research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-(4-meth­­oxy­phen­yl)-6-oxa-3-aza­bi­cyclo[3.1.0]hexane-3-carboxyl­ate: crystal structure and Hirshfeld analysis

CROSSMARK_Color_square_no_text.svg

aDepartmento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, São Paulo, Brazil, bInstituto de Química, Universidade Estadual de Campinas, UNICAMP, CP 6154, 13084-971, Campinas, São Paulo, Brazil, cDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India, and dCentre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: julio@power.ufscar.br

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 30 June 2017; accepted 5 July 2017; online 21 July 2017)

The title compound, C14H17NO4, features an epoxide-O atom fused to a pyrrolidyl ring, the latter having an envelope conformation with the N atom being the flap. The 4-meth­oxy­phenyl group is orthogonal to [dihedral angle = 85.02 (6)°] and lies to the opposite side of the five-membered ring to the epoxide O atom, while the N-bound ethyl ester group (r.m.s. deviation of the five fitted atoms = 0.0187 Å) is twisted with respect to the ring [dihedral angle = 17.23 (9)°]. The most prominent inter­actions in the crystal are of the type methine-C—H⋯O(carbon­yl) and these lead to the formation of linear supra­molecular chains along the c axis; weak benzene-C—H⋯O(epoxide) and methine-C—H⋯O(meth­oxy) inter­actions connect these into a three-dimensional architecture. The analysis of the Hirshfeld surface confirms the presence of C—H⋯O inter­actions in the crystal, but also the dominance of H⋯H dispersion contacts.

1. Chemical context

α-Glucosidase inhibitors have shown potential for the treatment of several health conditions such as cystic fibrosis, diabetes, influenza and cancer. In this context, a thorough patent review on α-glucosidase inhibitors was published recently (Brás et al., 2014[Brás, N. F., Cerqueira, N. M. F. S. A., Ramos, M. J. & Fernandes, P. A. (2014). Expert Opin. Ther. Pat. 24, 857-874.]). Among α-glucosidase inhibitors are a series of natural products including amino­ciclitols (I)[link] and (II); see Scheme 1. The tri-hydroxyl-substituted compound (I)[link] is found in several plants, e.g. Morus alba (Asano et al., 1994[Asano, N., Oseki, K., Tomioka, E., Kizu, H. & Matsui, K. (1994). Carbohydr. Res. 259, 243-255.]), Arachniodes standishii (Furukawa et al., 1985[Furukawa, J., Okuda, S., Saito, K. & Hatanaka, S.-I. (1985). Phytochemistry, 24, 593-594.]), Angylocalyx boutiqueanus (Nash et al., 1985a[Nash, R. J., Bell, E. A. & Williams, J. M. (1985a). Phytochemistry, 24, 1620-1622.]), Hyacinthoides non-scripta (Watson et al., 1997[Watson, A. A., Nash, R. J., Wormald, M. R., Harvey, D. J., Dealler, S., Lees, E., Asano, N., Kizu, H., Kato, A., Griffiths, R. C., Cairns, A. J. & Fleet, G. W. J. (1997). Phytochemistry, 46, 255-259.]) among others, whereas the di-hydroxyl substituted compound (II) is found in the seeds of Castanospermum austral (Nash et al., 1985b[Nash, R. J., Bell, E. A., Fleet, G. W. J., Jones, R. H. & Williams, J. M. (1985b). J. Chem. Soc. Chem. Commun. pp. 738-740.]).

In a search for an effective synthetic path, e.g. good yield, to obtain both (I)[link] and (II), it was found that they could be prepared starting from a common epoxide inter­mediate (III), which in turn could be prepared (Garcia, 2008[Garcia, A. L. L. (2008). PhD thesis, Universidade Estadual de Campinas, UNICAMP, Campinas, SP, Brazil.]) from (IV) when subjected to a Prilezhaev epoxidation (Prilezhaev, 1909[Prilezhaev, N. (1909). Berichte, 42, 4811-4815.]; Swern, 1949[Swern, D. (1949). Chem. Rev. 45, 1-68.]). Herein, the crystal and mol­ecular structures of (III) are described, motivated by the desire to unambiguously establish the relative configuration of the stereogenic centres. A further evaluation of the supra­molecular association has been undertaken by analysing the Hirshfeld surface of (III).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (III), Fig. 1[link], comprises a pyrrolidyl ring fused to an epoxide O1 atom giving rise to a locally (mirror) symmetric fused-ring system. The nitro­gen atom is connected to an ethyl ester group, with the carbonyl-O2 atom orientated towards the ring-methyl­ene group. The pyrrolidyl ring is substituted in a 2-position by the 4-meth­oxy­phenyl group. The conformation of the pyrrolidyl ring is an envelope with atom N1 being the flap atom and occupying a position syn to the epoxide-O1 atom. The dihedral angle between the fused three- and five-membered rings is 78.53 (10)°, indicating an almost orthogonal relationship. To a first approximation, the ethyl carboxyl­ate group (r.m.s. deviation of the five non-hydrogen atoms = 0.0187 Å) is planar and forms a dihedral angle of 17.23 (9)° with the five-membered ring. The 4-meth­oxy­phenyl substituent is also approximately planar with an r.m.s. deviation of 0.0274 Å for the eight fitted non-hydrogen atoms; the small twist of the meth­oxy group out of the plane of the benzene ring to which is connected, i.e. the C14—O4—C11—C12 torsion angle is 175.67 (18)°, is primarily responsible for the deviations from exact planarity. The orthogonal relationship between this plane and that through the pyrrolidyl ring is seen in the dihedral angle formed between them of 85.02 (6)°. Globally, the mol­ecule has an extended planar region, comprising the pyrrolidyl ring and the ethyl ester residue with the epoxide O atom lying to one side of this plane and the 4-meth­oxy­phenyl substituent to the other.

[Figure 1]
Figure 1
The mol­ecular structure of (III), showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.

The chirality of each of the methine-C1–C3 atoms in the mol­ecule illustrated in Fig. 1[link], is S, S and R, respectively, with the centrosymmetric unit cell containing equal amounts of both enanti­omers.

3. Supra­molecular features

The most prominent feature in the packing of (III) is the formation of a linear supra­molecular chain sustained by methine-C—H⋯O(carbon­yl) inter­actions, as illustrated in Fig. 2[link]a. The chains are aligned along the c axis and inter­actions between them are weak benzene-C—H⋯O(epoxide) and methine-C—H⋯O(meth­oxy) contacts to sustain a three-dimensional architecture, Fig. 2[link]b. Further insight into the mol­ecular packing is provided by an analysis of the Hirshfeld surface below.

[Figure 2]
Figure 2
The mol­ecular packing in (III): (a) a view of the supra­molecular chain sustained by methine-C—H⋯O(carbon­yl) inter­actions shown as orange dashed lines and (b) a view of the unit-cell contents in projection down the c axis, whereby the chains illustrated in (a) are linked by weak benzene-C—H⋯O(epoxide) and methine-C—H⋯O(meth­oxy) contacts, shown as blue dashed lines.

4. Hirshfeld surface analysis

The Hirshfeld surfaces calculated on the structure of (III) was conducted in accord with a recent publication (Zukerman-Schpector et al., 2017[Zukerman-Schpector, J., Prado, K. E., Name, L. L., Cella, R., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 918-924.]) and provides more insight into the inter­molecular inter­actions present in the crystal.

The donor and acceptor of the C—H⋯O hydrogen bond instrumental for the formation of the supra­molecular chain, i.e. between the methine-C—H2 and carboxyl­ate-O2 atoms, are viewed as the bright-red spots near these atoms on the Hirshfeld surface mapped over dnorm in Fig. 3[link]a and b. The bright-red spot, near meth­oxy-O4, and lighter spot, near methine-C3, and the diminutive red spot near meth­oxy-O4 and brighter spot near methyl­ene-C4 in Fig. 3[link], are indicative of another C—H⋯O inter­action (Table 1[link]) and the short inter-atomic C⋯O/O⋯C contact (Table 2[link]), respectively. On the Hirshfeld surface mapped over electrostatic potential in Fig. 4[link], the donors and acceptors of inter­molecular inter­actions are represented by blue and red regions, respectively, corresponding to positive and negative electrostatic potentials near the respective atoms. The immediate environment about a reference mol­ecule within Hirshfeld surfaces mapped over the electrostatic potential highlighting inter­molecular C—H⋯O inter­actions and short inter-atomic O⋯H/H⋯O contacts (Table 2[link]) is illustrated in Fig. 5[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.98 2.40 3.3559 (19) 165
C13—H13⋯O1ii 0.93 2.68 3.456 (2) 155
C3—H3⋯O4iii 0.98 2.68 3.311 (2) 107
Symmetry codes: (i) x, y, z-1; (ii) -x, -y+1, -z; (iii) x-1, y, z.

Table 2
Summary of short inter-atomic contacts (Å) in (III)

Contact Distance Symmetry operation
C4⋯O4 3.167 (2) −1 + x, y, z
O2⋯H9 2.63 x, [{1\over 2}] − y, − [{1\over 2}] + z
C13⋯H6A 2.87 x, y, − 1 + z
[Figure 3]
Figure 3
Two views of the Hirshfeld surface for (III) plotted over dnorm in the range −0.110 to 1.412 au.
[Figure 4]
Figure 4
Two views of the Hirshfeld surface for (III) mapped over the calculated electrostatic potential in the range −0.083 to + 0.042 au. The red and blue regions represent negative and positive electrostatic potentials, respectively.
[Figure 5]
Figure 5
View of the Hirshfeld surface for (III) mapped over the electrostatic potential about a reference mol­ecule showing C—H⋯O, C⋯O/O⋯C and short inter-atomic O⋯H/H⋯O contacts with black, sky-blue and white dashed lines, respectively.

The overall two dimensional fingerprint plot, Fig. 6[link]a, and those delineated into H⋯H, O⋯H/H⋯O and C⋯H/H⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.]) are illustrated in Fig. 6[link]bd, respectively; the relative contributions from various contacts to the Hirshfeld surface are summarized in Table 3[link]. The major contribution of 55.2% to the Hirshfeld surface is from inter-atomic H⋯H contacts, Fig. 6[link]b, and is indicative of dispersive forces operating in the crystal. In the fingerprint plot delineated into O⋯H/H⋯O contacts, Fig. 6[link]c, the 29.7% contribution results from the inter­molecular C—H⋯O inter­actions and short inter-atomic O⋯H/H⋯O contacts, Tables 1[link] and 2[link]. In the plot, Fig. 6[link]c, a pair of spikes with their tips at de + di ∼2.4 Å (with label `1') indicate the most significant C—H⋯O inter­action whereas the pair of two adjoining parabola with their peaks at around de + di ∼2.7 Å (label `2') represent short inter-atomic O⋯H/H⋯O contacts. The presence of the short inter-atomic C⋯H/H⋯C contact, Table 2[link], hitherto not mentioned, in Fig. 6[link]d, leads to nearly symmetrical, characteristic wings with the pair of tips at de + di ∼2.9 Å as highlighted with label `3'. The low contributions from other contacts, Table 3[link], have a negligible effect on the packing as their inter-atomic distances are greater than sum of their respective van der Waals radii.

Table 3
Percentage contributions of inter-atomic contacts to the Hirshfeld surfaces for (III)

Contact Percentage contribution
H⋯H 55.2
O⋯H/H⋯O 29.7
C⋯H/H⋯C 13.0
C⋯C 1.1
N⋯H/H⋯N 0.5
C⋯O/O⋯C 0.4
O⋯O 0.1
[Figure 6]
Figure 6
(a) The full two-dimensional fingerprint plot for (III) and fingerprint plots delineated into (b) H⋯H, (c) O⋯H/H⋯O and (d) C⋯H/H⋯C contacts.

5. Database survey

There are three structures in the crystallographic literature (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) having the basic framework shown at the top of Scheme 2, i.e. with non-specific bonds between the atoms. Each of the three structures retrieved from the search, i.e. (V), (VI) (Csatayová et al., 2015[Csatayová, K., Davies, S. G., Figuccia, A. L. A., Fletcher, A. M., Ford, J. G., Lee, J. A., Roberts, P. M., Saward, B. G., Song, H. & Thomson, J. E. (2015). Tetrahedron, 71, 9131-9142.]) and (VII) (Rives et al., 2010[Rives, A., Ladeira, S., Levade, T., Andrieu-Abadie, N. & Génisson, Y. (2010). J. Org. Chem. 75, 7920-7923.]) in Scheme 2, has the same bonds in the framework. The common feature of (V)–(VII) is an envelope conformation for the pyrrolidyl ring with the flap atom being the N atom which is syn to the epoxide O1 atom, i.e. as for (III). Major conformational differences are evident, however. With reference to the pyrrolidyl ring, in (V) and (VI), in common with (III), the ring-bound substituents occupy positions opposite to that of the epoxide O atom but, in (VII), this substituent lies to the same side of the pyrrolidyl ring.

[Scheme 2]

6. Synthesis and crystallization

The synthesis of (III) is as described in (Garcia, 2008[Garcia, A. L. L. (2008). PhD thesis, Universidade Estadual de Campinas, UNICAMP, Campinas, SP, Brazil.]). Crystals for the structure analysis were obtained by the slow evaporation of its CHCl3 solution. M. p. 378–379 K.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Uequiv(C).

Table 4
Experimental details

Crystal data
Chemical formula C14H17NO4
Mr 263.28
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 9.6467 (9), 18.408 (1), 7.8076 (6)
β (°) 102.071 (8)
V3) 1355.79 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.30 × 0.27 × 0.11
 
Data collection
Diffractometer Enraf–Nonius TurboCAD-4
Absorption correction ψ scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])
Tmin, Tmax 0.933, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 4187, 3927, 2107
Rint 0.028
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.147, 1.00
No. of reflections 3927
No. of parameters 174
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.23
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]), XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]), SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), MarvinSketch (ChemAxon, 2010[ChemAxon (2010). Marvinsketch. https://www.chemaxon.com.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

Ethyl 2-(4-methoxyphenyl)-6-oxa-3-azabicyclo[3.1.0]hexane-3-carboxylate top
Crystal data top
C14H17NO4F(000) = 560
Mr = 263.28Dx = 1.290 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.6467 (9) ÅCell parameters from 25 reflections
b = 18.408 (1) Åθ = 11.0–13.6°
c = 7.8076 (6) ŵ = 0.10 mm1
β = 102.071 (8)°T = 293 K
V = 1355.79 (18) Å3Irregular, colourless
Z = 40.30 × 0.27 × 0.11 mm
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.028
non–profiled ω/2τ scansθmax = 30.0°, θmin = 2.2°
Absorption correction: ψ scan
(Blessing, 1995)
h = 1313
Tmin = 0.933, Tmax = 0.990k = 250
4187 measured reflectionsl = 100
3927 independent reflections3 standard reflections every 60 min
2107 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0677P)2 + 0.1423P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3927 reflectionsΔρmax = 0.17 e Å3
174 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.19247 (14)0.42020 (8)0.03045 (18)0.0678 (4)
O20.03454 (14)0.36201 (7)0.53678 (14)0.0565 (3)
O30.13930 (13)0.42869 (6)0.45731 (15)0.0544 (3)
O40.56099 (13)0.25574 (8)0.0389 (2)0.0734 (4)
N10.01106 (14)0.36816 (7)0.25447 (16)0.0467 (3)
C10.05665 (17)0.39804 (9)0.1171 (2)0.0456 (4)
H10.07600.44990.13780.055*
C20.05889 (19)0.38771 (10)0.0450 (2)0.0518 (4)
H20.03410.38340.16010.062*
C30.17188 (18)0.34308 (11)0.0031 (2)0.0548 (4)
H30.22280.30850.08930.066*
C40.13558 (18)0.32331 (10)0.1864 (2)0.0513 (4)
H4A0.21290.33490.24380.062*
H4B0.11340.27200.20190.062*
C50.02590 (17)0.38465 (9)0.4251 (2)0.0438 (4)
C60.1888 (2)0.45044 (11)0.6374 (2)0.0621 (5)
H6A0.21150.40810.71190.075*
H6B0.11630.47830.67760.075*
C70.3173 (3)0.49553 (15)0.6432 (4)0.0945 (8)
H7A0.38930.46680.60740.142*
H7B0.35170.51280.76050.142*
H7C0.29410.53620.56560.142*
C80.19086 (17)0.35884 (9)0.10017 (19)0.0439 (4)
C90.19617 (19)0.28404 (10)0.0936 (3)0.0601 (5)
H90.11620.25740.10310.072*
C100.31680 (19)0.24737 (11)0.0733 (3)0.0605 (5)
H100.31770.19690.06970.073*
C110.43576 (17)0.28635 (10)0.0583 (2)0.0528 (4)
C120.43222 (19)0.36132 (10)0.0623 (3)0.0594 (5)
H120.51170.38780.04980.071*
C130.31168 (18)0.39740 (10)0.0846 (2)0.0529 (4)
H130.31130.44790.08930.063*
C140.5733 (2)0.17891 (12)0.0463 (3)0.0757 (6)
H14A0.55360.16180.15480.114*
H14B0.66780.16510.03880.114*
H14C0.50690.15790.04970.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0615 (8)0.0775 (10)0.0667 (8)0.0171 (7)0.0183 (6)0.0127 (7)
O20.0670 (8)0.0661 (8)0.0413 (6)0.0002 (6)0.0225 (5)0.0039 (6)
O30.0607 (7)0.0603 (7)0.0425 (6)0.0093 (6)0.0113 (5)0.0074 (5)
O40.0470 (7)0.0723 (9)0.1044 (11)0.0043 (7)0.0235 (7)0.0145 (8)
N10.0513 (8)0.0550 (8)0.0367 (6)0.0106 (6)0.0160 (5)0.0021 (6)
C10.0540 (9)0.0467 (9)0.0398 (8)0.0054 (7)0.0184 (7)0.0018 (7)
C20.0551 (10)0.0630 (11)0.0397 (8)0.0063 (8)0.0150 (7)0.0046 (7)
C30.0493 (9)0.0694 (12)0.0464 (9)0.0004 (8)0.0111 (7)0.0061 (8)
C40.0492 (9)0.0586 (10)0.0490 (9)0.0081 (8)0.0170 (7)0.0026 (8)
C50.0491 (9)0.0430 (8)0.0409 (8)0.0047 (7)0.0130 (7)0.0008 (6)
C60.0721 (12)0.0627 (12)0.0483 (10)0.0001 (10)0.0052 (9)0.0143 (9)
C70.0973 (19)0.0905 (18)0.0904 (17)0.0297 (14)0.0075 (14)0.0280 (14)
C80.0470 (8)0.0495 (9)0.0368 (7)0.0076 (7)0.0122 (6)0.0006 (7)
C90.0517 (10)0.0525 (11)0.0820 (13)0.0152 (8)0.0277 (9)0.0069 (9)
C100.0560 (10)0.0479 (10)0.0829 (14)0.0100 (8)0.0263 (9)0.0104 (9)
C110.0453 (9)0.0609 (11)0.0523 (9)0.0071 (8)0.0103 (7)0.0104 (8)
C120.0443 (9)0.0613 (11)0.0734 (12)0.0166 (8)0.0139 (8)0.0026 (9)
C130.0513 (10)0.0486 (10)0.0587 (10)0.0105 (8)0.0111 (8)0.0003 (8)
C140.0633 (12)0.0743 (14)0.0884 (15)0.0086 (11)0.0131 (11)0.0168 (12)
Geometric parameters (Å, º) top
O1—C31.443 (2)C6—C71.485 (3)
O1—C21.447 (2)C6—H6A0.9700
O2—C51.2189 (18)C6—H6B0.9700
O3—C51.342 (2)C7—H7A0.9600
O3—C61.444 (2)C7—H7B0.9600
O4—C111.370 (2)C7—H7C0.9600
O4—C141.419 (3)C8—C91.379 (2)
N1—C51.340 (2)C8—C131.391 (2)
N1—C41.463 (2)C9—C101.383 (2)
N1—C11.4739 (19)C9—H90.9300
C1—C81.512 (2)C10—C111.379 (2)
C1—C21.514 (2)C10—H100.9300
C1—H10.9800C11—C121.381 (3)
C2—C31.456 (2)C12—C131.381 (3)
C2—H20.9800C12—H120.9300
C3—C41.493 (2)C13—H130.9300
C3—H30.9800C14—H14A0.9600
C4—H4A0.9700C14—H14B0.9600
C4—H4B0.9700C14—H14C0.9600
C3—O1—C260.50 (11)C7—C6—H6A110.4
C5—O3—C6116.11 (13)O3—C6—H6B110.4
C11—O4—C14118.28 (15)C7—C6—H6B110.4
C5—N1—C4121.09 (13)H6A—C6—H6B108.6
C5—N1—C1124.94 (14)C6—C7—H7A109.5
C4—N1—C1113.68 (12)C6—C7—H7B109.5
N1—C1—C8113.79 (13)H7A—C7—H7B109.5
N1—C1—C2101.59 (13)C6—C7—H7C109.5
C8—C1—C2111.17 (13)H7A—C7—H7C109.5
N1—C1—H1110.0H7B—C7—H7C109.5
C8—C1—H1110.0C9—C8—C13117.89 (16)
C2—C1—H1110.0C9—C8—C1121.25 (14)
O1—C2—C359.63 (11)C13—C8—C1120.82 (15)
O1—C2—C1113.23 (14)C8—C9—C10122.02 (16)
C3—C2—C1109.74 (14)C8—C9—H9119.0
O1—C2—H2119.9C10—C9—H9119.0
C3—C2—H2119.9C11—C10—C9119.40 (18)
C1—C2—H2119.9C11—C10—H10120.3
O1—C3—C259.87 (11)C9—C10—H10120.3
O1—C3—C4112.52 (15)O4—C11—C10124.34 (17)
C2—C3—C4109.22 (14)O4—C11—C12116.11 (15)
O1—C3—H3120.2C10—C11—C12119.55 (17)
C2—C3—H3120.2C11—C12—C13120.58 (16)
C4—C3—H3120.2C11—C12—H12119.7
N1—C4—C3103.12 (13)C13—C12—H12119.7
N1—C4—H4A111.1C12—C13—C8120.55 (17)
C3—C4—H4A111.1C12—C13—H13119.7
N1—C4—H4B111.1C8—C13—H13119.7
C3—C4—H4B111.1O4—C14—H14A109.5
H4A—C4—H4B109.1O4—C14—H14B109.5
O2—C5—N1124.47 (16)H14A—C14—H14B109.5
O2—C5—O3124.44 (15)O4—C14—H14C109.5
N1—C5—O3111.09 (13)H14A—C14—H14C109.5
O3—C6—C7106.77 (17)H14B—C14—H14C109.5
O3—C6—H6A110.4
C5—N1—C1—C883.1 (2)C1—N1—C5—O34.0 (2)
C4—N1—C1—C8103.11 (16)C6—O3—C5—O21.0 (2)
C5—N1—C1—C2157.38 (15)C6—O3—C5—N1179.79 (14)
C4—N1—C1—C216.45 (18)C5—O3—C6—C7177.42 (17)
C3—O1—C2—C1100.05 (16)N1—C1—C8—C947.4 (2)
N1—C1—C2—O154.73 (17)C2—C1—C8—C966.5 (2)
C8—C1—C2—O1176.13 (13)N1—C1—C8—C13134.82 (15)
N1—C1—C2—C39.78 (18)C2—C1—C8—C13111.22 (17)
C8—C1—C2—C3111.62 (15)C13—C8—C9—C100.4 (3)
C2—O1—C3—C499.87 (16)C1—C8—C9—C10178.17 (16)
C1—C2—C3—O1105.99 (15)C8—C9—C10—C110.3 (3)
O1—C2—C3—C4105.47 (16)C14—O4—C11—C104.4 (3)
C1—C2—C3—C40.5 (2)C14—O4—C11—C12175.67 (18)
C5—N1—C4—C3157.71 (15)C9—C10—C11—O4179.54 (18)
C1—N1—C4—C316.38 (18)C9—C10—C11—C120.6 (3)
O1—C3—C4—N155.38 (17)O4—C11—C12—C13178.80 (16)
C2—C3—C4—N19.10 (19)C10—C11—C12—C131.3 (3)
C4—N1—C5—O23.4 (3)C11—C12—C13—C81.2 (3)
C1—N1—C5—O2176.78 (15)C9—C8—C13—C120.4 (3)
C4—N1—C5—O3177.35 (14)C1—C8—C13—C12177.45 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.982.403.3559 (19)165
C13—H13···O1ii0.932.683.456 (2)155
C3—H3···O4iii0.982.683.311 (2)107
Symmetry codes: (i) x, y, z1; (ii) x, y+1, z; (iii) x1, y, z.
Summary of short inter-atomic contacts (Å) in (III) top
ContactDistanceSymmetry operation
C4···O43.167 (2)-1 + x, y, z
O2···H92.63x, 1/2 - y, - 1/2 + z
C13···H6A2.87x, y, - 1 + z
Percentage contributions of inter-atomic contacts to the Hirshfeld surfaces for (III) top
ContactPercentage contribution
H···H55.2
O···H/H···O29.7
C···H/H···C13.0
C···C1.1
N···H/H···N0.5
C···O/O···C0.4
O···O0.1
 

Footnotes

Additional correspondence author, e-mail: edwardt@sunway.edu.my.

Funding information

The support of the Brazilian agency, the National Council for Scientific and Technological Development (CNPq), for a fellowship to JZ-S (305626/2013–2) and a scholarship to FHS (121613/2016–0) is gratefully acknowledged.

References

First citationAsano, N., Oseki, K., Tomioka, E., Kizu, H. & Matsui, K. (1994). Carbohydr. Res. 259, 243–255.  CrossRef CAS PubMed Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrás, N. F., Cerqueira, N. M. F. S. A., Ramos, M. J. & Fernandes, P. A. (2014). Expert Opin. Ther. Pat. 24, 857–874.  PubMed Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChemAxon (2010). Marvinsketch. https://www.chemaxon.com.  Google Scholar
First citationCsatayová, K., Davies, S. G., Figuccia, A. L. A., Fletcher, A. M., Ford, J. G., Lee, J. A., Roberts, P. M., Saward, B. G., Song, H. & Thomson, J. E. (2015). Tetrahedron, 71, 9131–9142.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFurukawa, J., Okuda, S., Saito, K. & Hatanaka, S.-I. (1985). Phytochemistry, 24, 593–594.  CrossRef CAS Google Scholar
First citationGarcia, A. L. L. (2008). PhD thesis, Universidade Estadual de Campinas, UNICAMP, Campinas, SP, Brazil.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.  Google Scholar
First citationNash, R. J., Bell, E. A., Fleet, G. W. J., Jones, R. H. & Williams, J. M. (1985b). J. Chem. Soc. Chem. Commun. pp. 738–740.  CSD CrossRef Google Scholar
First citationNash, R. J., Bell, E. A. & Williams, J. M. (1985a). Phytochemistry, 24, 1620–1622.  CAS Google Scholar
First citationPrilezhaev, N. (1909). Berichte, 42, 4811–4815.  Google Scholar
First citationRives, A., Ladeira, S., Levade, T., Andrieu-Abadie, N. & Génisson, Y. (2010). J. Org. Chem. 75, 7920–7923.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSwern, D. (1949). Chem. Rev. 45, 1–68.  CrossRef CAS Google Scholar
First citationWatson, A. A., Nash, R. J., Wormald, M. R., Harvey, D. J., Dealler, S., Lees, E., Asano, N., Kizu, H., Kato, A., Griffiths, R. C., Cairns, A. J. & Fleet, G. W. J. (1997). Phytochemistry, 46, 255–259.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZukerman-Schpector, J., Prado, K. E., Name, L. L., Cella, R., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 918–924.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds