research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-5-[1-Hy­dr­oxy-3-(3,4,5-tri­meth­­oxy­phen­yl)allyl­­idene]-1,3-di­methyl­pyrimidine-2,4,6-trione: crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aInstituto de Química de São Carlos, Universidade de São Paulo 13566-590, São Carlos, Brazil, bDepartamento de Química, Universidad del Valle, AA 25360, Cali, Colombia, and cUniversidad Santiago de Cali, Calle 5 # 62-00, Cali, Colombia
*Correspondence e-mail: richard.dvries00@usc.edu.co

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 19 May 2017; accepted 13 July 2017; online 18 July 2017)

In the title compound, C18H20N2O7, the dihedral angle between the aromatic rings is 7.28 (7)° and the almost planar conformation of the mol­ecule is supported by an intra­molecular O—H⋯O hydrogen bond, which closes an S(6) ring. In the crystal, weak C—H⋯O hydrogen bonds and aromatic ππ stacking link the mol­ecules into a three-dimensional network. A Hirshfeld surface analysis showed that the major contribution to the inter­molecular inter­actions are van der Waals inter­actions (H⋯H contacts), accounting for 48.4% of the surface.

1. Chemical context

Bartituric acid derivatives are of inter­est due to their potential biological applications (Bojarski et al., 1985[Bojarski, J. T., Mokrosz, J. L., Bartoń, H. J. & Paluchowska, M. H. (1985). Advances in Heterocyclic Chemistry, Vol. 38, edited by A. Katritzky. New York: Academic Press.]; Patrick, 2009[Patrick, G. L. (2009). In An Introduction to Medicinal Chemistry, p. 752. Oxford University Press.]). These compounds have materials science appplications due to the properties generated by π-conjugation, such as push–pull chromophores (Klikar et al., 2013[Klikar, M., Bureš, F., Pytela, O., Mikysek, T., Padělková, Z., Barsella, A., Dorkenoo, K. & Achelle, S. (2013). New J. Chem. 37, 4230-4240.]; Seifert et al., 2012[Seifert, S., Seifert, A., Brunklaus, G., Hofmann, K., Rüffer, T., Lang, H. & Spange, S. (2012). New J. Chem. 36, 674-684.]). The chemical structures of these derivatives show five potential metal-binding sites, which makes them versatile ligands for the construction of coordination and supra­molecular compounds (Mahmudov et al., 2014[Mahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V. & Pombeiro, A. J. L. (2014). Coord. Chem. Rev. 265, 1-37.]), also important in organic synthesis, where they are largely used as substrates for Morita–Baylis–Hilmann and Diels–Alder reactions (Goswami & Das, 2009[Goswami, P. & Das, B. (2009). Tetrahedron Lett. 50, 897-900.]). Herein we report the crystal structure and Hisrshfeld surface analysis of (E)-5-[1-hy­droxy-3-(3,4,5-tri­meth­oxy­phen­yl)allyl­idene]-1,3-di­methyl­pyrimidine-2,4,6-trione (I)[link], which presents potential applications in the study of the photophysical properties of different isomers for the development of supra­molecular structures.

[Scheme 1]

2. Structural commentary

The structure of (I)[link], which crystallizes in the triclinic space group P[\overline{1}], presents conjugation over the C1—C10—C11—C12—C13 bonds, leading to a an almost planar conformation (Fig. 1[link]); the C10—C11—C12—C13 and C1—C10—C11—C12 torsion angles are −176.76 (1) and −179.27 (1)°, respectively. The dihedral angle between the aromatic rings is 7.28 (7)°. The C atoms of the meta-meth­oxy groups lie close to the plane of their attached ring [deviations for atoms C7 and C9 of 0.289 (2) and 0.131 (2)Å, respectively], whereas the para-meth­oxy C atom deviates significantly, by 0.959 (2) Å, which is reflected in the C3—C4—O2—C8 torsion angle of 106.41 (19)°. An intra­molecular O—H⋯O hydrogen bond (Table 1[link]) closes an S(6) ring and a C—H⋯O inter­action is also observed. A Mogul geometry check found that all the bond lengths and angles are within typical ranges (Bruno et al., 2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O5 0.82 1.74 2.4841 (15) 150
C11—H11⋯O7 0.93 2.16 2.8044 (18) 125
C8—H8B⋯O6i 0.96 2.60 3.341 (3) 135
C9—H9C⋯O7ii 0.96 2.42 3.3694 (19) 170
Symmetry codes: (i) x, y, z+1; (ii) -x-1, -y+1, -z+2.
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing 50% probability displacement ellipsoids.

3. Supra­molecular features

The packing of the title compound features inversion dimers linked by pairs of C9—H9C⋯O7ii hydrogen bonds [C⋯O = 3.3694 (19) Å], which generate R22(24) loops. The dimers are linked along the [001] direction by the C8—H8B⋯O6i hydrogen bond [C⋯O = 3.341 (3) Å]. In addition, weak and very weak ππ inter­actions (which alternate with respect to the [010] direction) between benzene and pyrimidine rings [centroid–centroid separations = 3.8779 (1) and 4.2283 (9) Å, respectively] occur (Fig. 2[link]). Together, these inter­molecular inter­actions lead to a three-dimensional network (Fig. 3[link]).

[Figure 2]
Figure 2
Details of the inter­molecular inter­actions in the crystal of (I)[link], showing (a) ππ stacking between rings 1 (N1/N2/C13–C16) and 2 (C1–C6) along the [010] direction, (b) an inversion dimer formed by the C9—H9C⋯O7ii hydrogen bond and (c) by the C8—H8B⋯O6i hydrogen bond. [Symmetry codes: (i) x, y, 1 + z; (ii) −1 − x, 1 − y, −z.]
[Figure 3]
Figure 3
Crystal packing representation of (I)[link], viewed along the [010] direction.

4. Hirshfeld surfaces analysis

The Hirshfeld surface analysis shows the potential inter­molecular contacts. Convex blue regions represent hydrogen-donor groups and concave red regions represent hydrogen-acceptor groups (Hirshfeld, 1977[Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129-138.]; McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]). In this case, the main donor groups are the methyl groups and the acceptor groups are the O atoms. The region of ππ inter­actions, observed as red and blue triangles over the aromatic rings, is also clear (Fig. 4[link]). This surface confirms the importance of the inter­actions described previously.

[Figure 4]
Figure 4
Hirshfeld surface of the title compound as (a) shape index and (b) dnorm.

The two-dimensional fingerprint plot qu­anti­fies the contribution of each kind of inter­action to the surface formation (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). For the title compound (Fig. 5[link]), the major contribution is due to H⋯H corresponding to van der Waals inter­actions with 48.4% of the surface, followed by the O⋯H inter­action, which contributes 26.5% (this contribution is observed as two sharp peaks in the plot); this behaviour is usual for strong hydrogen bonds (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]). Finally, ππ inter­actions represented by C⋯C inter­actions contribute 6.0% to the Hirshfeld surface.

[Figure 5]
Figure 5
Bidimensional fingerprint plots for the whole mol­ecule and H⋯H, O⋯H, C⋯H, C⋯C and C⋯O close contacts.

5. Database survey

A general search in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for barbituric acid derivatives yielded 718 hits. Limiting the search for a barbituric acid substituted at position C5 with a phenyl­propyl group yielded 14 hits; two of these results present double-bond conjugation, namely 1,3-dibutyl-5-{3-[4-(di­methyl­amino)­phen­yl]prop-2-en-1-yl­idene}pyrimidine-2,4,6(1H,3H,5H)-trione (Klikar et al., 2013[Klikar, M., Bureš, F., Pytela, O., Mikysek, T., Padělková, Z., Barsella, A., Dorkenoo, K. & Achelle, S. (2013). New J. Chem. 37, 4230-4240.]) and 5-{3-[4-(di­methyl­amino)­phen­yl]prop-2-en-1-yl­idene}pyrimidine-2,4,6(1H,3H,5H)-trione (Seifert et al., 2012[Seifert, S., Seifert, A., Brunklaus, G., Hofmann, K., Rüffer, T., Lang, H. & Spange, S. (2012). New J. Chem. 36, 674-684.]).

6. Synthesis and crystallization

The title compound was prepared according to the literature procedure of Gorovoy et al. (2014[Gorovoy, A. S., Guyader, D. & Lejon, T. (2014). Synth. Commun. 44, 1296-1300.]). A mixture of 3,4,5-tri­meth­oxy­benzaldehyde and 5-acetyl-1,3-di­methyl­barbituric acid was melted at 453 K and 2–3 drops of piperidine were added under constant stirring. After 5 min, the mixture solidified, providing a yellow powder, which was allowed to cool to room temperature. The solid residue was boiled in ethanol (20 ml) for a few minutes and the precipitate was filtered off by vacuum suction. The filtrate was left at room temperature, yielding yellow needles of the title compound after three weeks.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H-atom positions were calculated geometrically and refined using the riding model, with O—H = 0.82 Å, methyl C—H = 0.96 Å and aromatic C—H = 0.93 Å.

Table 2
Experimental details

Crystal data
Chemical formula C18H20N2O7
Mr 376.36
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.9989 (3), 8.0659 (3), 14.6533 (5)
α, β, γ (°) 104.520 (1), 98.422 (1), 98.909 (1)
V3) 887.04 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 1.07 × 0.33 × 0.28
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.714, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 26167, 3626, 3176
Rint 0.021
(sin θ/λ)max−1) 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.130, 1.04
No. of reflections 3626
No. of parameters 250
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), CrystalExplorer (McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008) and CrystalExplorer (McKinnon et al., 2004); software used to prepare material for publication: WinGX (Farrugia, 2012) and OLEX2 (Dolomanov et al., 2009).

(E)-5-[1-Hydroxy-3-(3,4,5-trimethoxyphenyl)allylidene]-1,3-dimethylpyrimidine-2,4,6-trione top
Crystal data top
C18H20N2O7Z = 2
Mr = 376.36F(000) = 396
Triclinic, P1Dx = 1.409 Mg m3
a = 7.9989 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.0659 (3) ÅCell parameters from 9895 reflections
c = 14.6533 (5) Åθ = 2.6–26.4°
α = 104.520 (1)°µ = 0.11 mm1
β = 98.422 (1)°T = 296 K
γ = 98.909 (1)°Needle, light yellow
V = 887.04 (6) Å31.07 × 0.33 × 0.28 mm
Data collection top
Bruker APEXII CCD
diffractometer
3626 independent reflections
Radiation source: microfocus sealed X-ray tube3176 reflections with I > 2σ(I)
Detector resolution: 7.9 pixels mm-1Rint = 0.021
φ and ω scansθmax = 26.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
h = 109
Tmin = 0.714, Tmax = 0.745k = 1010
26167 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0676P)2 + 0.233P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3626 reflectionsΔρmax = 0.26 e Å3
250 parametersΔρmin = 0.22 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.10573 (17)0.71389 (17)1.15734 (9)0.0393 (3)
C20.21740 (18)0.71690 (18)1.24039 (10)0.0430 (3)
H20.33270.77111.25120.052*
C30.15737 (19)0.63927 (18)1.30710 (10)0.0435 (3)
C40.01447 (19)0.55537 (18)1.29072 (10)0.0426 (3)
C50.12826 (18)0.55865 (19)1.20923 (10)0.0446 (3)
C60.06846 (18)0.63736 (18)1.14315 (10)0.0433 (3)
H60.14460.63921.08920.052*
C70.4228 (3)0.7414 (3)1.41741 (15)0.0841 (7)
H7A0.49010.70251.37010.126*
H7B0.47740.73341.47860.126*
H7C0.41440.86051.42200.126*
C80.1648 (3)0.5368 (3)1.41581 (15)0.0809 (6)
H8A0.27130.54831.38050.121*
H8B0.10210.65011.45440.121*
H8C0.18860.46341.45670.121*
C90.4173 (2)0.4882 (3)1.12169 (14)0.0699 (5)
H9A0.38690.43121.06240.105*
H9B0.41720.60851.12480.105*
H9C0.53020.43141.12480.105*
C100.17536 (17)0.78939 (18)1.08679 (10)0.0422 (3)
H100.29150.84261.10200.051*
C110.08636 (18)0.78836 (19)1.00250 (10)0.0443 (3)
H110.03030.73690.98630.053*
C120.16329 (17)0.86397 (18)0.93467 (10)0.0426 (3)
C130.07305 (17)0.87319 (17)0.84766 (10)0.0392 (3)
C140.16886 (19)0.94308 (18)0.78507 (11)0.0441 (3)
C150.0952 (2)0.88897 (19)0.66628 (11)0.0480 (3)
C160.11265 (18)0.81213 (18)0.81775 (10)0.0417 (3)
C170.1805 (3)1.0066 (3)0.63158 (14)0.0735 (5)
H17A0.27041.10460.66730.110*
H17B0.10531.04130.58560.110*
H17C0.23070.91400.59860.110*
C180.3720 (2)0.7703 (3)0.69641 (14)0.0674 (5)
H18A0.39750.65580.65180.101*
H18B0.41640.85070.66560.101*
H18C0.42480.76680.75090.101*
N10.08167 (17)0.94549 (16)0.69760 (9)0.0479 (3)
N20.18496 (15)0.82765 (16)0.72844 (9)0.0463 (3)
O10.25706 (15)0.63579 (17)1.39048 (8)0.0625 (3)
O20.06606 (16)0.46212 (14)1.35161 (8)0.0573 (3)
O30.29489 (14)0.47840 (17)1.20048 (9)0.0638 (3)
O40.33028 (13)0.92287 (18)0.96038 (8)0.0611 (3)
H40.36610.95940.91800.092*
O50.32765 (14)1.00179 (16)0.80691 (9)0.0603 (3)
O60.16669 (18)0.89585 (18)0.58887 (8)0.0693 (4)
O70.20868 (13)0.75253 (17)0.86397 (8)0.0608 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0395 (7)0.0408 (7)0.0361 (6)0.0050 (5)0.0078 (5)0.0095 (5)
C20.0369 (7)0.0482 (7)0.0415 (7)0.0046 (5)0.0054 (5)0.0117 (6)
C30.0455 (8)0.0483 (7)0.0378 (7)0.0118 (6)0.0055 (6)0.0141 (6)
C40.0482 (8)0.0422 (7)0.0418 (7)0.0091 (6)0.0138 (6)0.0164 (6)
C50.0393 (7)0.0475 (7)0.0455 (7)0.0016 (6)0.0092 (6)0.0143 (6)
C60.0398 (7)0.0524 (8)0.0367 (7)0.0038 (6)0.0047 (5)0.0151 (6)
C70.0596 (11)0.1186 (17)0.0669 (12)0.0029 (11)0.0179 (9)0.0429 (12)
C80.0891 (14)0.1140 (17)0.0749 (13)0.0458 (13)0.0456 (11)0.0575 (12)
C90.0363 (8)0.0968 (14)0.0761 (12)0.0053 (8)0.0029 (8)0.0393 (10)
C100.0353 (7)0.0473 (7)0.0413 (7)0.0018 (5)0.0082 (5)0.0111 (6)
C110.0350 (7)0.0537 (8)0.0424 (7)0.0011 (6)0.0078 (5)0.0159 (6)
C120.0327 (6)0.0493 (7)0.0448 (7)0.0012 (5)0.0100 (5)0.0142 (6)
C130.0354 (7)0.0428 (7)0.0409 (7)0.0038 (5)0.0119 (5)0.0142 (5)
C140.0444 (8)0.0436 (7)0.0504 (8)0.0080 (6)0.0194 (6)0.0186 (6)
C150.0592 (9)0.0477 (8)0.0417 (7)0.0173 (6)0.0125 (6)0.0150 (6)
C160.0370 (7)0.0455 (7)0.0425 (7)0.0053 (5)0.0085 (5)0.0138 (6)
C170.0860 (13)0.0876 (13)0.0673 (11)0.0165 (11)0.0381 (10)0.0456 (10)
C180.0459 (9)0.0906 (13)0.0620 (10)0.0097 (8)0.0030 (8)0.0244 (9)
N10.0586 (8)0.0482 (7)0.0462 (7)0.0127 (5)0.0216 (6)0.0224 (5)
N20.0426 (7)0.0535 (7)0.0431 (6)0.0096 (5)0.0064 (5)0.0152 (5)
O10.0543 (7)0.0855 (8)0.0517 (6)0.0084 (6)0.0002 (5)0.0352 (6)
O20.0710 (7)0.0561 (6)0.0581 (7)0.0159 (5)0.0247 (6)0.0309 (5)
O30.0423 (6)0.0871 (8)0.0622 (7)0.0093 (5)0.0059 (5)0.0370 (6)
O40.0330 (5)0.0924 (9)0.0565 (7)0.0072 (5)0.0047 (5)0.0324 (6)
O50.0428 (6)0.0774 (8)0.0696 (7)0.0017 (5)0.0222 (5)0.0362 (6)
O60.0839 (9)0.0855 (9)0.0461 (6)0.0249 (7)0.0099 (6)0.0284 (6)
O70.0348 (5)0.0905 (8)0.0591 (7)0.0065 (5)0.0078 (5)0.0369 (6)
Geometric parameters (Å, º) top
C1—C21.3926 (19)C10—C111.330 (2)
C1—C61.3964 (19)C10—H100.9300
C1—C101.4592 (19)C11—C121.4509 (19)
C2—C31.389 (2)C11—H110.9300
C2—H20.9300C12—O41.3108 (17)
C3—O11.3668 (17)C12—C131.395 (2)
C3—C41.392 (2)C13—C141.4414 (18)
C4—O21.3713 (17)C13—C161.4545 (19)
C4—C51.400 (2)C14—O51.2484 (18)
C5—O31.3613 (17)C14—N11.3728 (19)
C5—C61.3854 (19)C15—O61.2115 (19)
C6—H60.9300C15—N21.377 (2)
C7—O11.403 (2)C15—N11.388 (2)
C7—H7A0.9600C16—O71.2171 (17)
C7—H7B0.9600C16—N21.3949 (18)
C7—H7C0.9600C17—N11.4651 (19)
C8—O21.397 (2)C17—H17A0.9600
C8—H8A0.9600C17—H17B0.9600
C8—H8B0.9600C17—H17C0.9600
C8—H8C0.9600C18—N21.464 (2)
C9—O31.427 (2)C18—H18A0.9600
C9—H9A0.9600C18—H18B0.9600
C9—H9B0.9600C18—H18C0.9600
C9—H9C0.9600O4—H40.8200
C2—C1—C6119.47 (12)C10—C11—H11118.6
C2—C1—C10118.69 (12)C12—C11—H11118.6
C6—C1—C10121.83 (12)O4—C12—C13120.83 (12)
C3—C2—C1120.32 (13)O4—C12—C11114.45 (12)
C3—C2—H2119.8C13—C12—C11124.71 (12)
C1—C2—H2119.8C12—C13—C14118.37 (12)
O1—C3—C2124.48 (13)C12—C13—C16122.27 (12)
O1—C3—C4115.30 (12)C14—C13—C16119.35 (13)
C2—C3—C4120.22 (13)O5—C14—N1118.50 (12)
O2—C4—C3119.14 (13)O5—C14—C13122.93 (14)
O2—C4—C5121.34 (13)N1—C14—C13118.57 (13)
C3—C4—C5119.39 (12)O6—C15—N2122.00 (15)
O3—C5—C6124.28 (13)O6—C15—N1121.53 (15)
O3—C5—C4115.49 (12)N2—C15—N1116.47 (13)
C6—C5—C4120.22 (13)O7—C16—N2118.09 (13)
C5—C6—C1120.23 (13)O7—C16—C13126.00 (13)
C5—C6—H6119.9N2—C16—C13115.90 (12)
C1—C6—H6119.9N1—C17—H17A109.5
O1—C7—H7A109.5N1—C17—H17B109.5
O1—C7—H7B109.5H17A—C17—H17B109.5
H7A—C7—H7B109.5N1—C17—H17C109.5
O1—C7—H7C109.5H17A—C17—H17C109.5
H7A—C7—H7C109.5H17B—C17—H17C109.5
H7B—C7—H7C109.5N2—C18—H18A109.5
O2—C8—H8A109.5N2—C18—H18B109.5
O2—C8—H8B109.5H18A—C18—H18B109.5
H8A—C8—H8B109.5N2—C18—H18C109.5
O2—C8—H8C109.5H18A—C18—H18C109.5
H8A—C8—H8C109.5H18B—C18—H18C109.5
H8B—C8—H8C109.5C14—N1—C15123.97 (12)
O3—C9—H9A109.5C14—N1—C17118.57 (14)
O3—C9—H9B109.5C15—N1—C17117.44 (14)
H9A—C9—H9B109.5C15—N2—C16125.68 (13)
O3—C9—H9C109.5C15—N2—C18116.73 (13)
H9A—C9—H9C109.5C16—N2—C18117.58 (13)
H9B—C9—H9C109.5C3—O1—C7117.14 (13)
C11—C10—C1125.35 (13)C4—O2—C8116.71 (13)
C11—C10—H10117.3C5—O3—C9117.32 (12)
C1—C10—H10117.3C12—O4—H4109.5
C10—C11—C12122.86 (13)
C6—C1—C2—C32.1 (2)C16—C13—C14—N11.7 (2)
C10—C1—C2—C3177.07 (13)C12—C13—C16—O72.1 (2)
C1—C2—C3—O1179.95 (13)C14—C13—C16—O7179.05 (15)
C1—C2—C3—C41.0 (2)C12—C13—C16—N2179.24 (12)
O1—C3—C4—O26.8 (2)C14—C13—C16—N20.35 (19)
C2—C3—C4—O2172.34 (13)O5—C14—N1—C15178.00 (13)
O1—C3—C4—C5177.24 (13)C13—C14—N1—C151.9 (2)
C2—C3—C4—C53.6 (2)O5—C14—N1—C173.8 (2)
O2—C4—C5—O36.2 (2)C13—C14—N1—C17176.34 (14)
C3—C4—C5—O3177.92 (13)O6—C15—N1—C14179.01 (14)
O2—C4—C5—C6172.77 (13)N2—C15—N1—C140.1 (2)
C3—C4—C5—C63.1 (2)O6—C15—N1—C172.7 (2)
O3—C5—C6—C1178.84 (14)N2—C15—N1—C17178.30 (14)
C4—C5—C6—C10.0 (2)O6—C15—N2—C16178.65 (14)
C2—C1—C6—C52.7 (2)N1—C15—N2—C162.4 (2)
C10—C1—C6—C5176.53 (13)O6—C15—N2—C180.1 (2)
C2—C1—C10—C11176.58 (14)N1—C15—N2—C18179.10 (14)
C6—C1—C10—C112.6 (2)O7—C16—N2—C15178.70 (14)
C1—C10—C11—C12179.27 (13)C13—C16—N2—C152.5 (2)
C10—C11—C12—O44.4 (2)O7—C16—N2—C180.2 (2)
C10—C11—C12—C13176.76 (14)C13—C16—N2—C18179.01 (14)
O4—C12—C13—C142.3 (2)C2—C3—O1—C710.7 (2)
C11—C12—C13—C14176.48 (13)C4—C3—O1—C7170.18 (17)
O4—C12—C13—C16178.81 (13)C3—C4—O2—C8106.41 (19)
C11—C12—C13—C162.4 (2)C5—C4—O2—C877.7 (2)
C12—C13—C14—O52.9 (2)C6—C5—O3—C94.9 (2)
C16—C13—C14—O5178.20 (13)C4—C5—O3—C9176.16 (15)
C12—C13—C14—N1177.25 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O50.821.742.4841 (15)150
C11—H11···O70.932.162.8044 (18)125
C8—H8B···O6i0.962.603.341 (3)135
C9—H9C···O7ii0.962.423.3694 (19)170
Symmetry codes: (i) x, y, z+1; (ii) x1, y+1, z+2.
 

Acknowledgements

ELR, FZ and MNC are grateful to the Vicerrectoría de Investigaciones and the Center of Excellence for Novel Materials (CENM) of the Universidad del Valle for the economic support to conduct this research. MSM and RD acknowledge FAPESP (2009/54011-8) for providing equipment, and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior and Conselho Nacional de Desenvolvimento Cientifico e Tecnológico for the CNPq and CAPES/PNPD scholarships from the Brazilian Ministry of Education.

References

First citationBojarski, J. T., Mokrosz, J. L., Bartoń, H. J. & Paluchowska, M. H. (1985). Advances in Heterocyclic Chemistry, Vol. 38, edited by A. Katritzky. New York: Academic Press.  Google Scholar
First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2015). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGorovoy, A. S., Guyader, D. & Lejon, T. (2014). Synth. Commun. 44, 1296–1300.  CrossRef CAS Google Scholar
First citationGoswami, P. & Das, B. (2009). Tetrahedron Lett. 50, 897–900.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationKlikar, M., Bureš, F., Pytela, O., Mikysek, T., Padělková, Z., Barsella, A., Dorkenoo, K. & Achelle, S. (2013). New J. Chem. 37, 4230–4240.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V. & Pombeiro, A. J. L. (2014). Coord. Chem. Rev. 265, 1–37.  Web of Science CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPatrick, G. L. (2009). In An Introduction to Medicinal Chemistry, p. 752. Oxford University Press.  Google Scholar
First citationSeifert, S., Seifert, A., Brunklaus, G., Hofmann, K., Rüffer, T., Lang, H. & Spange, S. (2012). New J. Chem. 36, 674–684.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds