). Chem. Commun. 48, 687–689.  CrossRef CAS Google Scholar
First citationMurphy, A. & Stack, T. D. P. (2006). J. Mol. Catal. A Chem. 251, 78–88.  CrossRef CAS Google Scholar
First citationOttenbacher, R. V., Talsi, E. P. & Bryliakov, K. P. (2015). ACS Catal. 5, 39–44.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, N., Niklas, J., Poluektov, O., Van Heuvelen, K. M. & Mukherjee, A. (2017). Inorg. Chim. Acta, 455, 221–230.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, G., Noll, B. C. & Rybak-Akimova, E. V. (2013). Acta Cryst. E69, o1711.  CrossRef IUCr Journals Google Scholar
First citationYazerski, V. A., Spannring, P., Gatineau, D., Woerde, C. H. M., Wieclawska, S. M., Lutz, M., Kleijn, H. & Gebbink, R. J. M. K. (2014). Org. Biomol. Chem. 12, 2062–2070.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds