research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of di­aqua­bis­­(isonicotinamide-κN)bis­­(2,4,6-tri­methyl­benzoato-κO1)nickel(II) dihydrate

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, and cDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, International Scientific Research Centre, Baku State University, 1148 Baku, Azerbaijan
*Correspondence e-mail: merzifon@hacettepe.edu.tr

Edited by A. M. Chippindale, University of Reading, England (Received 8 June 2017; accepted 18 July 2017; online 21 July 2017)

In the title NiII complex, [Ni(C10H11O2)2(C6H6N2O)2(H2O)2]·2H2O, the divalent Ni ion occupies a crystallographically imposed centre of symmetry and is coordinated by two O atoms from the carboxyl­ate groups of two 2,4,6-tri­methyl­benzoate (TMB) ligands [Ni—O = 2.0438 (12) Å], two N atoms from the pyridyl groups of two isonicotinamide (INA) ligands [Ni—N = 2.1506 (15) Å] and two water mol­ecules [Ni—O = 2.0438 (12) Å] in a slightly distorted octa­hedral geometry. The coordinating water mol­ecules are hydrogen bonded to the non-coordinating carboxyl­ate O atom of the TMB ligand [O⋯O = 2.593 (3) Å], enclosing an S(6) hydrogen-bonding motif. Two solvent water mol­ecules are also present in the formula unit. In the crystal, a network of inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the complexes into a three-dimensional array. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (59.8%), O⋯H/H⋯O (20.2%) and C⋯H/H⋯C (13.7%) inter­actions.

1. Chemical context

Nicotinamide (NA) is a derivative of nicotinic acid, also called niacin. A deficiency in this vitamin leads to loss of copper from the body, giving rise to a condition known as pellagra disease. Victims of pellagra show unusually high serum and urinary copper levels (Krishnamachari, 1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). The crystal structure of NA was first determined in 1954 (Wright & King, 1954[Wright, W. B. & King, G. S. D. (1954). Acta Cryst. 7, 283-288.]). The NA ring is the reactive part of nicotinamide adenine dinucleotide (NAD) and its phosphate (NADP), which are the major electron carriers in many biological oxidation–reduction reactions (You et al., 1978[You, K.-S., Arnold, L. J. Jr, Allison, W. S. & Kaplan, N. O. (1978). Trends Biochem. Sci. 3, 265-268.]). Another nicotinic acid derivative, N,N-di­ethyl­nicotinamide (DENA), is an important respiratory stimulant (Bigoli et al., 1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). Transition-metal complexes with ligands of biochemical inter­est, such as imidazole and some N-protected amino acids, often show inter­esting physical and/or chemical properties, which lead to applications in biological systems (Antolini et al., 1982[Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.]). There have been many reports of the crystal structures of metal complexes with benzoic acid derivatives, which are of inter­est because of the number of different coordination modes exhibited by the carb­oxy­lic acid groups. These include Co and Cd complexes with 4-amino­benzoic acid (Chen & Chen, 2002[Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13-21.]; Amiraslanov et al., 1979[Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075-1080.]; Hauptmann et al., 2000[Hauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169-172.]), Co complexes with benzoic acid (Catterick et al., 1974[Catterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843-844.]), 4-nitro­benzoic acid (Nadzhafov et al., 1981[Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-128.]) and phthalic acid (Adiwidjaja et al., 1978[Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079-3083.]) and Cu complexes with 4-hydro­chloro­benzoic acid (Shnulin et al., 1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]). Mn complexes closely related to the title compound have also been reported, e.g. di­aqua­bis­(4-nitro­benzoato)bis­(1H-1,2,4-triazol-3-amine)­manganese(II) (Zhang et al., 2013[Zhang, X.-Y., Liu, Z.-Y., Liu, Z.-Y., Yang, E.-C. & Zhao, X.-J. (2013). Z. Anorg. Allg. Chem. 639, 974-981.]) and di­aqua­bis­(1H-imidazole)­bis­(4-nitro­benzoato)manganese(II) (Xu & Xu, 2004[Xu, T.-G. & Xu, D.-J. (2004). Acta Cryst. E60, m1462-m1464.]).

[Scheme 1]

The crystal structures of anhydrous zinc(II) carboxyl­ates are diverse and include one-dimensional (Guseinov et al., 1984[Guseinov, G. A., Musaev, F. N., Usubaliev, B. T., Amiraslanov, I. R. & Mamedov, Kh. S. (1984). Koord. Khim. 10, 117-122.]; Clegg et al., 1986a[Clegg, W., Little, I. R. & Straughan, B. P. (1986a). Acta Cryst. C42, 919-920.]), two-dimensional (Clegg et al., 1986b[Clegg, W., Little, I. R. & Straughan, B. P. (1986b). Acta Cryst. C42, 1701-1703.], 1987[Clegg, W., Little, I. R. & Straughan, B. P. (1987). Acta Cryst. C43, 456-457.]) and three-dimensional (Capilla & Aranda, 1979[Capilla, A. V. & Aranda, R. A. (1979). Cryst. Struct. Commun. 8, 795-798.]) polymeric motifs of different types, while discrete monomeric complexes with octa­hedral or tetra­hedral coordination geometry are found if water or other donor mol­ecules are coordinated to Zn (van Niekerk et al., 1953[Niekerk, J. N. van, Schoening, F. R. L. & Talbot, J. H. (1953). Acta Cryst. 6, 720-723.]; Usubaliev et al., 1992[Usubaliev, B. T., Guliev, F. I., Musaev, F. N., Ganbarov, D. M., Ashurova, S. A. & Movsumov, E. M. (1992). Zh. Strukt. Khim. 33, m203-m207.]). Pertinent to the present work, the structure–function–coordination relationships of the aryl­carboxyl­ate ion in ZnII complexes of benzoic acid derivatives have been studied and shown to depend on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand, mol­ecule or solvent, and the pH and temperature of synthesis (Shnulin et al., 1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]; Nadzhafov et al., 1981[Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-128.]; Antsyshkina et al., 1980[Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098-1103.]; Adiwidjaja et al., 1978[Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079-3083.]; Catterick et al., 1974[Catterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843-844.]).

The structures of a number of mononuclear complexes of divalent transition-metal ions with both nicotinamide (NA) and benzoic acid derivatives as ligands have been previously reported and include [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2] [(II); Hökelek et al., 2009[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009). Acta Cryst. E65, m466-m467.]], [Ni(C8H7O2)2(C6H6N2O)2(H2O)2] [(III); Necefoğlu et al., 2010[Necefoğlu, H., Çimen, E., Tercan, B., Ermiş, E. & Hökelek, T. (2010). Acta Cryst. E66, m361-m362.]], [Ni(C8H7O3)2(C6H6N2O)2(H2O)2]·2(H2O) [(IV); Hökelek et al., 2010[Hökelek, T., Dal, H., Tercan, B., Tenlik, E. & Necefoğlu, H. (2010). Acta Cryst. E66, m891-m892.]], [Ni(C8H5O3)2(C6H6N2O)2(H2O)2] [(V); Sertçelik et al., 2012[Sertçelik, M., Çaylak, Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012). Acta Cryst. E68, m946-m947.]], [Mn(C7H4NO4)2(C6H6N2O)2(H2O)2] [(VI); Aşkın et al., 2016[Aşkın, G. Ş., Necefoğlu, H., Tombul, A. M., Dilek, N. & Hökelek, T. (2016). Acta Cryst. E72, m656-m658.]] and [Zn(C8H8NO2)2(C6H6N2O)2] [(VII); Tercan et al., 2009[Tercan, B., Hökelek, T., Aybirdi, Ö. & Necefoğlu, H. (2009). Acta Cryst. E65, m109-m110.]]. In this work, to enable comparison with the above NiII compounds and develop structure–function–coordination relationships, we describe the synthesis of di­aqua­bis(iso­nicotinamide-κN)bis­(2,4,6-tri­methyl­benzoato-κO1)nickel(II) dihydrate, [Ni(C10H11O2)2(C6H6N2O)2(H2O)2]·2H2O, and report its mol­ecular and crystal structures, along with a Hirshfeld surface analysis.

2. Structural commentary

The asymmetric unit of the mononuclear title compound (I)[link] contains a NiII cation residing on a centre of symmetry, one 2,4,6-tri­methyl­benzoate (TMB) anion and one isonicotinamide (INA) anion, together with one coordinating and one non-coordinating water mol­ecule. The TMB and INA ligands coordinate in a monodentate manner (Fig. 1[link]). In the complex, the Ni1 atom is in a slightly distorted octa­hedral environment and is coordinated by two carboxyl­ate O atoms (O2 and O2i) of the monodentate TMB anions, two coordinating water O atoms (O4 and O4i) and two pyridine N atoms (N1 and N1i) of the monodentate INA ligands at distances of 2.0438 (12), 2.0346 (14) and 2.1506 (15) Å, respectively [symmetry code: (i) 1 − x, −y, 1 − z] (Fig. 1[link]). The non-coordinating oxygen atoms of the carboxyl­ate groups inter­act with the coordinating and non-coordinating water mol­ecules via short hydrogen bonds (Table 1[link], Fig. 1[link]). Intra­molecular O—HcoordW⋯Oc (coordW = coordinating water and c = carboxyl­ate) hydrogen bonds (Table 1[link]) link H atoms of the coordinating water mol­ecules to the non-coordinating carboxyl­ate oxygen atoms, enclosing S(6) ring motifs (Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O5i 0.84 (3) 2.18 (3) 3.014 (3) 174 (2)
N2—H22⋯O3ii 0.83 (3) 2.21 (3) 3.043 (3) 177 (2)
O4—H41⋯O5iii 0.77 (3) 2.02 (3) 2.745 (2) 157 (3)
O4—H42⋯O1 0.81 (3) 1.85 (3) 2.593 (3) 151 (3)
O5—H51⋯O2iv 0.81 (3) 2.16 (3) 2.8804 (19) 148 (3)
O5—H52⋯O1 0.85 (3) 1.83 (3) 2.673 (2) 176 (2)
C12—H12⋯O5i 0.93 2.56 3.307 (2) 137
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title complex with the atom-numbering scheme. Unlabelled atoms are related to corresponding labelled ones by the symmetry operation (1 − x, −y, 1 − z). Displacement ellipsoids are drawn at the 50% probability level. O—HcoordW⋯Oc and O—HnoncoordW⋯Oc (c = carboxyl­ate, coordW = coordinating water and noncoordW = non-coordinating water) hydrogen bonds are shown as dashed lines.

The near equalities of the C1—O1 [1.242 (2) Å] and C1—O2 [1.260 (2) Å] bonds in the carboxyl­ate groups indicate delocalized bonding arrangements, rather than localized single and double bonds. The O2—C1—O1 bond angle [124.52 (17)°] is comparable the corresponding values of 124.4 (2)° in (II), 124.67 (14)° in (III), 124.22 (11)° in (IV), 125.71 (10)° in (V), 126.0 (3)° in (VI) and 120.47 (15) and 123.17 (15)° in (VII), where the benzoate ions also coordinate the metal atoms monodentately. The Ni1 atom lies 0.3523 (1) Å below the planar (O1/O2/C1) carboxyl­ate group. In the TMB anion, the carboxyl­ate group is twisted away from the attached benzene, A (C2–C7), ring by 78.80 (14)°, while the benzene and pyridine, B (N1/C11–C15), rings are oriented at a dihedral angle of 24.33 (6)°.

3. Supra­molecular features

In the crystal structure, O—HcoordW⋯OnoncoordW, O—HnoncoordW⋯Oc, N—HINA⋯OnoncoordW and N—HINA⋯OINA (INA = isonicotinamide and noncoordW = non-coordinating water) hydrogen bonds (Table 1[link]) link the mol­ecules (Fig. 2[link]) into networks parallel to [011], enclosing R22(6), R44(19), R44(26), R44(28), R66(32), R88(28) and R88(32) ring motifs. The crystal structure is further stabilized by a weak C—HINA⋯OnoncoordW inter­action (Table 1[link]).

[Figure 2]
Figure 2
View of the hydrogen bonding and packing of the title complex along the a axis. Non-bonding H atoms have been omitted for clarity.

4. Hirshfeld surface analysis

A Hirshfeld surface analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) of the title complex was carried out to investigate the locations of the atoms with potential to form hydrogen bonds and the qu­anti­tative ratios of these inter­actions. Conventional mapping of dnorm (Fig. 3[link]), together with graphical representation of the Hirshfeld surface (Fig. 4[link]) suggest the locations of the donors and acceptors of inter­molecular contacts, which are represented in Fig. 3[link] as bright-red spots near respective atoms. According to the analysis results, the most important inter­action is H⋯H contributing 59.8% to the overall crystal packing. The next most important inter­actions are O⋯H/H⋯O and C⋯H/H⋯C contributing 20.2% and 13.7%, respectively. The weakest inter­molecular contacts contributing to the cohesion of the structure are C⋯C, N⋯H/H⋯N, C⋯O/O⋯C and C⋯N/N⋯C, found to contribute only 3.0, 2.3, 0.6 and 0.4%, respectively. The overall two-dimensional fingerprint plot, Fig. 4[link]a, and those delineated into H⋯H, O⋯H/H⋯O, C⋯H/H⋯C, C⋯C, N⋯H/H⋯N, C⋯O/O⋯C and C⋯N/N⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.]) are illustrated in Fig. 4[link] bh, respectively, together with their relative contributions to the Hirshfeld surface, where the significant O⋯H/H⋯O inter­actions are indicated by the pair of wings in the two-dimensional fingerprint plot with a prominent long spike at de + di ∼1.0 Å (Fig. 4[link]c). The presence of these inter­actions may also be shown by the Hirshfeld surface mapped as a function of curvedness (Fig. 5[link]).

[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title complex plotted over dnorm in the range −0.7129 to 1.3644 au.
[Figure 4]
Figure 4
The full two-dimensional fingerprint plots from Hirshfeld analysis of the title complex, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C, (e) C⋯C, (f) N⋯H/H⋯N, (g) C⋯O/O⋯C and (h) C⋯N/N⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.
[Figure 5]
Figure 5
Hirshfeld surface of the title complex plotted over curvedness.

5. Synthesis and crystallization

The title compound was prepared by mixing solutions of NiSO4·6H2O (0.66 g, 2.5 mmol) in H2O (50 ml) and isonicotinamide (0.61 g, 5 mmol) in H2O (25 ml) with sodium 2,4,6-tri­methyl­benzoate (0.93 g, 5 mmol) in H2O (150 ml) at room temperature. The mixture was set aside to crystallize at ambient temperature for nine weeks and gave green single crystals (yield: 1.46 g, 83%). Combustion analysis: found; C, 54.70, H, 6.24; N, 8.13%. Calculated: C32H42N4NiO10 C, 54.80; H, 6.04; N, 7.99%. FT–IR: 3354, 3197, 2235, 1949, 1855, 1698, 1934, 1612, 1557, 1415, 1226, 1182, 1148, 1115, 1096, 1066, 1041, 1017, 985, 885, 855, 792, 772, 747, 682, 660, 638, 615, 520, 443 cm −1.

6. Refinement

The experimental details including the crystal data, data collection and refinement are summarized in Table 2[link]. H atoms of NH2 groups and water mol­ecules were located in difference Fourier maps and refined freely. The C-bound H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H atoms and k = 1.2 for aromatic H atoms. The maximum and minimum residual density peaks were found at 0.83 and 0.78 Å from atoms O1 and O4, respectively.

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C10H11O2)2(C6H6N2O)2(H2O)2]·2H2O
Mr 701.41
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 14.0222 (3), 9.8275 (2), 13.0229 (3)
β (°) 105.645 (3)
V3) 1728.11 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.62
Crystal size (mm) 0.45 × 0.30 × 0.28
 
Data collection
Diffractometer Bruker SMART BREEZE CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.767, 0.845
No. of measured, independent and observed [I > 2σ(I)] reflections 36737, 4290, 3618
Rint 0.024
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.06
No. of reflections 4290
No. of parameters 241
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.57, −0.42
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Diaquabis(isonicotinamide-κN)bis(2,4,6-trimethylbenzoato-κO1)nickel(II) dihydrate top
Crystal data top
[Ni(C10H11O2)2(C6H6N2O)2(H2O)2]·2H2OF(000) = 740
Mr = 701.41Dx = 1.348 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.0222 (3) ÅCell parameters from 9322 reflections
b = 9.8275 (2) Åθ = 2.6–28.3°
c = 13.0229 (3) ŵ = 0.62 mm1
β = 105.645 (3)°T = 296 K
V = 1728.11 (6) Å3Block, translucent light blue
Z = 20.45 × 0.30 × 0.28 mm
Data collection top
Bruker SMART BREEZE CCD
diffractometer
4290 independent reflections
Radiation source: fine-focus sealed tube3618 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 28.3°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1818
Tmin = 0.767, Tmax = 0.845k = 1312
36737 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0463P)2 + 1.1666P]
where P = (Fo2 + 2Fc2)/3
4290 reflections(Δ/σ)max < 0.001
241 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00000.50000.02665 (10)
O10.40085 (14)0.2668 (2)0.58794 (12)0.0658 (5)
O20.40320 (9)0.15459 (13)0.44114 (9)0.0320 (3)
O30.95561 (10)0.34236 (17)0.54825 (15)0.0584 (4)
O40.51379 (13)0.0578 (2)0.65335 (12)0.0498 (4)
H410.557 (2)0.035 (3)0.701 (2)0.054 (8)*
H420.490 (2)0.133 (3)0.653 (2)0.073 (10)*
O50.32828 (12)0.41847 (15)0.71977 (12)0.0435 (3)
H510.337 (2)0.371 (3)0.772 (2)0.062 (8)*
H520.349 (2)0.371 (3)0.676 (2)0.066 (8)*
N10.62368 (11)0.12585 (16)0.49343 (12)0.0332 (3)
N20.86640 (15)0.4682 (2)0.41092 (17)0.0486 (4)
H210.810 (2)0.497 (2)0.378 (2)0.043 (7)*
H220.915 (2)0.520 (3)0.420 (2)0.054 (7)*
C10.36860 (13)0.24339 (18)0.49098 (14)0.0323 (4)
C20.28216 (13)0.32228 (18)0.42324 (14)0.0335 (4)
C30.18589 (14)0.2849 (2)0.42355 (17)0.0411 (4)
C40.10724 (16)0.3481 (2)0.3512 (2)0.0538 (6)
H40.04290.32400.35040.065*
C50.12132 (18)0.4452 (3)0.2806 (2)0.0576 (6)
C60.2168 (2)0.4839 (2)0.28483 (19)0.0534 (6)
H60.22680.55190.23920.064*
C70.29841 (15)0.4242 (2)0.35545 (16)0.0422 (4)
C80.16723 (18)0.1801 (3)0.5003 (2)0.0594 (6)
H8A0.20900.19840.57050.089*
H8B0.18170.09120.47800.089*
H8C0.09910.18410.50130.089*
C90.0339 (3)0.5094 (4)0.2002 (3)0.0906 (12)
H9A0.05630.58620.16750.136*
H9B0.01420.53880.23580.136*
H9C0.00440.44380.14640.136*
C100.4011 (2)0.4727 (3)0.3593 (2)0.0700 (8)
H10A0.44840.40470.39280.105*
H10B0.41460.55570.39960.105*
H10C0.40570.48870.28810.105*
C110.62245 (14)0.2010 (2)0.40774 (16)0.0406 (4)
H110.56590.19910.35050.049*
C120.70084 (14)0.2816 (2)0.39966 (17)0.0430 (4)
H120.69660.33170.33800.052*
C130.78570 (13)0.28715 (19)0.48380 (16)0.0358 (4)
C140.78705 (14)0.2095 (2)0.57270 (17)0.0445 (5)
H140.84260.20980.63100.053*
C150.70590 (14)0.1317 (2)0.57467 (16)0.0431 (4)
H150.70830.08070.63540.052*
C160.87691 (14)0.3701 (2)0.48379 (18)0.0418 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02458 (15)0.03057 (17)0.02553 (15)0.00352 (11)0.00801 (11)0.00199 (11)
O10.0765 (11)0.0751 (12)0.0351 (7)0.0410 (10)0.0032 (7)0.0140 (8)
O20.0322 (6)0.0340 (6)0.0301 (6)0.0082 (5)0.0092 (5)0.0018 (5)
O30.0294 (7)0.0551 (10)0.0858 (12)0.0053 (6)0.0070 (7)0.0178 (9)
O40.0576 (10)0.0612 (11)0.0275 (7)0.0245 (8)0.0059 (6)0.0006 (7)
O50.0552 (9)0.0393 (8)0.0330 (7)0.0042 (6)0.0067 (6)0.0031 (6)
N10.0285 (7)0.0329 (8)0.0388 (8)0.0003 (6)0.0105 (6)0.0041 (6)
N20.0338 (9)0.0453 (10)0.0666 (12)0.0084 (8)0.0135 (8)0.0108 (9)
C10.0318 (8)0.0314 (8)0.0334 (8)0.0046 (7)0.0085 (7)0.0008 (7)
C20.0341 (9)0.0327 (9)0.0328 (8)0.0089 (7)0.0073 (7)0.0035 (7)
C30.0358 (9)0.0368 (10)0.0482 (11)0.0035 (8)0.0067 (8)0.0054 (8)
C40.0344 (10)0.0508 (13)0.0680 (14)0.0070 (9)0.0001 (9)0.0077 (11)
C50.0528 (13)0.0517 (13)0.0558 (13)0.0194 (11)0.0068 (10)0.0016 (11)
C60.0654 (15)0.0480 (13)0.0434 (11)0.0162 (10)0.0087 (10)0.0085 (9)
C70.0453 (11)0.0434 (11)0.0391 (10)0.0097 (9)0.0134 (8)0.0032 (8)
C80.0480 (13)0.0516 (14)0.0794 (17)0.0059 (10)0.0186 (12)0.0066 (12)
C90.0697 (19)0.093 (3)0.085 (2)0.0307 (17)0.0198 (17)0.0133 (18)
C100.0578 (15)0.0815 (19)0.0781 (19)0.0036 (13)0.0313 (14)0.0291 (15)
C110.0306 (9)0.0450 (11)0.0426 (10)0.0028 (8)0.0038 (7)0.0100 (8)
C120.0373 (10)0.0421 (11)0.0480 (11)0.0047 (8)0.0090 (8)0.0142 (9)
C130.0288 (8)0.0304 (9)0.0497 (10)0.0006 (7)0.0132 (7)0.0020 (8)
C140.0323 (9)0.0494 (12)0.0471 (11)0.0063 (8)0.0025 (8)0.0087 (9)
C150.0362 (9)0.0495 (11)0.0413 (10)0.0058 (8)0.0063 (8)0.0110 (9)
C160.0308 (9)0.0366 (10)0.0602 (12)0.0033 (7)0.0161 (8)0.0015 (9)
Geometric parameters (Å, º) top
Ni1—O22.0438 (12)C4—H40.9300
Ni1—O2i2.0438 (12)C5—C61.379 (4)
Ni1—O42.0346 (14)C5—C91.518 (3)
Ni1—O4i2.0346 (14)C6—H60.9300
Ni1—N12.1506 (15)C7—C61.390 (3)
Ni1—N1i2.1506 (15)C7—C101.504 (3)
O1—C11.242 (2)C8—H8A0.9600
O2—C11.260 (2)C8—H8B0.9600
O3—C161.224 (2)C8—H8C0.9600
O4—H410.78 (3)C9—H9A0.9600
O4—H420.81 (3)C9—H9B0.9600
O5—H510.81 (3)C9—H9C0.9600
O5—H520.84 (3)C10—H10A0.9600
N1—C111.334 (2)C10—H10B0.9600
N1—C151.339 (2)C10—H10C0.9600
N2—C161.333 (3)C11—C121.381 (3)
N2—H210.84 (3)C11—H110.9300
N2—H220.84 (3)C12—H120.9300
C1—C21.507 (2)C13—C121.384 (3)
C2—C31.400 (3)C13—C141.382 (3)
C2—C71.394 (3)C13—C161.517 (2)
C3—C41.389 (3)C14—H140.9300
C3—C81.506 (3)C15—C141.377 (3)
C4—C51.375 (4)C15—H150.9300
O2i—Ni1—O2180.0C5—C6—H6119.1
O2—Ni1—N191.07 (5)C7—C6—H6119.1
O2i—Ni1—N188.93 (5)C2—C7—C10121.65 (19)
O2—Ni1—N1i88.93 (5)C6—C7—C2118.4 (2)
O2i—Ni1—N1i91.07 (5)C6—C7—C10119.9 (2)
O4—Ni1—O292.21 (6)C3—C8—H8A109.5
O4i—Ni1—O287.79 (6)C3—C8—H8B109.5
O4—Ni1—O2i87.79 (6)C3—C8—H8C109.5
O4i—Ni1—O2i92.21 (6)H8A—C8—H8B109.5
O4—Ni1—O4i180.0H8A—C8—H8C109.5
O4—Ni1—N190.82 (7)H8B—C8—H8C109.5
O4i—Ni1—N189.18 (7)C5—C9—H9A109.5
O4—Ni1—N1i89.18 (7)C5—C9—H9B109.5
O4i—Ni1—N1i90.82 (7)C5—C9—H9C109.5
N1—Ni1—N1i180.0H9A—C9—H9B109.5
C1—O2—Ni1129.09 (11)H9A—C9—H9C109.5
Ni1—O4—H41123 (2)H9B—C9—H9C109.5
Ni1—O4—H42109 (2)C7—C10—H10A109.5
H41—O4—H42120 (3)C7—C10—H10B109.5
H52—O5—H51104 (3)C7—C10—H10C109.5
C11—N1—Ni1121.52 (12)H10A—C10—H10B109.5
C11—N1—C15116.82 (16)H10A—C10—H10C109.5
C15—N1—Ni1121.66 (12)H10B—C10—H10C109.5
C16—N2—H21121.3 (17)N1—C11—C12123.34 (18)
C16—N2—H22114.1 (19)N1—C11—H11118.3
H21—N2—H22119 (2)C12—C11—H11118.3
O1—C1—O2124.52 (17)C11—C12—C13119.62 (18)
O1—C1—C2120.95 (16)C11—C12—H12120.2
O2—C1—C2114.53 (15)C13—C12—H12120.2
C3—C2—C1119.14 (17)C12—C13—C16124.47 (18)
C7—C2—C1119.82 (17)C14—C13—C12117.11 (17)
C7—C2—C3120.86 (17)C14—C13—C16118.41 (17)
C2—C3—C8121.44 (18)C13—C14—H14120.1
C4—C3—C2118.0 (2)C15—C14—C13119.83 (18)
C4—C3—C8120.5 (2)C15—C14—H14120.1
C3—C4—H4118.9N1—C15—C14123.28 (18)
C5—C4—C3122.2 (2)N1—C15—H15118.4
C5—C4—H4118.9C14—C15—H15118.4
C4—C5—C6118.6 (2)O3—C16—N2123.77 (19)
C4—C5—C9121.0 (3)O3—C16—C13118.98 (18)
C6—C5—C9120.5 (3)N2—C16—C13117.23 (18)
C5—C6—C7121.8 (2)
O4—Ni1—O2—C11.87 (16)C7—C2—C3—C42.7 (3)
O4i—Ni1—O2—C1178.13 (16)C7—C2—C3—C8176.8 (2)
N1—Ni1—O2—C192.74 (15)C1—C2—C7—C6172.41 (18)
N1i—Ni1—O2—C187.26 (15)C1—C2—C7—C109.2 (3)
O2—Ni1—N1—C1145.97 (15)C3—C2—C7—C62.7 (3)
O2i—Ni1—N1—C11134.03 (15)C3—C2—C7—C10175.6 (2)
O2—Ni1—N1—C15134.61 (16)C2—C3—C4—C50.2 (3)
O2i—Ni1—N1—C1545.39 (16)C8—C3—C4—C5179.3 (2)
O4—Ni1—N1—C11138.19 (16)C3—C4—C5—C62.3 (4)
O4i—Ni1—N1—C1141.81 (16)C3—C4—C5—C9178.1 (3)
O4—Ni1—N1—C1542.39 (16)C4—C5—C6—C72.3 (4)
O4i—Ni1—N1—C15137.61 (16)C9—C5—C6—C7178.1 (3)
Ni1—O2—C1—O112.8 (3)C2—C7—C6—C50.2 (3)
Ni1—O2—C1—C2167.00 (12)C10—C7—C6—C5178.2 (2)
Ni1—N1—C11—C12178.99 (16)N1—C11—C12—C130.4 (3)
C15—N1—C11—C120.5 (3)C14—C13—C12—C110.3 (3)
Ni1—N1—C15—C14179.01 (17)C16—C13—C12—C11179.13 (19)
C11—N1—C15—C140.4 (3)C12—C13—C14—C150.3 (3)
O1—C1—C2—C381.0 (3)C16—C13—C14—C15179.2 (2)
O1—C1—C2—C7103.8 (2)C12—C13—C16—O3161.4 (2)
O2—C1—C2—C398.9 (2)C12—C13—C16—N217.2 (3)
O2—C1—C2—C776.3 (2)C14—C13—C16—O317.4 (3)
C1—C2—C3—C4172.43 (18)C14—C13—C16—N2164.0 (2)
C1—C2—C3—C88.1 (3)N1—C15—C14—C130.4 (4)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O5ii0.84 (3)2.18 (3)3.014 (3)174 (2)
N2—H22···O3iii0.83 (3)2.21 (3)3.043 (3)177 (2)
O4—H41···O5iv0.77 (3)2.02 (3)2.745 (2)157 (3)
O4—H42···O10.81 (3)1.85 (3)2.593 (3)151 (3)
O5—H51···O2v0.81 (3)2.16 (3)2.8804 (19)148 (3)
O5—H52···O10.85 (3)1.83 (3)2.673 (2)176 (2)
C12—H12···O5ii0.932.563.307 (2)137
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x+1, y1/2, z+3/2; (v) x, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Scientific and Technological Research Application and Research Center, Sinop University, Turkey, for the use of the Bruker D8 QUEST diffractometer.

References

First citationAdiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAmiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075–1080.  CAS Google Scholar
First citationAntolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395.  CSD CrossRef CAS Web of Science Google Scholar
First citationAntsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098–1103.  Google Scholar
First citationAşkın, G. Ş., Necefoğlu, H., Tombul, A. M., Dilek, N. & Hökelek, T. (2016). Acta Cryst. E72, m656–m658.  Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCapilla, A. V. & Aranda, R. A. (1979). Cryst. Struct. Commun. 8, 795–798.  Google Scholar
First citationCatterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843–844.  Google Scholar
First citationChen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationClegg, W., Little, I. R. & Straughan, B. P. (1986a). Acta Cryst. C42, 919–920.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationClegg, W., Little, I. R. & Straughan, B. P. (1986b). Acta Cryst. C42, 1701–1703.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationClegg, W., Little, I. R. & Straughan, B. P. (1987). Acta Cryst. C43, 456–457.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuseinov, G. A., Musaev, F. N., Usubaliev, B. T., Amiraslanov, I. R. & Mamedov, Kh. S. (1984). Koord. Khim. 10, 117–122.  CAS Google Scholar
First citationHauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169–172.  CAS Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009). Acta Cryst. E65, m466–m467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Tenlik, E. & Necefoğlu, H. (2010). Acta Cryst. E66, m891–m892.  CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.  Google Scholar
First citationNadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128.  CAS Google Scholar
First citationNecefoğlu, H., Çimen, E., Tercan, B., Ermiş, E. & Hökelek, T. (2010). Acta Cryst. E66, m361–m362.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNiekerk, J. N. van, Schoening, F. R. L. & Talbot, J. H. (1953). Acta Cryst. 6, 720–723.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSertçelik, M., Çaylak, Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012). Acta Cryst. E68, m946–m947.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.  CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTercan, B., Hökelek, T., Aybirdi, Ö. & Necefoğlu, H. (2009). Acta Cryst. E65, m109–m110.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUsubaliev, B. T., Guliev, F. I., Musaev, F. N., Ganbarov, D. M., Ashurova, S. A. & Movsumov, E. M. (1992). Zh. Strukt. Khim. 33, m203–m207.  Google Scholar
First citationWright, W. B. & King, G. S. D. (1954). Acta Cryst. 7, 283–288.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationXu, T.-G. & Xu, D.-J. (2004). Acta Cryst. E60, m1462–m1464.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYou, K.-S., Arnold, L. J. Jr, Allison, W. S. & Kaplan, N. O. (1978). Trends Biochem. Sci. 3, 265–268.  CrossRef CAS Web of Science Google Scholar
First citationZhang, X.-Y., Liu, Z.-Y., Liu, Z.-Y., Yang, E.-C. & Zhao, X.-J. (2013). Z. Anorg. Allg. Chem. 639, 974–981.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds