research communications
κN)bis(2,4,6-trimethylbenzoato-κO1)nickel(II) dihydrate
and Hirshfeld surface analysis of diaquabis(isonicotinamide-aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, and cDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, International Scientific Research Centre, Baku State University, 1148 Baku, Azerbaijan
*Correspondence e-mail: merzifon@hacettepe.edu.tr
In the title NiII complex, [Ni(C10H11O2)2(C6H6N2O)2(H2O)2]·2H2O, the divalent Ni ion occupies a crystallographically imposed centre of symmetry and is coordinated by two O atoms from the carboxylate groups of two 2,4,6-trimethylbenzoate (TMB) ligands [Ni—O = 2.0438 (12) Å], two N atoms from the pyridyl groups of two isonicotinamide (INA) ligands [Ni—N = 2.1506 (15) Å] and two water molecules [Ni—O = 2.0438 (12) Å] in a slightly distorted octahedral geometry. The coordinating water molecules are hydrogen bonded to the non-coordinating carboxylate O atom of the TMB ligand [O⋯O = 2.593 (3) Å], enclosing an S(6) hydrogen-bonding motif. Two solvent water molecules are also present in the formula unit. In the crystal, a network of intermolecular N—H⋯O and O—H⋯O hydrogen bonds link the complexes into a three-dimensional array. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (59.8%), O⋯H/H⋯O (20.2%) and C⋯H/H⋯C (13.7%) interactions.
Keywords: crystal structure; nickel(II); coordination compound; benzoic acid; nicotinamide.
CCDC reference: 1562879
1. Chemical context
Nicotinamide (NA) is a derivative of nicotinic acid, also called niacin. A deficiency in this vitamin leads to loss of copper from the body, giving rise to a condition known as pellagra disease. Victims of pellagra show unusually high serum and urinary copper levels (Krishnamachari, 1974). The of NA was first determined in 1954 (Wright & King, 1954). The NA ring is the reactive part of nicotinamide adenine dinucleotide (NAD) and its phosphate (NADP), which are the major electron carriers in many biological oxidation–reduction reactions (You et al., 1978). Another nicotinic acid derivative, N,N-diethylnicotinamide (DENA), is an important respiratory stimulant (Bigoli et al., 1972). Transition-metal complexes with ligands of biochemical interest, such as imidazole and some N-protected amino acids, often show interesting physical and/or chemical properties, which lead to applications in biological systems (Antolini et al., 1982). There have been many reports of the crystal structures of metal complexes with benzoic acid derivatives, which are of interest because of the number of different coordination modes exhibited by the carboxylic acid groups. These include Co and Cd complexes with 4-aminobenzoic acid (Chen & Chen, 2002; Amiraslanov et al., 1979; Hauptmann et al., 2000), Co complexes with benzoic acid (Catterick et al., 1974), 4-nitrobenzoic acid (Nadzhafov et al., 1981) and phthalic acid (Adiwidjaja et al., 1978) and Cu complexes with 4-hydrochlorobenzoic acid (Shnulin et al., 1981). Mn complexes closely related to the title compound have also been reported, e.g. diaquabis(4-nitrobenzoato)bis(1H-1,2,4-triazol-3-amine)manganese(II) (Zhang et al., 2013) and diaquabis(1H-imidazole)bis(4-nitrobenzoato)manganese(II) (Xu & Xu, 2004).
The crystal structures of anhydrous zinc(II) carboxylates are diverse and include one-dimensional (Guseinov et al., 1984; Clegg et al., 1986a), two-dimensional (Clegg et al., 1986b, 1987) and three-dimensional (Capilla & Aranda, 1979) polymeric motifs of different types, while discrete monomeric complexes with octahedral or tetrahedral coordination geometry are found if water or other donor molecules are coordinated to Zn (van Niekerk et al., 1953; Usubaliev et al., 1992). Pertinent to the present work, the structure–function–coordination relationships of the arylcarboxylate ion in ZnII complexes of benzoic acid derivatives have been studied and shown to depend on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand, molecule or solvent, and the pH and temperature of synthesis (Shnulin et al., 1981; Nadzhafov et al., 1981; Antsyshkina et al., 1980; Adiwidjaja et al., 1978; Catterick et al., 1974).
The structures of a number of mononuclear complexes of divalent transition-metal ions with both nicotinamide (NA) and benzoic acid derivatives as ligands have been previously reported and include [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2] [(II); Hökelek et al., 2009], [Ni(C8H7O2)2(C6H6N2O)2(H2O)2] [(III); Necefoğlu et al., 2010], [Ni(C8H7O3)2(C6H6N2O)2(H2O)2]·2(H2O) [(IV); Hökelek et al., 2010], [Ni(C8H5O3)2(C6H6N2O)2(H2O)2] [(V); Sertçelik et al., 2012], [Mn(C7H4NO4)2(C6H6N2O)2(H2O)2] [(VI); Aşkın et al., 2016] and [Zn(C8H8NO2)2(C6H6N2O)2] [(VII); Tercan et al., 2009]. In this work, to enable comparison with the above NiII compounds and develop structure–function–coordination relationships, we describe the synthesis of diaquabis(isonicotinamide-κN)bis(2,4,6-trimethylbenzoato-κO1)nickel(II) dihydrate, [Ni(C10H11O2)2(C6H6N2O)2(H2O)2]·2H2O, and report its molecular and crystal structures, along with a Hirshfeld surface analysis.
2. Structural commentary
The contains a NiII cation residing on a centre of symmetry, one 2,4,6-trimethylbenzoate (TMB) anion and one isonicotinamide (INA) anion, together with one coordinating and one non-coordinating water molecule. The TMB and INA ligands coordinate in a monodentate manner (Fig. 1). In the complex, the Ni1 atom is in a slightly distorted octahedral environment and is coordinated by two carboxylate O atoms (O2 and O2i) of the monodentate TMB anions, two coordinating water O atoms (O4 and O4i) and two pyridine N atoms (N1 and N1i) of the monodentate INA ligands at distances of 2.0438 (12), 2.0346 (14) and 2.1506 (15) Å, respectively [symmetry code: (i) 1 − x, −y, 1 − z] (Fig. 1). The non-coordinating oxygen atoms of the carboxylate groups interact with the coordinating and non-coordinating water molecules via short hydrogen bonds (Table 1, Fig. 1). Intramolecular O—HcoordW⋯Oc (coordW = coordinating water and c = carboxylate) hydrogen bonds (Table 1) link H atoms of the coordinating water molecules to the non-coordinating carboxylate oxygen atoms, enclosing S(6) ring motifs (Fig. 1).
of the mononuclear title compound (I)The near equalities of the C1—O1 [1.242 (2) Å] and C1—O2 [1.260 (2) Å] bonds in the carboxylate groups indicate delocalized bonding arrangements, rather than localized single and double bonds. The O2—C1—O1 bond angle [124.52 (17)°] is comparable the corresponding values of 124.4 (2)° in (II), 124.67 (14)° in (III), 124.22 (11)° in (IV), 125.71 (10)° in (V), 126.0 (3)° in (VI) and 120.47 (15) and 123.17 (15)° in (VII), where the benzoate ions also coordinate the metal atoms monodentately. The Ni1 atom lies 0.3523 (1) Å below the planar (O1/O2/C1) carboxylate group. In the TMB anion, the carboxylate group is twisted away from the attached benzene, A (C2–C7), ring by 78.80 (14)°, while the benzene and pyridine, B (N1/C11–C15), rings are oriented at a dihedral angle of 24.33 (6)°.
3. Supramolecular features
In the coordW⋯OnoncoordW, O—HnoncoordW⋯Oc, N—HINA⋯OnoncoordW and N—HINA⋯OINA (INA = isonicotinamide and noncoordW = non-coordinating water) hydrogen bonds (Table 1) link the molecules (Fig. 2) into networks parallel to [011], enclosing R22(6), R44(19), R44(26), R44(28), R66(32), R88(28) and R88(32) ring motifs. The is further stabilized by a weak C—HINA⋯OnoncoordW interaction (Table 1).
O—H4. Hirshfeld surface analysis
A Hirshfeld surface analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) of the title complex was carried out to investigate the locations of the atoms with potential to form hydrogen bonds and the quantitative ratios of these interactions. Conventional mapping of dnorm (Fig. 3), together with graphical representation of the Hirshfeld surface (Fig. 4) suggest the locations of the donors and acceptors of intermolecular contacts, which are represented in Fig. 3 as bright-red spots near respective atoms. According to the analysis results, the most important interaction is H⋯H contributing 59.8% to the overall crystal packing. The next most important interactions are O⋯H/H⋯O and C⋯H/H⋯C contributing 20.2% and 13.7%, respectively. The weakest intermolecular contacts contributing to the cohesion of the structure are C⋯C, N⋯H/H⋯N, C⋯O/O⋯C and C⋯N/N⋯C, found to contribute only 3.0, 2.3, 0.6 and 0.4%, respectively. The overall two-dimensional fingerprint plot, Fig. 4a, and those delineated into H⋯H, O⋯H/H⋯O, C⋯H/H⋯C, C⋯C, N⋯H/H⋯N, C⋯O/O⋯C and C⋯N/N⋯C contacts (McKinnon et al., 2007) are illustrated in Fig. 4 b–h, respectively, together with their relative contributions to the Hirshfeld surface, where the significant O⋯H/H⋯O interactions are indicated by the pair of wings in the two-dimensional fingerprint plot with a prominent long spike at de + di ∼1.0 Å (Fig. 4c). The presence of these interactions may also be shown by the Hirshfeld surface mapped as a function of curvedness (Fig. 5).
5. Synthesis and crystallization
The title compound was prepared by mixing solutions of NiSO4·6H2O (0.66 g, 2.5 mmol) in H2O (50 ml) and isonicotinamide (0.61 g, 5 mmol) in H2O (25 ml) with sodium 2,4,6-trimethylbenzoate (0.93 g, 5 mmol) in H2O (150 ml) at room temperature. The mixture was set aside to crystallize at ambient temperature for nine weeks and gave green single crystals (yield: 1.46 g, 83%). Combustion analysis: found; C, 54.70, H, 6.24; N, 8.13%. Calculated: C32H42N4NiO10 C, 54.80; H, 6.04; N, 7.99%. FT–IR: 3354, 3197, 2235, 1949, 1855, 1698, 1934, 1612, 1557, 1415, 1226, 1182, 1148, 1115, 1096, 1066, 1041, 1017, 985, 885, 855, 792, 772, 747, 682, 660, 638, 615, 520, 443 cm −1.
6. Refinement
The experimental details including the crystal data, data collection and . H atoms of NH2 groups and water molecules were located in difference Fourier maps and refined freely. The C-bound H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H atoms and k = 1.2 for aromatic H atoms. The maximum and minimum residual density peaks were found at 0.83 and 0.78 Å from atoms O1 and O4, respectively.
are summarized in Table 2
|
Supporting information
CCDC reference: 1562879
https://doi.org/10.1107/S205698901701060X/cq2020sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901701060X/cq2020Isup2.hkl
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).[Ni(C10H11O2)2(C6H6N2O)2(H2O)2]·2H2O | F(000) = 740 |
Mr = 701.41 | Dx = 1.348 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 14.0222 (3) Å | Cell parameters from 9322 reflections |
b = 9.8275 (2) Å | θ = 2.6–28.3° |
c = 13.0229 (3) Å | µ = 0.62 mm−1 |
β = 105.645 (3)° | T = 296 K |
V = 1728.11 (6) Å3 | Block, translucent light blue |
Z = 2 | 0.45 × 0.30 × 0.28 mm |
Bruker SMART BREEZE CCD diffractometer | 4290 independent reflections |
Radiation source: fine-focus sealed tube | 3618 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
φ and ω scans | θmax = 28.3°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −18→18 |
Tmin = 0.767, Tmax = 0.845 | k = −13→12 |
36737 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.103 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0463P)2 + 1.1666P] where P = (Fo2 + 2Fc2)/3 |
4290 reflections | (Δ/σ)max < 0.001 |
241 parameters | Δρmax = 0.57 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.5000 | 0.0000 | 0.5000 | 0.02665 (10) | |
O1 | 0.40085 (14) | 0.2668 (2) | 0.58794 (12) | 0.0658 (5) | |
O2 | 0.40320 (9) | 0.15459 (13) | 0.44114 (9) | 0.0320 (3) | |
O3 | 0.95561 (10) | 0.34236 (17) | 0.54825 (15) | 0.0584 (4) | |
O4 | 0.51379 (13) | 0.0578 (2) | 0.65335 (12) | 0.0498 (4) | |
H41 | 0.557 (2) | 0.035 (3) | 0.701 (2) | 0.054 (8)* | |
H42 | 0.490 (2) | 0.133 (3) | 0.653 (2) | 0.073 (10)* | |
O5 | 0.32828 (12) | 0.41847 (15) | 0.71977 (12) | 0.0435 (3) | |
H51 | 0.337 (2) | 0.371 (3) | 0.772 (2) | 0.062 (8)* | |
H52 | 0.349 (2) | 0.371 (3) | 0.676 (2) | 0.066 (8)* | |
N1 | 0.62368 (11) | 0.12585 (16) | 0.49343 (12) | 0.0332 (3) | |
N2 | 0.86640 (15) | 0.4682 (2) | 0.41092 (17) | 0.0486 (4) | |
H21 | 0.810 (2) | 0.497 (2) | 0.378 (2) | 0.043 (7)* | |
H22 | 0.915 (2) | 0.520 (3) | 0.420 (2) | 0.054 (7)* | |
C1 | 0.36860 (13) | 0.24339 (18) | 0.49098 (14) | 0.0323 (4) | |
C2 | 0.28216 (13) | 0.32228 (18) | 0.42324 (14) | 0.0335 (4) | |
C3 | 0.18589 (14) | 0.2849 (2) | 0.42355 (17) | 0.0411 (4) | |
C4 | 0.10724 (16) | 0.3481 (2) | 0.3512 (2) | 0.0538 (6) | |
H4 | 0.0429 | 0.3240 | 0.3504 | 0.065* | |
C5 | 0.12132 (18) | 0.4452 (3) | 0.2806 (2) | 0.0576 (6) | |
C6 | 0.2168 (2) | 0.4839 (2) | 0.28483 (19) | 0.0534 (6) | |
H6 | 0.2268 | 0.5519 | 0.2392 | 0.064* | |
C7 | 0.29841 (15) | 0.4242 (2) | 0.35545 (16) | 0.0422 (4) | |
C8 | 0.16723 (18) | 0.1801 (3) | 0.5003 (2) | 0.0594 (6) | |
H8A | 0.2090 | 0.1984 | 0.5705 | 0.089* | |
H8B | 0.1817 | 0.0912 | 0.4780 | 0.089* | |
H8C | 0.0991 | 0.1841 | 0.5013 | 0.089* | |
C9 | 0.0339 (3) | 0.5094 (4) | 0.2002 (3) | 0.0906 (12) | |
H9A | 0.0563 | 0.5862 | 0.1675 | 0.136* | |
H9B | −0.0142 | 0.5388 | 0.2358 | 0.136* | |
H9C | 0.0044 | 0.4438 | 0.1464 | 0.136* | |
C10 | 0.4011 (2) | 0.4727 (3) | 0.3593 (2) | 0.0700 (8) | |
H10A | 0.4484 | 0.4047 | 0.3928 | 0.105* | |
H10B | 0.4146 | 0.5557 | 0.3996 | 0.105* | |
H10C | 0.4057 | 0.4887 | 0.2881 | 0.105* | |
C11 | 0.62245 (14) | 0.2010 (2) | 0.40774 (16) | 0.0406 (4) | |
H11 | 0.5659 | 0.1991 | 0.3505 | 0.049* | |
C12 | 0.70084 (14) | 0.2816 (2) | 0.39966 (17) | 0.0430 (4) | |
H12 | 0.6966 | 0.3317 | 0.3380 | 0.052* | |
C13 | 0.78570 (13) | 0.28715 (19) | 0.48380 (16) | 0.0358 (4) | |
C14 | 0.78705 (14) | 0.2095 (2) | 0.57270 (17) | 0.0445 (5) | |
H14 | 0.8426 | 0.2098 | 0.6310 | 0.053* | |
C15 | 0.70590 (14) | 0.1317 (2) | 0.57467 (16) | 0.0431 (4) | |
H15 | 0.7083 | 0.0807 | 0.6354 | 0.052* | |
C16 | 0.87691 (14) | 0.3701 (2) | 0.48379 (18) | 0.0418 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.02458 (15) | 0.03057 (17) | 0.02553 (15) | 0.00352 (11) | 0.00801 (11) | 0.00199 (11) |
O1 | 0.0765 (11) | 0.0751 (12) | 0.0351 (7) | 0.0410 (10) | −0.0032 (7) | −0.0140 (8) |
O2 | 0.0322 (6) | 0.0340 (6) | 0.0301 (6) | 0.0082 (5) | 0.0092 (5) | 0.0018 (5) |
O3 | 0.0294 (7) | 0.0551 (10) | 0.0858 (12) | −0.0053 (6) | 0.0070 (7) | 0.0178 (9) |
O4 | 0.0576 (10) | 0.0612 (11) | 0.0275 (7) | 0.0245 (8) | 0.0059 (6) | −0.0006 (7) |
O5 | 0.0552 (9) | 0.0393 (8) | 0.0330 (7) | 0.0042 (6) | 0.0067 (6) | −0.0031 (6) |
N1 | 0.0285 (7) | 0.0329 (8) | 0.0388 (8) | −0.0003 (6) | 0.0105 (6) | 0.0041 (6) |
N2 | 0.0338 (9) | 0.0453 (10) | 0.0666 (12) | −0.0084 (8) | 0.0135 (8) | 0.0108 (9) |
C1 | 0.0318 (8) | 0.0314 (8) | 0.0334 (8) | 0.0046 (7) | 0.0085 (7) | −0.0008 (7) |
C2 | 0.0341 (9) | 0.0327 (9) | 0.0328 (8) | 0.0089 (7) | 0.0073 (7) | −0.0035 (7) |
C3 | 0.0358 (9) | 0.0368 (10) | 0.0482 (11) | 0.0035 (8) | 0.0067 (8) | −0.0054 (8) |
C4 | 0.0344 (10) | 0.0508 (13) | 0.0680 (14) | 0.0070 (9) | −0.0001 (9) | −0.0077 (11) |
C5 | 0.0528 (13) | 0.0517 (13) | 0.0558 (13) | 0.0194 (11) | −0.0068 (10) | −0.0016 (11) |
C6 | 0.0654 (15) | 0.0480 (13) | 0.0434 (11) | 0.0162 (10) | 0.0087 (10) | 0.0085 (9) |
C7 | 0.0453 (11) | 0.0434 (11) | 0.0391 (10) | 0.0097 (9) | 0.0134 (8) | 0.0032 (8) |
C8 | 0.0480 (13) | 0.0516 (14) | 0.0794 (17) | −0.0059 (10) | 0.0186 (12) | 0.0066 (12) |
C9 | 0.0697 (19) | 0.093 (3) | 0.085 (2) | 0.0307 (17) | −0.0198 (17) | 0.0133 (18) |
C10 | 0.0578 (15) | 0.0815 (19) | 0.0781 (19) | 0.0036 (13) | 0.0313 (14) | 0.0291 (15) |
C11 | 0.0306 (9) | 0.0450 (11) | 0.0426 (10) | −0.0028 (8) | 0.0038 (7) | 0.0100 (8) |
C12 | 0.0373 (10) | 0.0421 (11) | 0.0480 (11) | −0.0047 (8) | 0.0090 (8) | 0.0142 (9) |
C13 | 0.0288 (8) | 0.0304 (9) | 0.0497 (10) | −0.0006 (7) | 0.0132 (7) | 0.0020 (8) |
C14 | 0.0323 (9) | 0.0494 (12) | 0.0471 (11) | −0.0063 (8) | 0.0025 (8) | 0.0087 (9) |
C15 | 0.0362 (9) | 0.0495 (11) | 0.0413 (10) | −0.0058 (8) | 0.0063 (8) | 0.0110 (9) |
C16 | 0.0308 (9) | 0.0366 (10) | 0.0602 (12) | −0.0033 (7) | 0.0161 (8) | 0.0015 (9) |
Ni1—O2 | 2.0438 (12) | C4—H4 | 0.9300 |
Ni1—O2i | 2.0438 (12) | C5—C6 | 1.379 (4) |
Ni1—O4 | 2.0346 (14) | C5—C9 | 1.518 (3) |
Ni1—O4i | 2.0346 (14) | C6—H6 | 0.9300 |
Ni1—N1 | 2.1506 (15) | C7—C6 | 1.390 (3) |
Ni1—N1i | 2.1506 (15) | C7—C10 | 1.504 (3) |
O1—C1 | 1.242 (2) | C8—H8A | 0.9600 |
O2—C1 | 1.260 (2) | C8—H8B | 0.9600 |
O3—C16 | 1.224 (2) | C8—H8C | 0.9600 |
O4—H41 | 0.78 (3) | C9—H9A | 0.9600 |
O4—H42 | 0.81 (3) | C9—H9B | 0.9600 |
O5—H51 | 0.81 (3) | C9—H9C | 0.9600 |
O5—H52 | 0.84 (3) | C10—H10A | 0.9600 |
N1—C11 | 1.334 (2) | C10—H10B | 0.9600 |
N1—C15 | 1.339 (2) | C10—H10C | 0.9600 |
N2—C16 | 1.333 (3) | C11—C12 | 1.381 (3) |
N2—H21 | 0.84 (3) | C11—H11 | 0.9300 |
N2—H22 | 0.84 (3) | C12—H12 | 0.9300 |
C1—C2 | 1.507 (2) | C13—C12 | 1.384 (3) |
C2—C3 | 1.400 (3) | C13—C14 | 1.382 (3) |
C2—C7 | 1.394 (3) | C13—C16 | 1.517 (2) |
C3—C4 | 1.389 (3) | C14—H14 | 0.9300 |
C3—C8 | 1.506 (3) | C15—C14 | 1.377 (3) |
C4—C5 | 1.375 (4) | C15—H15 | 0.9300 |
O2i—Ni1—O2 | 180.0 | C5—C6—H6 | 119.1 |
O2—Ni1—N1 | 91.07 (5) | C7—C6—H6 | 119.1 |
O2i—Ni1—N1 | 88.93 (5) | C2—C7—C10 | 121.65 (19) |
O2—Ni1—N1i | 88.93 (5) | C6—C7—C2 | 118.4 (2) |
O2i—Ni1—N1i | 91.07 (5) | C6—C7—C10 | 119.9 (2) |
O4—Ni1—O2 | 92.21 (6) | C3—C8—H8A | 109.5 |
O4i—Ni1—O2 | 87.79 (6) | C3—C8—H8B | 109.5 |
O4—Ni1—O2i | 87.79 (6) | C3—C8—H8C | 109.5 |
O4i—Ni1—O2i | 92.21 (6) | H8A—C8—H8B | 109.5 |
O4—Ni1—O4i | 180.0 | H8A—C8—H8C | 109.5 |
O4—Ni1—N1 | 90.82 (7) | H8B—C8—H8C | 109.5 |
O4i—Ni1—N1 | 89.18 (7) | C5—C9—H9A | 109.5 |
O4—Ni1—N1i | 89.18 (7) | C5—C9—H9B | 109.5 |
O4i—Ni1—N1i | 90.82 (7) | C5—C9—H9C | 109.5 |
N1—Ni1—N1i | 180.0 | H9A—C9—H9B | 109.5 |
C1—O2—Ni1 | 129.09 (11) | H9A—C9—H9C | 109.5 |
Ni1—O4—H41 | 123 (2) | H9B—C9—H9C | 109.5 |
Ni1—O4—H42 | 109 (2) | C7—C10—H10A | 109.5 |
H41—O4—H42 | 120 (3) | C7—C10—H10B | 109.5 |
H52—O5—H51 | 104 (3) | C7—C10—H10C | 109.5 |
C11—N1—Ni1 | 121.52 (12) | H10A—C10—H10B | 109.5 |
C11—N1—C15 | 116.82 (16) | H10A—C10—H10C | 109.5 |
C15—N1—Ni1 | 121.66 (12) | H10B—C10—H10C | 109.5 |
C16—N2—H21 | 121.3 (17) | N1—C11—C12 | 123.34 (18) |
C16—N2—H22 | 114.1 (19) | N1—C11—H11 | 118.3 |
H21—N2—H22 | 119 (2) | C12—C11—H11 | 118.3 |
O1—C1—O2 | 124.52 (17) | C11—C12—C13 | 119.62 (18) |
O1—C1—C2 | 120.95 (16) | C11—C12—H12 | 120.2 |
O2—C1—C2 | 114.53 (15) | C13—C12—H12 | 120.2 |
C3—C2—C1 | 119.14 (17) | C12—C13—C16 | 124.47 (18) |
C7—C2—C1 | 119.82 (17) | C14—C13—C12 | 117.11 (17) |
C7—C2—C3 | 120.86 (17) | C14—C13—C16 | 118.41 (17) |
C2—C3—C8 | 121.44 (18) | C13—C14—H14 | 120.1 |
C4—C3—C2 | 118.0 (2) | C15—C14—C13 | 119.83 (18) |
C4—C3—C8 | 120.5 (2) | C15—C14—H14 | 120.1 |
C3—C4—H4 | 118.9 | N1—C15—C14 | 123.28 (18) |
C5—C4—C3 | 122.2 (2) | N1—C15—H15 | 118.4 |
C5—C4—H4 | 118.9 | C14—C15—H15 | 118.4 |
C4—C5—C6 | 118.6 (2) | O3—C16—N2 | 123.77 (19) |
C4—C5—C9 | 121.0 (3) | O3—C16—C13 | 118.98 (18) |
C6—C5—C9 | 120.5 (3) | N2—C16—C13 | 117.23 (18) |
C5—C6—C7 | 121.8 (2) | ||
O4—Ni1—O2—C1 | −1.87 (16) | C7—C2—C3—C4 | 2.7 (3) |
O4i—Ni1—O2—C1 | 178.13 (16) | C7—C2—C3—C8 | −176.8 (2) |
N1—Ni1—O2—C1 | −92.74 (15) | C1—C2—C7—C6 | 172.41 (18) |
N1i—Ni1—O2—C1 | 87.26 (15) | C1—C2—C7—C10 | −9.2 (3) |
O2—Ni1—N1—C11 | −45.97 (15) | C3—C2—C7—C6 | −2.7 (3) |
O2i—Ni1—N1—C11 | 134.03 (15) | C3—C2—C7—C10 | 175.6 (2) |
O2—Ni1—N1—C15 | 134.61 (16) | C2—C3—C4—C5 | −0.2 (3) |
O2i—Ni1—N1—C15 | −45.39 (16) | C8—C3—C4—C5 | 179.3 (2) |
O4—Ni1—N1—C11 | −138.19 (16) | C3—C4—C5—C6 | −2.3 (4) |
O4i—Ni1—N1—C11 | 41.81 (16) | C3—C4—C5—C9 | 178.1 (3) |
O4—Ni1—N1—C15 | 42.39 (16) | C4—C5—C6—C7 | 2.3 (4) |
O4i—Ni1—N1—C15 | −137.61 (16) | C9—C5—C6—C7 | −178.1 (3) |
Ni1—O2—C1—O1 | 12.8 (3) | C2—C7—C6—C5 | 0.2 (3) |
Ni1—O2—C1—C2 | −167.00 (12) | C10—C7—C6—C5 | −178.2 (2) |
Ni1—N1—C11—C12 | −178.99 (16) | N1—C11—C12—C13 | −0.4 (3) |
C15—N1—C11—C12 | 0.5 (3) | C14—C13—C12—C11 | 0.3 (3) |
Ni1—N1—C15—C14 | 179.01 (17) | C16—C13—C12—C11 | 179.13 (19) |
C11—N1—C15—C14 | −0.4 (3) | C12—C13—C14—C15 | −0.3 (3) |
O1—C1—C2—C3 | −81.0 (3) | C16—C13—C14—C15 | −179.2 (2) |
O1—C1—C2—C7 | 103.8 (2) | C12—C13—C16—O3 | −161.4 (2) |
O2—C1—C2—C3 | 98.9 (2) | C12—C13—C16—N2 | 17.2 (3) |
O2—C1—C2—C7 | −76.3 (2) | C14—C13—C16—O3 | 17.4 (3) |
C1—C2—C3—C4 | −172.43 (18) | C14—C13—C16—N2 | −164.0 (2) |
C1—C2—C3—C8 | 8.1 (3) | N1—C15—C14—C13 | 0.4 (4) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H21···O5ii | 0.84 (3) | 2.18 (3) | 3.014 (3) | 174 (2) |
N2—H22···O3iii | 0.83 (3) | 2.21 (3) | 3.043 (3) | 177 (2) |
O4—H41···O5iv | 0.77 (3) | 2.02 (3) | 2.745 (2) | 157 (3) |
O4—H42···O1 | 0.81 (3) | 1.85 (3) | 2.593 (3) | 151 (3) |
O5—H51···O2v | 0.81 (3) | 2.16 (3) | 2.8804 (19) | 148 (3) |
O5—H52···O1 | 0.85 (3) | 1.83 (3) | 2.673 (2) | 176 (2) |
C12—H12···O5ii | 0.93 | 2.56 | 3.307 (2) | 137 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y+1, −z+1; (iv) −x+1, y−1/2, −z+3/2; (v) x, −y+1/2, z+1/2. |
Acknowledgements
The authors acknowledge the Scientific and Technological Research Application and Research Center, Sinop University, Turkey, for the use of the Bruker D8 QUEST diffractometer.
References
Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075–1080. CAS Google Scholar
Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395. CSD CrossRef CAS Web of Science Google Scholar
Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098–1103. Google Scholar
Aşkın, G. Ş., Necefoğlu, H., Tombul, A. M., Dilek, N. & Hökelek, T. (2016). Acta Cryst. E72, m656–m658. Google Scholar
Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Capilla, A. V. & Aranda, R. A. (1979). Cryst. Struct. Commun. 8, 795–798. Google Scholar
Catterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843–844. Google Scholar
Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21. Web of Science CSD CrossRef CAS Google Scholar
Clegg, W., Little, I. R. & Straughan, B. P. (1986a). Acta Cryst. C42, 919–920. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Clegg, W., Little, I. R. & Straughan, B. P. (1986b). Acta Cryst. C42, 1701–1703. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Clegg, W., Little, I. R. & Straughan, B. P. (1987). Acta Cryst. C43, 456–457. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Guseinov, G. A., Musaev, F. N., Usubaliev, B. T., Amiraslanov, I. R. & Mamedov, Kh. S. (1984). Koord. Khim. 10, 117–122. CAS Google Scholar
Hauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169–172. CAS Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009). Acta Cryst. E65, m466–m467. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hökelek, T., Dal, H., Tercan, B., Tenlik, E. & Necefoğlu, H. (2010). Acta Cryst. E66, m891–m892. CSD CrossRef IUCr Journals Google Scholar
Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111. CAS PubMed Web of Science Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814. Google Scholar
Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128. CAS Google Scholar
Necefoğlu, H., Çimen, E., Tercan, B., Ermiş, E. & Hökelek, T. (2010). Acta Cryst. E66, m361–m362. Web of Science CSD CrossRef IUCr Journals Google Scholar
Niekerk, J. N. van, Schoening, F. R. L. & Talbot, J. H. (1953). Acta Cryst. 6, 720–723. CSD CrossRef IUCr Journals Web of Science Google Scholar
Sertçelik, M., Çaylak, Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012). Acta Cryst. E68, m946–m947. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416. CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tercan, B., Hökelek, T., Aybirdi, Ö. & Necefoğlu, H. (2009). Acta Cryst. E65, m109–m110. Web of Science CSD CrossRef IUCr Journals Google Scholar
Usubaliev, B. T., Guliev, F. I., Musaev, F. N., Ganbarov, D. M., Ashurova, S. A. & Movsumov, E. M. (1992). Zh. Strukt. Khim. 33, m203–m207. Google Scholar
Wright, W. B. & King, G. S. D. (1954). Acta Cryst. 7, 283–288. CSD CrossRef IUCr Journals Web of Science Google Scholar
Xu, T.-G. & Xu, D.-J. (2004). Acta Cryst. E60, m1462–m1464. Web of Science CSD CrossRef IUCr Journals Google Scholar
You, K.-S., Arnold, L. J. Jr, Allison, W. S. & Kaplan, N. O. (1978). Trends Biochem. Sci. 3, 265–268. CrossRef CAS Web of Science Google Scholar
Zhang, X.-Y., Liu, Z.-Y., Liu, Z.-Y., Yang, E.-C. & Zhao, X.-J. (2013). Z. Anorg. Allg. Chem. 639, 974–981. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.