research communications
(E)-5-[1-Hydroxy-3-(3,4,5-trimethoxyphenyl)allylidene]-1,3-dimethylpyrimidine-2,4,6-trione: and Hirshfeld surface analysis
aInstituto de Química de São Carlos, Universidade de São Paulo 13566-590, São Carlos, Brazil, bDepartamento de Química, Universidad del Valle, AA 25360, Cali, Colombia, and cUniversidad Santiago de Cali, Calle 5 # 62-00, Cali, Colombia
*Correspondence e-mail: richard.dvries00@usc.edu.co
In the title compound, C18H20N2O7, the dihedral angle between the aromatic rings is 7.28 (7)° and the almost planar conformation of the molecule is supported by an intramolecular O—H⋯O hydrogen bond, which closes an S(6) ring. In the crystal, weak C—H⋯O hydrogen bonds and aromatic π–π stacking link the molecules into a three-dimensional network. A Hirshfeld surface analysis showed that the major contribution to the intermolecular interactions are van der Waals interactions (H⋯H contacts), accounting for 48.4% of the surface.
CCDC reference: 1562022
1. Chemical context
Bartituric acid derivatives are of interest due to their potential biological applications (Bojarski et al., 1985; Patrick, 2009). These compounds have materials science appplications due to the properties generated by π-conjugation, such as push–pull chromophores (Klikar et al., 2013; Seifert et al., 2012). The chemical structures of these derivatives show five potential metal-binding sites, which makes them versatile ligands for the construction of coordination and supramolecular compounds (Mahmudov et al., 2014), also important in organic synthesis, where they are largely used as substrates for Morita–Baylis–Hilmann and Diels–Alder reactions (Goswami & Das, 2009). Herein we report the and Hisrshfeld surface analysis of (E)-5-[1-hydroxy-3-(3,4,5-trimethoxyphenyl)allylidene]-1,3-dimethylpyrimidine-2,4,6-trione (I), which presents potential applications in the study of the photophysical properties of different isomers for the development of supramolecular structures.
2. Structural commentary
The structure of (I), which crystallizes in the triclinic P, presents conjugation over the C1—C10—C11—C12—C13 bonds, leading to a an almost planar conformation (Fig. 1); the C10—C11—C12—C13 and C1—C10—C11—C12 torsion angles are −176.76 (1) and −179.27 (1)°, respectively. The dihedral angle between the aromatic rings is 7.28 (7)°. The C atoms of the meta-methoxy groups lie close to the plane of their attached ring [deviations for atoms C7 and C9 of 0.289 (2) and 0.131 (2)Å, respectively], whereas the para-methoxy C atom deviates significantly, by 0.959 (2) Å, which is reflected in the C3—C4—O2—C8 torsion angle of 106.41 (19)°. An intramolecular O—H⋯O hydrogen bond (Table 1) closes an S(6) ring and a C—H⋯O interaction is also observed. A Mogul geometry check found that all the bond lengths and angles are within typical ranges (Bruno et al., 2004).
3. Supramolecular features
The packing of the title compound features inversion dimers linked by pairs of C9—H9C⋯O7ii hydrogen bonds [C⋯O = 3.3694 (19) Å], which generate R22(24) loops. The dimers are linked along the [001] direction by the C8—H8B⋯O6i hydrogen bond [C⋯O = 3.341 (3) Å]. In addition, weak and very weak π–π interactions (which alternate with respect to the [010] direction) between benzene and pyrimidine rings [centroid–centroid separations = 3.8779 (1) and 4.2283 (9) Å, respectively] occur (Fig. 2). Together, these intermolecular interactions lead to a three-dimensional network (Fig. 3).
4. Hirshfeld surfaces analysis
The Hirshfeld surface analysis shows the potential intermolecular contacts. Convex blue regions represent hydrogen-donor groups and concave red regions represent hydrogen-acceptor groups (Hirshfeld, 1977; McKinnon et al., 2004). In this case, the main donor groups are the methyl groups and the acceptor groups are the O atoms. The region of π–π interactions, observed as red and blue triangles over the aromatic rings, is also clear (Fig. 4). This surface confirms the importance of the interactions described previously.
The two-dimensional fingerprint plot quantifies the contribution of each kind of interaction to the surface formation (McKinnon et al., 2007). For the title compound (Fig. 5), the major contribution is due to H⋯H corresponding to van der Waals interactions with 48.4% of the surface, followed by the O⋯H interaction, which contributes 26.5% (this contribution is observed as two sharp peaks in the plot); this behaviour is usual for strong hydrogen bonds (Spackman & McKinnon, 2002). Finally, π–π interactions represented by C⋯C interactions contribute 6.0% to the Hirshfeld surface.
5. Database survey
A general search in the Cambridge Structural Database (Groom et al., 2016) for barbituric acid derivatives yielded 718 hits. Limiting the search for a barbituric acid substituted at position C5 with a phenylpropyl group yielded 14 hits; two of these results present double-bond conjugation, namely 1,3-dibutyl-5-{3-[4-(dimethylamino)phenyl]prop-2-en-1-ylidene}pyrimidine-2,4,6(1H,3H,5H)-trione (Klikar et al., 2013) and 5-{3-[4-(dimethylamino)phenyl]prop-2-en-1-ylidene}pyrimidine-2,4,6(1H,3H,5H)-trione (Seifert et al., 2012).
6. Synthesis and crystallization
The title compound was prepared according to the literature procedure of Gorovoy et al. (2014). A mixture of 3,4,5-trimethoxybenzaldehyde and 5-acetyl-1,3-dimethylbarbituric acid was melted at 453 K and 2–3 drops of piperidine were added under constant stirring. After 5 min, the mixture solidified, providing a yellow powder, which was allowed to cool to room temperature. The solid residue was boiled in ethanol (20 ml) for a few minutes and the precipitate was filtered off by vacuum suction. The filtrate was left at room temperature, yielding yellow needles of the title compound after three weeks.
7. Refinement
Crystal data, data collection and structure . H-atom positions were calculated geometrically and refined using the riding model, with O—H = 0.82 Å, methyl C—H = 0.96 Å and aromatic C—H = 0.93 Å.
details are summarized in Table 2Supporting information
CCDC reference: 1562022
https://doi.org/10.1107/S2056989017010374/hb7681sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017010374/hb7681Isup2.hkl
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008) and CrystalExplorer (McKinnon et al., 2004); software used to prepare material for publication: WinGX (Farrugia, 2012) and OLEX2 (Dolomanov et al., 2009).C18H20N2O7 | Z = 2 |
Mr = 376.36 | F(000) = 396 |
Triclinic, P1 | Dx = 1.409 Mg m−3 |
a = 7.9989 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.0659 (3) Å | Cell parameters from 9895 reflections |
c = 14.6533 (5) Å | θ = 2.6–26.4° |
α = 104.520 (1)° | µ = 0.11 mm−1 |
β = 98.422 (1)° | T = 296 K |
γ = 98.909 (1)° | Needle, light yellow |
V = 887.04 (6) Å3 | 1.07 × 0.33 × 0.28 mm |
Bruker APEXII CCD diffractometer | 3626 independent reflections |
Radiation source: microfocus sealed X-ray tube | 3176 reflections with I > 2σ(I) |
Detector resolution: 7.9 pixels mm-1 | Rint = 0.021 |
φ and ω scans | θmax = 26.5°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | h = −10→9 |
Tmin = 0.714, Tmax = 0.745 | k = −10→10 |
26167 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.043 | H-atom parameters constrained |
wR(F2) = 0.130 | w = 1/[σ2(Fo2) + (0.0676P)2 + 0.233P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3626 reflections | Δρmax = 0.26 e Å−3 |
250 parameters | Δρmin = −0.22 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.10573 (17) | 0.71389 (17) | 1.15734 (9) | 0.0393 (3) | |
C2 | 0.21740 (18) | 0.71690 (18) | 1.24039 (10) | 0.0430 (3) | |
H2 | 0.3327 | 0.7711 | 1.2512 | 0.052* | |
C3 | 0.15737 (19) | 0.63927 (18) | 1.30710 (10) | 0.0435 (3) | |
C4 | −0.01447 (19) | 0.55537 (18) | 1.29072 (10) | 0.0426 (3) | |
C5 | −0.12826 (18) | 0.55865 (19) | 1.20923 (10) | 0.0446 (3) | |
C6 | −0.06846 (18) | 0.63736 (18) | 1.14315 (10) | 0.0433 (3) | |
H6 | −0.1446 | 0.6392 | 1.0892 | 0.052* | |
C7 | 0.4228 (3) | 0.7414 (3) | 1.41741 (15) | 0.0841 (7) | |
H7A | 0.4901 | 0.7025 | 1.3701 | 0.126* | |
H7B | 0.4774 | 0.7334 | 1.4786 | 0.126* | |
H7C | 0.4144 | 0.8605 | 1.4220 | 0.126* | |
C8 | −0.1648 (3) | 0.5368 (3) | 1.41581 (15) | 0.0809 (6) | |
H8A | −0.2713 | 0.5483 | 1.3805 | 0.121* | |
H8B | −0.1021 | 0.6501 | 1.4544 | 0.121* | |
H8C | −0.1886 | 0.4634 | 1.4567 | 0.121* | |
C9 | −0.4173 (2) | 0.4882 (3) | 1.12169 (14) | 0.0699 (5) | |
H9A | −0.3869 | 0.4312 | 1.0624 | 0.105* | |
H9B | −0.4172 | 0.6085 | 1.1248 | 0.105* | |
H9C | −0.5302 | 0.4314 | 1.1248 | 0.105* | |
C10 | 0.17536 (17) | 0.78939 (18) | 1.08679 (10) | 0.0422 (3) | |
H10 | 0.2915 | 0.8426 | 1.1020 | 0.051* | |
C11 | 0.08636 (18) | 0.78836 (19) | 1.00250 (10) | 0.0443 (3) | |
H11 | −0.0303 | 0.7369 | 0.9863 | 0.053* | |
C12 | 0.16329 (17) | 0.86397 (18) | 0.93467 (10) | 0.0426 (3) | |
C13 | 0.07305 (17) | 0.87319 (17) | 0.84766 (10) | 0.0392 (3) | |
C14 | 0.16886 (19) | 0.94308 (18) | 0.78507 (11) | 0.0441 (3) | |
C15 | −0.0952 (2) | 0.88897 (19) | 0.66628 (11) | 0.0480 (3) | |
C16 | −0.11265 (18) | 0.81213 (18) | 0.81775 (10) | 0.0417 (3) | |
C17 | 0.1805 (3) | 1.0066 (3) | 0.63158 (14) | 0.0735 (5) | |
H17A | 0.2704 | 1.1046 | 0.6673 | 0.110* | |
H17B | 0.1053 | 1.0413 | 0.5856 | 0.110* | |
H17C | 0.2307 | 0.9140 | 0.5986 | 0.110* | |
C18 | −0.3720 (2) | 0.7703 (3) | 0.69641 (14) | 0.0674 (5) | |
H18A | −0.3975 | 0.6558 | 0.6518 | 0.101* | |
H18B | −0.4164 | 0.8507 | 0.6656 | 0.101* | |
H18C | −0.4248 | 0.7668 | 0.7509 | 0.101* | |
N1 | 0.08167 (17) | 0.94549 (16) | 0.69760 (9) | 0.0479 (3) | |
N2 | −0.18496 (15) | 0.82765 (16) | 0.72844 (9) | 0.0463 (3) | |
O1 | 0.25706 (15) | 0.63579 (17) | 1.39048 (8) | 0.0625 (3) | |
O2 | −0.06606 (16) | 0.46212 (14) | 1.35161 (8) | 0.0573 (3) | |
O3 | −0.29489 (14) | 0.47840 (17) | 1.20048 (9) | 0.0638 (3) | |
O4 | 0.33028 (13) | 0.92287 (18) | 0.96038 (8) | 0.0611 (3) | |
H4 | 0.3661 | 0.9594 | 0.9180 | 0.092* | |
O5 | 0.32765 (14) | 1.00179 (16) | 0.80691 (9) | 0.0603 (3) | |
O6 | −0.16669 (18) | 0.89585 (18) | 0.58887 (8) | 0.0693 (4) | |
O7 | −0.20868 (13) | 0.75253 (17) | 0.86397 (8) | 0.0608 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0395 (7) | 0.0408 (7) | 0.0361 (6) | 0.0050 (5) | 0.0078 (5) | 0.0095 (5) |
C2 | 0.0369 (7) | 0.0482 (7) | 0.0415 (7) | 0.0046 (5) | 0.0054 (5) | 0.0117 (6) |
C3 | 0.0455 (8) | 0.0483 (7) | 0.0378 (7) | 0.0118 (6) | 0.0055 (6) | 0.0141 (6) |
C4 | 0.0482 (8) | 0.0422 (7) | 0.0418 (7) | 0.0091 (6) | 0.0138 (6) | 0.0164 (6) |
C5 | 0.0393 (7) | 0.0475 (7) | 0.0455 (7) | 0.0016 (6) | 0.0092 (6) | 0.0143 (6) |
C6 | 0.0398 (7) | 0.0524 (8) | 0.0367 (7) | 0.0038 (6) | 0.0047 (5) | 0.0151 (6) |
C7 | 0.0596 (11) | 0.1186 (17) | 0.0669 (12) | −0.0029 (11) | −0.0179 (9) | 0.0429 (12) |
C8 | 0.0891 (14) | 0.1140 (17) | 0.0749 (13) | 0.0458 (13) | 0.0456 (11) | 0.0575 (12) |
C9 | 0.0363 (8) | 0.0968 (14) | 0.0761 (12) | −0.0053 (8) | 0.0029 (8) | 0.0393 (10) |
C10 | 0.0353 (7) | 0.0473 (7) | 0.0413 (7) | 0.0018 (5) | 0.0082 (5) | 0.0111 (6) |
C11 | 0.0350 (7) | 0.0537 (8) | 0.0424 (7) | −0.0011 (6) | 0.0078 (5) | 0.0159 (6) |
C12 | 0.0327 (6) | 0.0493 (7) | 0.0448 (7) | 0.0012 (5) | 0.0100 (5) | 0.0142 (6) |
C13 | 0.0354 (7) | 0.0428 (7) | 0.0409 (7) | 0.0038 (5) | 0.0119 (5) | 0.0142 (5) |
C14 | 0.0444 (8) | 0.0436 (7) | 0.0504 (8) | 0.0080 (6) | 0.0194 (6) | 0.0186 (6) |
C15 | 0.0592 (9) | 0.0477 (8) | 0.0417 (7) | 0.0173 (6) | 0.0125 (6) | 0.0150 (6) |
C16 | 0.0370 (7) | 0.0455 (7) | 0.0425 (7) | 0.0053 (5) | 0.0085 (5) | 0.0138 (6) |
C17 | 0.0860 (13) | 0.0876 (13) | 0.0673 (11) | 0.0165 (11) | 0.0381 (10) | 0.0456 (10) |
C18 | 0.0459 (9) | 0.0906 (13) | 0.0620 (10) | 0.0097 (8) | −0.0030 (8) | 0.0244 (9) |
N1 | 0.0586 (8) | 0.0482 (7) | 0.0462 (7) | 0.0127 (5) | 0.0216 (6) | 0.0224 (5) |
N2 | 0.0426 (7) | 0.0535 (7) | 0.0431 (6) | 0.0096 (5) | 0.0064 (5) | 0.0152 (5) |
O1 | 0.0543 (7) | 0.0855 (8) | 0.0517 (6) | 0.0084 (6) | 0.0002 (5) | 0.0352 (6) |
O2 | 0.0710 (7) | 0.0561 (6) | 0.0581 (7) | 0.0159 (5) | 0.0247 (6) | 0.0309 (5) |
O3 | 0.0423 (6) | 0.0871 (8) | 0.0622 (7) | −0.0093 (5) | 0.0059 (5) | 0.0370 (6) |
O4 | 0.0330 (5) | 0.0924 (9) | 0.0565 (7) | −0.0072 (5) | 0.0047 (5) | 0.0324 (6) |
O5 | 0.0428 (6) | 0.0774 (8) | 0.0696 (7) | 0.0017 (5) | 0.0222 (5) | 0.0362 (6) |
O6 | 0.0839 (9) | 0.0855 (9) | 0.0461 (6) | 0.0249 (7) | 0.0099 (6) | 0.0284 (6) |
O7 | 0.0348 (5) | 0.0905 (8) | 0.0591 (7) | −0.0065 (5) | 0.0078 (5) | 0.0369 (6) |
C1—C2 | 1.3926 (19) | C10—C11 | 1.330 (2) |
C1—C6 | 1.3964 (19) | C10—H10 | 0.9300 |
C1—C10 | 1.4592 (19) | C11—C12 | 1.4509 (19) |
C2—C3 | 1.389 (2) | C11—H11 | 0.9300 |
C2—H2 | 0.9300 | C12—O4 | 1.3108 (17) |
C3—O1 | 1.3668 (17) | C12—C13 | 1.395 (2) |
C3—C4 | 1.392 (2) | C13—C14 | 1.4414 (18) |
C4—O2 | 1.3713 (17) | C13—C16 | 1.4545 (19) |
C4—C5 | 1.400 (2) | C14—O5 | 1.2484 (18) |
C5—O3 | 1.3613 (17) | C14—N1 | 1.3728 (19) |
C5—C6 | 1.3854 (19) | C15—O6 | 1.2115 (19) |
C6—H6 | 0.9300 | C15—N2 | 1.377 (2) |
C7—O1 | 1.403 (2) | C15—N1 | 1.388 (2) |
C7—H7A | 0.9600 | C16—O7 | 1.2171 (17) |
C7—H7B | 0.9600 | C16—N2 | 1.3949 (18) |
C7—H7C | 0.9600 | C17—N1 | 1.4651 (19) |
C8—O2 | 1.397 (2) | C17—H17A | 0.9600 |
C8—H8A | 0.9600 | C17—H17B | 0.9600 |
C8—H8B | 0.9600 | C17—H17C | 0.9600 |
C8—H8C | 0.9600 | C18—N2 | 1.464 (2) |
C9—O3 | 1.427 (2) | C18—H18A | 0.9600 |
C9—H9A | 0.9600 | C18—H18B | 0.9600 |
C9—H9B | 0.9600 | C18—H18C | 0.9600 |
C9—H9C | 0.9600 | O4—H4 | 0.8200 |
C2—C1—C6 | 119.47 (12) | C10—C11—H11 | 118.6 |
C2—C1—C10 | 118.69 (12) | C12—C11—H11 | 118.6 |
C6—C1—C10 | 121.83 (12) | O4—C12—C13 | 120.83 (12) |
C3—C2—C1 | 120.32 (13) | O4—C12—C11 | 114.45 (12) |
C3—C2—H2 | 119.8 | C13—C12—C11 | 124.71 (12) |
C1—C2—H2 | 119.8 | C12—C13—C14 | 118.37 (12) |
O1—C3—C2 | 124.48 (13) | C12—C13—C16 | 122.27 (12) |
O1—C3—C4 | 115.30 (12) | C14—C13—C16 | 119.35 (13) |
C2—C3—C4 | 120.22 (13) | O5—C14—N1 | 118.50 (12) |
O2—C4—C3 | 119.14 (13) | O5—C14—C13 | 122.93 (14) |
O2—C4—C5 | 121.34 (13) | N1—C14—C13 | 118.57 (13) |
C3—C4—C5 | 119.39 (12) | O6—C15—N2 | 122.00 (15) |
O3—C5—C6 | 124.28 (13) | O6—C15—N1 | 121.53 (15) |
O3—C5—C4 | 115.49 (12) | N2—C15—N1 | 116.47 (13) |
C6—C5—C4 | 120.22 (13) | O7—C16—N2 | 118.09 (13) |
C5—C6—C1 | 120.23 (13) | O7—C16—C13 | 126.00 (13) |
C5—C6—H6 | 119.9 | N2—C16—C13 | 115.90 (12) |
C1—C6—H6 | 119.9 | N1—C17—H17A | 109.5 |
O1—C7—H7A | 109.5 | N1—C17—H17B | 109.5 |
O1—C7—H7B | 109.5 | H17A—C17—H17B | 109.5 |
H7A—C7—H7B | 109.5 | N1—C17—H17C | 109.5 |
O1—C7—H7C | 109.5 | H17A—C17—H17C | 109.5 |
H7A—C7—H7C | 109.5 | H17B—C17—H17C | 109.5 |
H7B—C7—H7C | 109.5 | N2—C18—H18A | 109.5 |
O2—C8—H8A | 109.5 | N2—C18—H18B | 109.5 |
O2—C8—H8B | 109.5 | H18A—C18—H18B | 109.5 |
H8A—C8—H8B | 109.5 | N2—C18—H18C | 109.5 |
O2—C8—H8C | 109.5 | H18A—C18—H18C | 109.5 |
H8A—C8—H8C | 109.5 | H18B—C18—H18C | 109.5 |
H8B—C8—H8C | 109.5 | C14—N1—C15 | 123.97 (12) |
O3—C9—H9A | 109.5 | C14—N1—C17 | 118.57 (14) |
O3—C9—H9B | 109.5 | C15—N1—C17 | 117.44 (14) |
H9A—C9—H9B | 109.5 | C15—N2—C16 | 125.68 (13) |
O3—C9—H9C | 109.5 | C15—N2—C18 | 116.73 (13) |
H9A—C9—H9C | 109.5 | C16—N2—C18 | 117.58 (13) |
H9B—C9—H9C | 109.5 | C3—O1—C7 | 117.14 (13) |
C11—C10—C1 | 125.35 (13) | C4—O2—C8 | 116.71 (13) |
C11—C10—H10 | 117.3 | C5—O3—C9 | 117.32 (12) |
C1—C10—H10 | 117.3 | C12—O4—H4 | 109.5 |
C10—C11—C12 | 122.86 (13) | ||
C6—C1—C2—C3 | 2.1 (2) | C16—C13—C14—N1 | −1.7 (2) |
C10—C1—C2—C3 | −177.07 (13) | C12—C13—C16—O7 | 2.1 (2) |
C1—C2—C3—O1 | −179.95 (13) | C14—C13—C16—O7 | −179.05 (15) |
C1—C2—C3—C4 | 1.0 (2) | C12—C13—C16—N2 | −179.24 (12) |
O1—C3—C4—O2 | −6.8 (2) | C14—C13—C16—N2 | −0.35 (19) |
C2—C3—C4—O2 | 172.34 (13) | O5—C14—N1—C15 | −178.00 (13) |
O1—C3—C4—C5 | 177.24 (13) | C13—C14—N1—C15 | 1.9 (2) |
C2—C3—C4—C5 | −3.6 (2) | O5—C14—N1—C17 | 3.8 (2) |
O2—C4—C5—O3 | 6.2 (2) | C13—C14—N1—C17 | −176.34 (14) |
C3—C4—C5—O3 | −177.92 (13) | O6—C15—N1—C14 | 179.01 (14) |
O2—C4—C5—C6 | −172.77 (13) | N2—C15—N1—C14 | 0.1 (2) |
C3—C4—C5—C6 | 3.1 (2) | O6—C15—N1—C17 | −2.7 (2) |
O3—C5—C6—C1 | −178.84 (14) | N2—C15—N1—C17 | 178.30 (14) |
C4—C5—C6—C1 | 0.0 (2) | O6—C15—N2—C16 | 178.65 (14) |
C2—C1—C6—C5 | −2.7 (2) | N1—C15—N2—C16 | −2.4 (2) |
C10—C1—C6—C5 | 176.53 (13) | O6—C15—N2—C18 | 0.1 (2) |
C2—C1—C10—C11 | 176.58 (14) | N1—C15—N2—C18 | 179.10 (14) |
C6—C1—C10—C11 | −2.6 (2) | O7—C16—N2—C15 | −178.70 (14) |
C1—C10—C11—C12 | −179.27 (13) | C13—C16—N2—C15 | 2.5 (2) |
C10—C11—C12—O4 | 4.4 (2) | O7—C16—N2—C18 | −0.2 (2) |
C10—C11—C12—C13 | −176.76 (14) | C13—C16—N2—C18 | −179.01 (14) |
O4—C12—C13—C14 | 2.3 (2) | C2—C3—O1—C7 | 10.7 (2) |
C11—C12—C13—C14 | −176.48 (13) | C4—C3—O1—C7 | −170.18 (17) |
O4—C12—C13—C16 | −178.81 (13) | C3—C4—O2—C8 | 106.41 (19) |
C11—C12—C13—C16 | 2.4 (2) | C5—C4—O2—C8 | −77.7 (2) |
C12—C13—C14—O5 | −2.9 (2) | C6—C5—O3—C9 | −4.9 (2) |
C16—C13—C14—O5 | 178.20 (13) | C4—C5—O3—C9 | 176.16 (15) |
C12—C13—C14—N1 | 177.25 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O5 | 0.82 | 1.74 | 2.4841 (15) | 150 |
C11—H11···O7 | 0.93 | 2.16 | 2.8044 (18) | 125 |
C8—H8B···O6i | 0.96 | 2.60 | 3.341 (3) | 135 |
C9—H9C···O7ii | 0.96 | 2.42 | 3.3694 (19) | 170 |
Symmetry codes: (i) x, y, z+1; (ii) −x−1, −y+1, −z+2. |
Acknowledgements
ELR, FZ and MNC are grateful to the Vicerrectoría de Investigaciones and the Center of Excellence for Novel Materials (CENM) of the Universidad del Valle for the economic support to conduct this research. MSM and RD acknowledge FAPESP (2009/54011-8) for providing equipment, and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior and Conselho Nacional de Desenvolvimento Cientifico e Tecnológico for the CNPq and CAPES/PNPD scholarships from the Brazilian Ministry of Education.
References
Bojarski, J. T., Mokrosz, J. L., Bartoń, H. J. & Paluchowska, M. H. (1985). Advances in Heterocyclic Chemistry, Vol. 38, edited by A. Katritzky. New York: Academic Press. Google Scholar
Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2015). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144. Web of Science CSD CrossRef PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gorovoy, A. S., Guyader, D. & Lejon, T. (2014). Synth. Commun. 44, 1296–1300. CrossRef CAS Google Scholar
Goswami, P. & Das, B. (2009). Tetrahedron Lett. 50, 897–900. CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Klikar, M., Bureš, F., Pytela, O., Mikysek, T., Padělková, Z., Barsella, A., Dorkenoo, K. & Achelle, S. (2013). New J. Chem. 37, 4230–4240. CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V. & Pombeiro, A. J. L. (2014). Coord. Chem. Rev. 265, 1–37. Web of Science CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. Web of Science CrossRef CAS IUCr Journals Google Scholar
Patrick, G. L. (2009). In An Introduction to Medicinal Chemistry, p. 752. Oxford University Press. Google Scholar
Seifert, S., Seifert, A., Brunklaus, G., Hofmann, K., Rüffer, T., Lang, H. & Spange, S. (2012). New J. Chem. 36, 674–684. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.