research communications
A one-dimensional coordination polymer, catena-poly[[[[N-ethyl-N-(pyridin-4-ylmethyl)dithiocarbamato-κ2S,S′]zinc(II)]-μ2-N-ethyl-N-(pyridin-4-ylmethyl)dithiocarbamato-κ3S,S′:N] 4-methylpyridine hemisolvate]
aChemical Abstracts Service, 2540 Olentangy River Rd, Columbus, Ohio 43202, USA, bDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and cCentre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my
The title compound, {[Zn(C9H11N2S2)2]·0.5C6H7N}n, comprises two independent, but chemically similar, Zn[S2CN(Et)CH2py]2 residues and a 4-methylpyridine solvent molecule in the The Zn-containing units are connected into a one-dimensional coordination polymer (zigzag topology) propagating in the [010] direction, with one dithiocarbamate ligand bridging in a μ2-κ3 mode, employing one pyridyl N and both dithiocarbamate S atoms, while the other is κ2-chelating. In each case, the resultant ZnNS4 coordination geometry approximates a square pyramid, with the pyridyl N atom in the apical position. In the crystal, the chains are linked into a three-dimensional architecture by methyl- and pyridyl-C—H⋯S, methylene-C—H⋯N(pyridyl) and pyridyl-C—H⋯π(ZnS2C) interactions. The connection between the chain and the 4-methylpyridine solvent molecule is of the type pyridyl-C—H⋯N(4-methylpyridine).
Keywords: crystal structure; coordination polymer; zinc; dithiocarbamate; methylpyridine.
CCDC reference: 1561011
1. Chemical context
The most recent surveys of the structural chemistry of the binary zinc-triad dithiocarbamates, i.e. molecules of the general formula M(S2CNRR′)2 for M = Zn, Cd and Hg, indicated that up to that point, R and R′ were generally restricted to with only rare examples of R being an aryl group (Tiekink, 2003; Hogarth, 2005). However, since around that time there has been increasing interest in elaborating dithiocarbamate ligands to enhance their functionality for systematic structural studies. This enhancement can be achieved in two ways utilizing their facile procedure of synthesis, i.e. the reaction of CS2 with an amine in the presence of base. Hence, the utilization of diamines can lead to bis(dithiocarbamates), e.g. −S2CN—R—CS2−, R = alkyl/aryl (e.g. Cookson & Beer, 2007; Knight et al., 2009; Oliver et al. 2011). Alternatively, the chosen amine can carry a capable of additional coordination to a metal cation, typically a pyridyl group (e.g. Barba et al., 2012; Singh et al., 2014) or groups capable of forming hydrogen-bonding interactions (e.g. Benson et al., 2007; Howie et al., 2008). It is the former class of ligand with a pyridyl substituent which forms the focus of the present contribution.
Previous structural studies have revealed a diversity of coordination modes in the zinc-triad elements coordinated by dithiocarbamate ligands functionalized with pyridyl substituents. Thus, a two-dimensional architecture is found in centrosymmetric {Zn[S2CN(CH2ferrocenyl)CH2py]2}n, with both pyridyl N atoms being coordinating (Kumar et al., 2016). In the cadmium analogue, isolated as a 1,10-phenanthroline (phen) adduct, i.e. Cd[S2CN(CH2ferrocenyl)CH2py]2(phen), no additional Cd—N(pyridyl) interactions are formed in the crystal as the cadmium cation is coordinatively saturated (Kumar et al., 2016). However, in {Cd{[S2CN(CH2Ph)CH2py]2}n and related species, all potential donor atoms are coordinating, leading to a two-dimensional coordination polymer (Kumar et al., 2014). It is interesting to note that zero-dimensional aggregation can also occur, as in the case of {Cd[S2CN(1H-indol-3-ylmethyl)CH2(CH2py)]2}2, where the tridentate mode of coordination of one dithiocarbamate is retained, but aggregation leads to a dimer only (Kumar et al., 2014). This may be a result of the now well established steric effects in 1,1-dithiolate chemistry (Tiekink, 2003, 2006). Several related structures are also available for mercury. In {Hg[S2CN(CH2Py)2]2]}n, with two pyridyl groups per dithiocarbamate ligand, an unusual one-dimensional coordination polymer with a twisted topology is found in the crystal, as one pyridyl N atom is noncoordinating (Yadav et al., 2014; Jotani et al., 2016). When one CH2py group is replaced by a methyl substitutent, as in {Hg[S2CN(Me)CH2Py]2}n (Singh et al., 2014), a one-dimensional coordination polymer is also found. Again, when one substituent is large, i.e. as in {Hg[S2CN{CH2(1-methyl-1H-pyrrol-2-yl)}CH2Py]2}n (Yadav et al., 2014), no Hg—N(pyridyl) interactions are found. Very recently, the of a binary compound, isolated as the 3-methylpyridine monosolvate, i.e. {Cd[S2CN(Et)CH2py]2·3-methylpyridine}n, was described and found to feature two S,S′,N-tridentate dithiocarbamate ligands, leading to a two-dimensional coordination polymer (Arman et al., 2017), as seen earlier in some of the precedents mentioned above (Kumar et al., 2014); the 3-methylpyridine solvent molecules reside in square-shaped channels. In continuation of these structural studies, herein, the crystallographic characterization of a closely related zinc compound to the last mentioned species, namely {Zn[S2CN(Et)CH2py]2·(4-methylpyridine)0.5}n, is described.
2. Structural commentary
The comprises two independent Zn[S2CN(Et)CH2py]2 residues, shown in Fig. 1, and a 4-methylpyridine solvent molecule. Each of the dithiocarbamate ligands is chelating, forming approximately similar Zn—S bond lengths, see data in Table 1. For the Zn1-containing molecule, the disparity in the Zn—S bond lengths, i.e. Δ(Zn—S) = [Zn—S(long) − Zn—S(short)], for the S1-dithiocarbamate ligand of 0.32 Å is greater than the value of 0.10 Å for the S3-dithiocarbamate ligand. For the Zn2-molecule, these differences diminish to 0.23 and 0.09 Å for the S5- and S7-dithiocarbamate ligands, respectively. The similarity of the structures is emphasized in the overlay diagram of Fig. 2, showing minor variations in the orientations of the pyridyl rings and in the relationship between the two chelate rings. In each of the Zn-containing molecules, one dithiocarbamate ligand coordinates in a μ2-κ3 mode, chelating one ZnII cation and simultaneously bridging another via the pyridyl N atom. It is noted that it is the dithiocarbamate ligand that forms the more equivalent Zn—S bond lengths in each residue that forms the bridging interactions. The resultant coordination geometry for each ZnII cation is based on an NS4 donor set.
of (I)For five-coordinate species, the value computed for τ is a useful indicator of the adopted coordination geometry, with the values of τ ranging from 0 to 1 for ideal square-pyramidal and trigonal–bipyramidal geometries, respectively (Addison et al., 1984). In (I), the values of τ for Zn1 and Zn2 are 0.33 and 0.23, respectively, indicating that Zn2 is closer to a square pyramid than Zn1. In each case, the pyridyl N atom occupies the approximately apical position, as indicated by the range of N—Zn1—S angles of 97.62 (8)–111.76 (9)° and the narrower range of N—Zn2—S angles of 99.72 (9)–110.48 (9)°. In this description, the Zn1 cation lies 0.6827 (6) Å above the best plane through the four S atoms, i.e. S1–S4 (r.m.s. deviation = 0.1721 Å), in the direction of the pyridyl N6 atom. For the Zn2-molecule, the deviation of the Zn2 cation from the S4 plane is 0.6018 (6) Å and the r.m.s. deviation through the S5–S8 atoms is 0.1273 Å.
The result of the presence of equal numbers of chelating and bridging ligands in (I) is the formation of a supramolecular polymer aligned along [010], as illustrated in Fig. 3. The topology of the chain is zigzag. Finally, the 4-methylpyridine solvent molecule is non-coordinating.
The most closely related structure in the literature for comparison is that of the aforementioned recently reported {Cd[S2CN(Et)CH2py]2·3-methylpyridine}n, which was also isolated from an experiment attempting to coordinate isomeric methylpyridines to the heavy element (Arman et al., 2017). The crucial difference between the two structures is that in the cadmium crystal, both dithiocarbamates adopt a μ2-κ3 coordination mode, leading to a cis-N2S4 coordination geometry and a two-dimensional framework with a flat topology. It is highly likely that the disparity in supramolecular aggregation in the zinc and cadmium compounds arises from the greater ability of the larger Cd atom to expand its donor set.
3. Supramolecular features
As mentioned above, the supramolecular chains in the crystal of (I) are aligned along [010]. In the crystal, these chains are connected into a three-dimensional architecture by a number of weak intermolecular interactions, as summarized in Table 2. There are two distinct C—H⋯S interactions, with the donors being methyl- and pyridyl-C—H groups, as well as a methylene-C—H⋯N(pyridyl) interaction. The other connection between chains is of the type pyridyl-C—H⋯π(Zn1,S3,S4,C10), an interaction well known in metal dithiocarbamates (Tiekink & Zukerman-Schpector, 2011) and, indeed, other metal systems (Tiekink, 2017). The main connection identified between the 4-methylpyridine solvent molecule and the chain is of the type pyridyl-C—H⋯N(4-methylpyridine). An illustration of the molecular packing is given in Fig. 4.
|
4. Database survey
The dithiocarabmate anion, −[S2CN(Et)CH2py], found in (I) and in {Cd[S2CN(Et)CH2py]2·3-methylpyridine}n (Arman et al., 2017), has been structurally characterized in its free form, i.e. as its potassium 1,4,7,10,13,16-hexaoxacyclooctadecane (i.e. 18-crown-6) salt (Arman et al., 2013). The pyridyl N atom is noncoordinating in this structure, the K+ ion being connected to S and O atoms only, within an O6S2 donor set. There is also a series of three diorganotin structures with this dithiocarbamate ligand, i.e. of the general formula R2Sn[S2CN(Et)CH2py]2, for R = Me, nBu and Ph (Barba et al., 2012). In only the R = Me compound is there a weak intermolecular Sn⋯N(pyridyl) interaction of 2.98 Å between the two molecules comprising the This result is consistent with surveys of diorganotin bis(dithiocarbamate)s in general (Tiekink, 2008) which suggest that the Sn atom in these compounds does not usually increase its by forming secondary bonding interactions (Tiekink, 2017). Specifically, for dimethyltin compounds, R2Sn(S2CNR′R′′)2, a recent survey indicated that secondary bonding interactions occur in only 10% of their crystal structures (Zaldi et al., 2017)
5. Synthesis and crystallization
The title compound was isolated from the recrystallization of Zn{[S2CN(Et)CH2py]2 (generated from the reaction of Zn(NO3)2·H2O and −[S2CN(Et)CH2py]) from 4-picoline. Suitable single crystals formed upon slow evaporation of the solvent (m.p. 337–339 K).
6. details
Crystal data, data collection and structure . The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the in the riding-model approximation, with Uiso(H) values set at 1.2–1.5Ueq(C).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1561011
https://doi.org/10.1107/S2056989017010179/hb7691sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017010179/hb7691Isup2.hkl
Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell
CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Zn(C9H11N2S2)2]·0.5C6H7N | Z = 4 |
Mr = 534.57 | F(000) = 1108 |
Triclinic, P1 | Dx = 1.491 Mg m−3 |
a = 9.419 (2) Å | Mo Kα radiation, λ = 0.71069 Å |
b = 15.299 (4) Å | Cell parameters from 10781 reflections |
c = 17.149 (4) Å | θ = 2.2–40.7° |
α = 88.871 (9)° | µ = 1.40 mm−1 |
β = 83.914 (8)° | T = 98 K |
γ = 75.766 (6)° | Block, colourless |
V = 2381.8 (10) Å3 | 0.30 × 0.20 × 0.08 mm |
AFC12K/SATURN724 diffractometer | 9827 independent reflections |
Radiation source: fine-focus sealed tube | 8634 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ω scans | θmax = 26.5°, θmin = 2.2° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −11→11 |
Tmin = 0.549, Tmax = 1 | k = −19→18 |
13748 measured reflections | l = −21→21 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.053 | H-atom parameters constrained |
wR(F2) = 0.120 | w = 1/[σ2(Fo2) + (0.0424P)2 + 1.244P] where P = (Fo2 + 2Fc2)/3 |
S = 1.14 | (Δ/σ)max = 0.001 |
9827 reflections | Δρmax = 0.55 e Å−3 |
555 parameters | Δρmin = −0.81 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.54704 (5) | 0.72964 (3) | 0.93393 (2) | 0.01760 (11) | |
Zn2 | 0.43549 (5) | 0.25774 (3) | 0.57576 (2) | 0.01760 (11) | |
S1 | 0.32468 (10) | 0.83898 (6) | 0.96346 (5) | 0.01963 (19) | |
S2 | 0.58234 (10) | 0.88714 (6) | 0.87543 (5) | 0.01821 (18) | |
S3 | 0.78618 (10) | 0.68982 (6) | 0.97969 (5) | 0.01919 (19) | |
S4 | 0.53708 (10) | 0.61206 (6) | 1.03606 (5) | 0.01912 (19) | |
S5 | 0.67047 (10) | 0.28992 (6) | 0.55549 (5) | 0.0212 (2) | |
S6 | 0.40191 (10) | 0.42263 (6) | 0.61908 (5) | 0.01971 (19) | |
S7 | 0.20336 (10) | 0.27671 (6) | 0.52307 (5) | 0.02089 (19) | |
S8 | 0.46521 (10) | 0.12755 (6) | 0.48528 (5) | 0.0217 (2) | |
N1 | 0.3378 (3) | 1.0087 (2) | 0.92953 (16) | 0.0176 (6) | |
N2 | 0.4298 (3) | 1.19659 (19) | 0.68468 (17) | 0.0187 (6) | |
N3 | 0.8009 (3) | 0.56341 (19) | 1.09051 (17) | 0.0173 (6) | |
N4 | 1.0896 (4) | 0.7366 (3) | 1.2448 (2) | 0.0345 (8) | |
N5 | 0.6620 (3) | 0.46253 (19) | 0.58467 (17) | 0.0178 (6) | |
N6 | 0.5447 (3) | 0.66729 (19) | 0.82948 (16) | 0.0162 (6) | |
N7 | 0.2023 (3) | 0.1338 (2) | 0.43693 (17) | 0.0198 (6) | |
N8 | −0.0182 (4) | 0.3770 (2) | 0.24530 (18) | 0.0260 (7) | |
N9 | 0.7781 (4) | 0.1256 (2) | 0.2852 (2) | 0.0318 (8) | |
C1 | 0.4081 (4) | 0.9211 (2) | 0.92226 (19) | 0.0175 (7) | |
C2 | 0.1861 (4) | 1.0407 (3) | 0.9680 (2) | 0.0258 (8) | |
H2A | 0.1900 | 1.0664 | 1.0200 | 0.031* | |
H2B | 0.1414 | 0.9886 | 0.9764 | 0.031* | |
C3 | 0.0895 (4) | 1.1112 (3) | 0.9207 (2) | 0.0242 (8) | |
H3A | −0.0104 | 1.1283 | 0.9479 | 0.036* | |
H3B | 0.0862 | 1.0865 | 0.8688 | 0.036* | |
H3C | 0.1299 | 1.1644 | 0.9148 | 0.036* | |
C4 | 0.4188 (4) | 1.0786 (2) | 0.91370 (19) | 0.0186 (7) | |
H4A | 0.5225 | 1.0528 | 0.9235 | 0.022* | |
H4B | 0.3775 | 1.1282 | 0.9520 | 0.022* | |
C5 | 0.4183 (4) | 1.1186 (2) | 0.8325 (2) | 0.0183 (7) | |
C6 | 0.4609 (4) | 1.1986 (2) | 0.8213 (2) | 0.0187 (7) | |
H6 | 0.4855 | 1.2282 | 0.8643 | 0.022* | |
C7 | 0.4674 (4) | 1.2355 (2) | 0.7466 (2) | 0.0194 (7) | |
H7 | 0.4992 | 1.2897 | 0.7391 | 0.023* | |
C8 | 0.3872 (4) | 1.1200 (2) | 0.6959 (2) | 0.0192 (7) | |
H8 | 0.3598 | 1.0928 | 0.6525 | 0.023* | |
C9 | 0.3813 (4) | 1.0782 (2) | 0.76892 (19) | 0.0185 (7) | |
H9 | 0.3522 | 1.0230 | 0.7747 | 0.022* | |
C10 | 0.7165 (4) | 0.6157 (2) | 1.04110 (19) | 0.0151 (7) | |
C11 | 0.7438 (4) | 0.4998 (2) | 1.1437 (2) | 0.0212 (8) | |
H11A | 0.6378 | 0.5255 | 1.1596 | 0.025* | |
H11B | 0.7957 | 0.4922 | 1.1916 | 0.025* | |
C12 | 0.7640 (4) | 0.4080 (3) | 1.1055 (2) | 0.0248 (8) | |
H12A | 0.7334 | 0.3664 | 1.1441 | 0.037* | |
H12B | 0.8678 | 0.3843 | 1.0861 | 0.037* | |
H12C | 0.7036 | 0.4143 | 1.0615 | 0.037* | |
C13 | 0.9591 (4) | 0.5577 (2) | 1.0897 (2) | 0.0185 (7) | |
H13A | 0.9985 | 0.5688 | 1.0355 | 0.022* | |
H13B | 1.0092 | 0.4955 | 1.1036 | 0.022* | |
C14 | 0.9978 (4) | 0.6223 (2) | 1.1441 (2) | 0.0185 (7) | |
C15 | 1.1310 (4) | 0.6461 (3) | 1.1276 (2) | 0.0277 (9) | |
H15 | 1.1941 | 0.6238 | 1.0816 | 0.033* | |
C16 | 1.1711 (5) | 0.7026 (3) | 1.1786 (3) | 0.0359 (10) | |
H16 | 1.2623 | 0.7183 | 1.1658 | 0.043* | |
C17 | 0.9631 (5) | 0.7129 (3) | 1.2598 (2) | 0.0283 (9) | |
H17 | 0.9029 | 0.7356 | 1.3066 | 0.034* | |
C18 | 0.9122 (4) | 0.6575 (3) | 1.2122 (2) | 0.0249 (8) | |
H18 | 0.8197 | 0.6438 | 1.2261 | 0.030* | |
C19 | 0.5864 (4) | 0.3983 (2) | 0.58684 (19) | 0.0175 (7) | |
C20 | 0.8195 (4) | 0.4443 (3) | 0.5556 (2) | 0.0305 (9) | |
H20A | 0.8293 | 0.4685 | 0.5018 | 0.037* | |
H20B | 0.8611 | 0.3783 | 0.5526 | 0.037* | |
C21 | 0.9081 (4) | 0.4856 (3) | 0.6068 (2) | 0.0281 (9) | |
H21A | 1.0129 | 0.4660 | 0.5879 | 0.042* | |
H21B | 0.8924 | 0.4660 | 0.6611 | 0.042* | |
H21C | 0.8761 | 0.5515 | 0.6044 | 0.042* | |
C22 | 0.5849 (4) | 0.5575 (2) | 0.5968 (2) | 0.0202 (8) | |
H22A | 0.4857 | 0.5667 | 0.5789 | 0.024* | |
H22B | 0.6388 | 0.5945 | 0.5629 | 0.024* | |
C23 | 0.5673 (4) | 0.5923 (2) | 0.68008 (19) | 0.0170 (7) | |
C24 | 0.6113 (4) | 0.5384 (2) | 0.7445 (2) | 0.0181 (7) | |
H24 | 0.6492 | 0.4751 | 0.7381 | 0.022* | |
C25 | 0.5989 (4) | 0.5782 (2) | 0.8170 (2) | 0.0184 (7) | |
H25 | 0.6300 | 0.5411 | 0.8601 | 0.022* | |
C26 | 0.4962 (4) | 0.7180 (2) | 0.7679 (2) | 0.0189 (7) | |
H26 | 0.4533 | 0.7806 | 0.7762 | 0.023* | |
C27 | 0.5060 (4) | 0.6832 (2) | 0.6938 (2) | 0.0205 (8) | |
H27 | 0.4707 | 0.7215 | 0.6521 | 0.025* | |
C28 | 0.2825 (4) | 0.1734 (2) | 0.4770 (2) | 0.0182 (7) | |
C29 | 0.2630 (4) | 0.0457 (2) | 0.3968 (2) | 0.0241 (8) | |
H29A | 0.3719 | 0.0314 | 0.3930 | 0.029* | |
H29B | 0.2337 | 0.0499 | 0.3428 | 0.029* | |
C30 | 0.2093 (5) | −0.0302 (3) | 0.4398 (3) | 0.0323 (10) | |
H30A | 0.2525 | −0.0872 | 0.4115 | 0.048* | |
H30B | 0.1016 | −0.0172 | 0.4423 | 0.048* | |
H30C | 0.2390 | −0.0351 | 0.4930 | 0.048* | |
C31 | 0.0470 (4) | 0.1766 (2) | 0.4283 (2) | 0.0213 (8) | |
H31A | −0.0014 | 0.2049 | 0.4788 | 0.026* | |
H31B | −0.0031 | 0.1296 | 0.4156 | 0.026* | |
C32 | 0.0291 (4) | 0.2475 (2) | 0.36478 (19) | 0.0167 (7) | |
C33 | 0.1391 (4) | 0.2508 (3) | 0.3047 (2) | 0.0229 (8) | |
H33 | 0.2329 | 0.2094 | 0.3032 | 0.027* | |
C34 | 0.1093 (4) | 0.3154 (3) | 0.2470 (2) | 0.0264 (9) | |
H34 | 0.1849 | 0.3159 | 0.2058 | 0.032* | |
C35 | −0.1227 (4) | 0.3728 (3) | 0.3038 (2) | 0.0275 (9) | |
H35 | −0.2148 | 0.4157 | 0.3042 | 0.033* | |
C36 | −0.1056 (4) | 0.3105 (3) | 0.3632 (2) | 0.0231 (8) | |
H36 | −0.1845 | 0.3105 | 0.4027 | 0.028* | |
C37 | 0.8173 (4) | 0.0465 (3) | 0.3202 (2) | 0.0282 (9) | |
H37 | 0.7525 | 0.0328 | 0.3624 | 0.034* | |
C38 | 0.9486 (4) | −0.0178 (3) | 0.2986 (2) | 0.0288 (9) | |
H38 | 0.9703 | −0.0742 | 0.3245 | 0.035* | |
C39 | 1.0473 (4) | 0.0021 (3) | 0.2383 (2) | 0.0269 (8) | |
C40 | 1.0051 (5) | 0.0859 (3) | 0.2018 (2) | 0.0322 (9) | |
H40 | 1.0677 | 0.1027 | 0.1602 | 0.039* | |
C41 | 0.8712 (5) | 0.1440 (3) | 0.2271 (3) | 0.0353 (10) | |
H41 | 0.8444 | 0.2004 | 0.2015 | 0.042* | |
C42 | 1.1917 (5) | −0.0633 (3) | 0.2133 (3) | 0.0387 (11) | |
H42A | 1.2049 | −0.1155 | 0.2482 | 0.058* | |
H42B | 1.2722 | −0.0337 | 0.2161 | 0.058* | |
H42C | 1.1921 | −0.0833 | 0.1593 | 0.058* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0182 (2) | 0.0187 (2) | 0.0157 (2) | −0.00322 (16) | −0.00350 (16) | −0.00183 (16) |
Zn2 | 0.0214 (2) | 0.0196 (2) | 0.0143 (2) | −0.00902 (17) | −0.00376 (16) | 0.00265 (16) |
S1 | 0.0195 (5) | 0.0172 (4) | 0.0221 (5) | −0.0057 (3) | 0.0010 (3) | 0.0019 (3) |
S2 | 0.0184 (4) | 0.0189 (4) | 0.0176 (4) | −0.0056 (3) | −0.0010 (3) | 0.0013 (3) |
S3 | 0.0194 (5) | 0.0199 (4) | 0.0201 (4) | −0.0077 (4) | −0.0040 (3) | 0.0040 (3) |
S4 | 0.0170 (4) | 0.0214 (5) | 0.0211 (4) | −0.0079 (3) | −0.0044 (3) | 0.0017 (3) |
S5 | 0.0227 (5) | 0.0166 (4) | 0.0240 (5) | −0.0072 (4) | 0.0047 (4) | −0.0042 (3) |
S6 | 0.0192 (5) | 0.0188 (4) | 0.0213 (4) | −0.0052 (3) | −0.0014 (3) | −0.0017 (3) |
S7 | 0.0222 (5) | 0.0199 (4) | 0.0208 (5) | −0.0040 (4) | −0.0051 (4) | −0.0024 (3) |
S8 | 0.0195 (5) | 0.0237 (5) | 0.0222 (5) | −0.0039 (4) | −0.0059 (3) | −0.0023 (4) |
N1 | 0.0176 (16) | 0.0186 (15) | 0.0157 (15) | −0.0037 (12) | −0.0003 (11) | 0.0021 (12) |
N2 | 0.0240 (17) | 0.0169 (15) | 0.0171 (15) | −0.0075 (12) | −0.0049 (12) | 0.0042 (12) |
N3 | 0.0167 (15) | 0.0166 (15) | 0.0200 (15) | −0.0055 (12) | −0.0051 (12) | 0.0022 (12) |
N4 | 0.038 (2) | 0.038 (2) | 0.032 (2) | −0.0151 (17) | −0.0091 (16) | −0.0055 (16) |
N5 | 0.0215 (16) | 0.0153 (15) | 0.0185 (15) | −0.0095 (12) | 0.0012 (12) | −0.0023 (12) |
N6 | 0.0150 (15) | 0.0174 (15) | 0.0168 (15) | −0.0042 (12) | −0.0038 (11) | −0.0019 (11) |
N7 | 0.0173 (16) | 0.0196 (16) | 0.0224 (16) | −0.0027 (12) | −0.0062 (12) | −0.0001 (12) |
N8 | 0.0211 (17) | 0.0340 (19) | 0.0215 (17) | −0.0042 (14) | −0.0028 (13) | 0.0042 (14) |
N9 | 0.028 (2) | 0.0290 (19) | 0.039 (2) | −0.0058 (15) | −0.0105 (16) | −0.0053 (16) |
C1 | 0.0194 (18) | 0.0211 (18) | 0.0123 (16) | −0.0049 (14) | −0.0026 (13) | −0.0005 (13) |
C2 | 0.022 (2) | 0.024 (2) | 0.028 (2) | −0.0031 (16) | 0.0052 (16) | 0.0058 (16) |
C3 | 0.020 (2) | 0.027 (2) | 0.026 (2) | −0.0041 (15) | −0.0064 (15) | 0.0005 (16) |
C4 | 0.0234 (19) | 0.0183 (18) | 0.0155 (17) | −0.0070 (14) | −0.0042 (14) | −0.0003 (14) |
C5 | 0.0152 (18) | 0.0196 (18) | 0.0203 (18) | −0.0050 (14) | −0.0009 (13) | 0.0013 (14) |
C6 | 0.0215 (19) | 0.0168 (17) | 0.0190 (18) | −0.0061 (14) | −0.0036 (14) | −0.0003 (14) |
C7 | 0.0222 (19) | 0.0175 (18) | 0.0207 (18) | −0.0092 (14) | −0.0030 (14) | 0.0022 (14) |
C8 | 0.0225 (19) | 0.0207 (18) | 0.0153 (17) | −0.0064 (15) | −0.0033 (14) | −0.0001 (14) |
C9 | 0.025 (2) | 0.0180 (17) | 0.0153 (17) | −0.0103 (15) | −0.0035 (14) | −0.0002 (14) |
C10 | 0.0172 (17) | 0.0121 (16) | 0.0164 (17) | −0.0040 (13) | −0.0016 (13) | −0.0030 (13) |
C11 | 0.0202 (19) | 0.0246 (19) | 0.0213 (19) | −0.0107 (15) | −0.0034 (14) | 0.0083 (15) |
C12 | 0.024 (2) | 0.024 (2) | 0.031 (2) | −0.0141 (16) | −0.0082 (16) | 0.0081 (16) |
C13 | 0.0141 (17) | 0.0193 (18) | 0.0216 (18) | −0.0024 (14) | −0.0031 (14) | −0.0004 (14) |
C14 | 0.0183 (18) | 0.0182 (17) | 0.0200 (18) | −0.0044 (14) | −0.0076 (14) | 0.0041 (14) |
C15 | 0.023 (2) | 0.030 (2) | 0.030 (2) | −0.0088 (17) | 0.0029 (16) | −0.0066 (17) |
C16 | 0.028 (2) | 0.045 (3) | 0.041 (3) | −0.020 (2) | −0.0033 (19) | −0.008 (2) |
C17 | 0.031 (2) | 0.031 (2) | 0.023 (2) | −0.0057 (17) | −0.0042 (16) | −0.0016 (16) |
C18 | 0.023 (2) | 0.024 (2) | 0.028 (2) | −0.0068 (16) | −0.0029 (16) | 0.0010 (16) |
C19 | 0.0235 (19) | 0.0225 (18) | 0.0086 (16) | −0.0096 (15) | −0.0014 (13) | 0.0000 (13) |
C20 | 0.026 (2) | 0.034 (2) | 0.034 (2) | −0.0154 (18) | 0.0086 (17) | −0.0108 (18) |
C21 | 0.028 (2) | 0.029 (2) | 0.030 (2) | −0.0108 (17) | −0.0022 (17) | −0.0037 (17) |
C22 | 0.032 (2) | 0.0171 (18) | 0.0138 (17) | −0.0101 (15) | −0.0033 (14) | 0.0015 (14) |
C23 | 0.0177 (18) | 0.0224 (18) | 0.0141 (17) | −0.0111 (14) | −0.0007 (13) | −0.0010 (14) |
C24 | 0.0208 (19) | 0.0135 (17) | 0.0199 (18) | −0.0041 (14) | −0.0019 (14) | 0.0006 (14) |
C25 | 0.0225 (19) | 0.0192 (18) | 0.0159 (17) | −0.0096 (15) | −0.0020 (14) | 0.0034 (14) |
C26 | 0.0204 (19) | 0.0157 (17) | 0.0208 (18) | −0.0033 (14) | −0.0068 (14) | 0.0010 (14) |
C27 | 0.0215 (19) | 0.0202 (18) | 0.0210 (18) | −0.0057 (15) | −0.0072 (14) | 0.0039 (15) |
C28 | 0.0196 (18) | 0.0202 (18) | 0.0166 (17) | −0.0076 (14) | −0.0043 (14) | 0.0049 (14) |
C29 | 0.025 (2) | 0.0213 (19) | 0.028 (2) | −0.0065 (16) | −0.0086 (16) | −0.0061 (16) |
C30 | 0.033 (2) | 0.020 (2) | 0.047 (3) | −0.0070 (17) | −0.0152 (19) | 0.0016 (18) |
C31 | 0.0170 (18) | 0.0229 (19) | 0.0258 (19) | −0.0067 (15) | −0.0058 (14) | 0.0007 (15) |
C32 | 0.0191 (18) | 0.0188 (17) | 0.0133 (16) | −0.0059 (14) | −0.0041 (13) | −0.0020 (13) |
C33 | 0.0158 (18) | 0.028 (2) | 0.026 (2) | −0.0065 (15) | −0.0048 (14) | 0.0016 (16) |
C34 | 0.020 (2) | 0.038 (2) | 0.023 (2) | −0.0103 (17) | −0.0006 (15) | 0.0019 (17) |
C35 | 0.023 (2) | 0.030 (2) | 0.024 (2) | 0.0010 (16) | 0.0029 (16) | 0.0011 (16) |
C36 | 0.022 (2) | 0.028 (2) | 0.0168 (18) | −0.0025 (16) | −0.0002 (14) | −0.0025 (15) |
C37 | 0.024 (2) | 0.040 (2) | 0.025 (2) | −0.0143 (18) | −0.0054 (16) | −0.0079 (17) |
C38 | 0.025 (2) | 0.033 (2) | 0.034 (2) | −0.0124 (17) | −0.0104 (17) | −0.0052 (18) |
C39 | 0.021 (2) | 0.030 (2) | 0.033 (2) | −0.0088 (16) | −0.0095 (16) | −0.0062 (17) |
C40 | 0.033 (2) | 0.036 (2) | 0.028 (2) | −0.0092 (19) | −0.0010 (17) | −0.0058 (18) |
C41 | 0.040 (3) | 0.032 (2) | 0.036 (2) | −0.009 (2) | −0.014 (2) | 0.0038 (19) |
C42 | 0.028 (2) | 0.034 (2) | 0.054 (3) | −0.0081 (19) | −0.001 (2) | −0.013 (2) |
Zn1—N6 | 2.050 (3) | C12—H12A | 0.9800 |
Zn1—S1 | 2.3510 (11) | C12—H12B | 0.9800 |
Zn1—S2 | 2.6741 (11) | C12—H12C | 0.9800 |
Zn1—S3 | 2.3962 (11) | C13—C14 | 1.505 (5) |
Zn1—S4 | 2.4972 (11) | C13—H13A | 0.9900 |
Zn2—N2i | 2.074 (3) | C13—H13B | 0.9900 |
Zn2—S5 | 2.3723 (11) | C14—C18 | 1.384 (5) |
Zn2—S6 | 2.5783 (12) | C14—C15 | 1.391 (5) |
Zn2—S7 | 2.4036 (11) | C15—C16 | 1.384 (6) |
Zn2—S8 | 2.4917 (12) | C15—H15 | 0.9500 |
S1—C1 | 1.740 (4) | C16—H16 | 0.9500 |
S2—C1 | 1.710 (4) | C17—C18 | 1.389 (5) |
S3—C10 | 1.732 (3) | C17—H17 | 0.9500 |
S4—C10 | 1.715 (3) | C18—H18 | 0.9500 |
S5—C19 | 1.721 (4) | C20—C21 | 1.518 (5) |
S6—C19 | 1.718 (4) | C20—H20A | 0.9900 |
S7—C28 | 1.738 (4) | C20—H20B | 0.9900 |
S8—C28 | 1.711 (4) | C21—H21A | 0.9800 |
N1—C1 | 1.342 (4) | C21—H21B | 0.9800 |
N1—C4 | 1.465 (4) | C21—H21C | 0.9800 |
N1—C2 | 1.478 (5) | C22—C23 | 1.513 (5) |
N2—C8 | 1.333 (4) | C22—H22A | 0.9900 |
N2—C7 | 1.348 (5) | C22—H22B | 0.9900 |
N2—Zn2ii | 2.074 (3) | C23—C27 | 1.383 (5) |
N3—C10 | 1.339 (4) | C23—C24 | 1.402 (5) |
N3—C13 | 1.469 (4) | C24—C25 | 1.377 (5) |
N3—C11 | 1.479 (4) | C24—H24 | 0.9500 |
N4—C17 | 1.328 (5) | C25—H25 | 0.9500 |
N4—C16 | 1.339 (6) | C26—C27 | 1.372 (5) |
N5—C19 | 1.345 (4) | C26—H26 | 0.9500 |
N5—C22 | 1.463 (4) | C27—H27 | 0.9500 |
N5—C20 | 1.475 (5) | C29—C30 | 1.525 (5) |
N6—C26 | 1.350 (4) | C29—H29A | 0.9900 |
N6—C25 | 1.345 (4) | C29—H29B | 0.9900 |
N7—C28 | 1.327 (4) | C30—H30A | 0.9800 |
N7—C31 | 1.469 (4) | C30—H30B | 0.9800 |
N7—C29 | 1.481 (5) | C30—H30C | 0.9800 |
N8—C34 | 1.335 (5) | C31—C32 | 1.515 (5) |
N8—C35 | 1.341 (5) | C31—H31A | 0.9900 |
N9—C37 | 1.327 (5) | C31—H31B | 0.9900 |
N9—C41 | 1.329 (6) | C32—C33 | 1.391 (5) |
C2—C3 | 1.513 (5) | C32—C36 | 1.394 (5) |
C2—H2A | 0.9900 | C33—C34 | 1.384 (5) |
C2—H2B | 0.9900 | C33—H33 | 0.9500 |
C3—H3A | 0.9800 | C34—H34 | 0.9500 |
C3—H3B | 0.9800 | C35—C36 | 1.376 (5) |
C3—H3C | 0.9800 | C35—H35 | 0.9500 |
C4—C5 | 1.510 (5) | C36—H36 | 0.9500 |
C4—H4A | 0.9900 | C37—C38 | 1.398 (6) |
C4—H4B | 0.9900 | C37—H37 | 0.9500 |
C5—C9 | 1.381 (5) | C38—C39 | 1.396 (6) |
C5—C6 | 1.383 (5) | C38—H38 | 0.9500 |
C6—C7 | 1.391 (5) | C39—C40 | 1.401 (6) |
C6—H6 | 0.9500 | C39—C42 | 1.503 (6) |
C7—H7 | 0.9500 | C40—C41 | 1.384 (6) |
C8—C9 | 1.397 (5) | C40—H40 | 0.9500 |
C8—H8 | 0.9500 | C41—H41 | 0.9500 |
C9—H9 | 0.9500 | C42—H42A | 0.9800 |
C11—C12 | 1.521 (5) | C42—H42B | 0.9800 |
C11—H11A | 0.9900 | C42—H42C | 0.9800 |
C11—H11B | 0.9900 | ||
N6—Zn1—S1 | 109.98 (8) | C18—C14—C13 | 124.4 (3) |
N6—Zn1—S3 | 111.76 (9) | C15—C14—C13 | 118.7 (3) |
S1—Zn1—S3 | 137.18 (4) | C16—C15—C14 | 119.5 (4) |
N6—Zn1—S4 | 105.21 (8) | C16—C15—H15 | 120.2 |
S1—Zn1—S4 | 103.71 (4) | C14—C15—H15 | 120.2 |
S3—Zn1—S4 | 74.11 (3) | N4—C16—C15 | 124.2 (4) |
N6—Zn1—S2 | 97.62 (8) | N4—C16—H16 | 117.9 |
S1—Zn1—S2 | 71.89 (3) | C15—C16—H16 | 117.9 |
S3—Zn1—S2 | 93.44 (3) | N4—C17—C18 | 124.8 (4) |
S4—Zn1—S2 | 156.73 (3) | N4—C17—H17 | 117.6 |
N2i—Zn2—S5 | 105.06 (9) | C18—C17—H17 | 117.6 |
N2i—Zn2—S7 | 110.48 (9) | C14—C18—C17 | 119.2 (4) |
S5—Zn2—S7 | 144.31 (4) | C14—C18—H18 | 120.4 |
N2i—Zn2—S8 | 101.93 (9) | C17—C18—H18 | 120.4 |
S5—Zn2—S8 | 102.19 (4) | N5—C19—S6 | 120.9 (3) |
S7—Zn2—S8 | 73.89 (3) | N5—C19—S5 | 121.2 (3) |
N2i—Zn2—S6 | 99.72 (9) | S6—C19—S5 | 117.9 (2) |
S5—Zn2—S6 | 72.94 (3) | N5—C20—C21 | 113.1 (3) |
S7—Zn2—S6 | 97.50 (3) | N5—C20—H20A | 108.9 |
S8—Zn2—S6 | 158.31 (3) | C21—C20—H20A | 108.9 |
C1—S1—Zn1 | 89.47 (13) | N5—C20—H20B | 108.9 |
C1—S2—Zn1 | 79.95 (12) | C21—C20—H20B | 108.9 |
C10—S3—Zn1 | 85.51 (12) | H20A—C20—H20B | 107.8 |
C10—S4—Zn1 | 82.71 (11) | C20—C21—H21A | 109.5 |
C19—S5—Zn2 | 87.66 (12) | C20—C21—H21B | 109.5 |
C19—S6—Zn2 | 81.29 (12) | H21A—C21—H21B | 109.5 |
C28—S7—Zn2 | 85.37 (12) | C20—C21—H21C | 109.5 |
C28—S8—Zn2 | 83.19 (13) | H21A—C21—H21C | 109.5 |
C1—N1—C4 | 120.4 (3) | H21B—C21—H21C | 109.5 |
C1—N1—C2 | 123.2 (3) | N5—C22—C23 | 115.9 (3) |
C4—N1—C2 | 115.2 (3) | N5—C22—H22A | 108.3 |
C8—N2—C7 | 118.4 (3) | C23—C22—H22A | 108.3 |
C8—N2—Zn2ii | 121.8 (2) | N5—C22—H22B | 108.3 |
C7—N2—Zn2ii | 119.7 (2) | C23—C22—H22B | 108.3 |
C10—N3—C13 | 122.7 (3) | H22A—C22—H22B | 107.4 |
C10—N3—C11 | 121.6 (3) | C27—C23—C24 | 117.7 (3) |
C13—N3—C11 | 115.4 (3) | C27—C23—C22 | 118.3 (3) |
C17—N4—C16 | 115.5 (4) | C24—C23—C22 | 124.1 (3) |
C19—N5—C22 | 120.7 (3) | C25—C24—C23 | 119.2 (3) |
C19—N5—C20 | 122.2 (3) | C25—C24—H24 | 120.4 |
C22—N5—C20 | 116.1 (3) | C23—C24—H24 | 120.4 |
C26—N6—C25 | 117.4 (3) | N6—C25—C24 | 123.0 (3) |
C26—N6—Zn1 | 119.1 (2) | N6—C25—H25 | 118.5 |
C25—N6—Zn1 | 123.3 (2) | C24—C25—H25 | 118.5 |
C28—N7—C31 | 121.5 (3) | N6—C26—C27 | 122.9 (3) |
C28—N7—C29 | 122.7 (3) | N6—C26—H26 | 118.5 |
C31—N7—C29 | 115.8 (3) | C27—C26—H26 | 118.5 |
C34—N8—C35 | 115.7 (3) | C26—C27—C23 | 119.8 (3) |
C37—N9—C41 | 117.2 (4) | C26—C27—H27 | 120.1 |
N1—C1—S2 | 121.6 (3) | C23—C27—H27 | 120.1 |
N1—C1—S1 | 120.2 (3) | N7—C28—S8 | 122.7 (3) |
S2—C1—S1 | 118.2 (2) | N7—C28—S7 | 120.1 (3) |
N1—C2—C3 | 112.9 (3) | S8—C28—S7 | 117.1 (2) |
N1—C2—H2A | 109.0 | N7—C29—C30 | 112.2 (3) |
C3—C2—H2A | 109.0 | N7—C29—H29A | 109.2 |
N1—C2—H2B | 109.0 | C30—C29—H29A | 109.2 |
C3—C2—H2B | 109.0 | N7—C29—H29B | 109.2 |
H2A—C2—H2B | 107.8 | C30—C29—H29B | 109.2 |
C2—C3—H3A | 109.5 | H29A—C29—H29B | 107.9 |
C2—C3—H3B | 109.5 | C29—C30—H30A | 109.5 |
H3A—C3—H3B | 109.5 | C29—C30—H30B | 109.5 |
C2—C3—H3C | 109.5 | H30A—C30—H30B | 109.5 |
H3A—C3—H3C | 109.5 | C29—C30—H30C | 109.5 |
H3B—C3—H3C | 109.5 | H30A—C30—H30C | 109.5 |
N1—C4—C5 | 116.8 (3) | H30B—C30—H30C | 109.5 |
N1—C4—H4A | 108.1 | N7—C31—C32 | 112.6 (3) |
C5—C4—H4A | 108.1 | N7—C31—H31A | 109.1 |
N1—C4—H4B | 108.1 | C32—C31—H31A | 109.1 |
C5—C4—H4B | 108.1 | N7—C31—H31B | 109.1 |
H4A—C4—H4B | 107.3 | C32—C31—H31B | 109.1 |
C9—C5—C6 | 118.7 (3) | H31A—C31—H31B | 107.8 |
C9—C5—C4 | 123.3 (3) | C33—C32—C36 | 117.4 (3) |
C6—C5—C4 | 117.9 (3) | C33—C32—C31 | 123.1 (3) |
C5—C6—C7 | 119.4 (3) | C36—C32—C31 | 119.4 (3) |
C5—C6—H6 | 120.3 | C34—C33—C32 | 118.8 (4) |
C7—C6—H6 | 120.3 | C34—C33—H33 | 120.6 |
N2—C7—C6 | 121.9 (3) | C32—C33—H33 | 120.6 |
N2—C7—H7 | 119.1 | N8—C34—C33 | 124.6 (4) |
C6—C7—H7 | 119.1 | N8—C34—H34 | 117.7 |
N2—C8—C9 | 122.8 (3) | C33—C34—H34 | 117.7 |
N2—C8—H8 | 118.6 | N8—C35—C36 | 124.5 (4) |
C9—C8—H8 | 118.6 | N8—C35—H35 | 117.8 |
C5—C9—C8 | 118.7 (3) | C36—C35—H35 | 117.8 |
C5—C9—H9 | 120.6 | C35—C36—C32 | 119.0 (3) |
C8—C9—H9 | 120.6 | C35—C36—H36 | 120.5 |
N3—C10—S4 | 121.8 (2) | C32—C36—H36 | 120.5 |
N3—C10—S3 | 120.5 (3) | N9—C37—C38 | 123.7 (4) |
S4—C10—S3 | 117.67 (19) | N9—C37—H37 | 118.1 |
N3—C11—C12 | 112.2 (3) | C38—C37—H37 | 118.1 |
N3—C11—H11A | 109.2 | C39—C38—C37 | 119.0 (4) |
C12—C11—H11A | 109.2 | C39—C38—H38 | 120.5 |
N3—C11—H11B | 109.2 | C37—C38—H38 | 120.5 |
C12—C11—H11B | 109.2 | C38—C39—C40 | 116.8 (4) |
H11A—C11—H11B | 107.9 | C38—C39—C42 | 121.7 (4) |
C11—C12—H12A | 109.5 | C40—C39—C42 | 121.5 (4) |
C11—C12—H12B | 109.5 | C41—C40—C39 | 119.4 (4) |
H12A—C12—H12B | 109.5 | C41—C40—H40 | 120.3 |
C11—C12—H12C | 109.5 | C39—C40—H40 | 120.3 |
H12A—C12—H12C | 109.5 | N9—C41—C40 | 123.9 (4) |
H12B—C12—H12C | 109.5 | N9—C41—H41 | 118.1 |
N3—C13—C14 | 115.2 (3) | C40—C41—H41 | 118.1 |
N3—C13—H13A | 108.5 | C39—C42—H42A | 109.5 |
C14—C13—H13A | 108.5 | C39—C42—H42B | 109.5 |
N3—C13—H13B | 108.5 | H42A—C42—H42B | 109.5 |
C14—C13—H13B | 108.5 | C39—C42—H42C | 109.5 |
H13A—C13—H13B | 107.5 | H42A—C42—H42C | 109.5 |
C18—C14—C15 | 116.8 (4) | H42B—C42—H42C | 109.5 |
C4—N1—C1—S2 | −14.0 (4) | Zn2—S6—C19—N5 | 175.0 (3) |
C2—N1—C1—S2 | 178.6 (3) | Zn2—S6—C19—S5 | −3.67 (17) |
C4—N1—C1—S1 | 164.1 (2) | Zn2—S5—C19—N5 | −174.7 (3) |
C2—N1—C1—S1 | −3.4 (5) | Zn2—S5—C19—S6 | 3.94 (18) |
Zn1—S2—C1—N1 | 172.1 (3) | C19—N5—C20—C21 | −136.1 (4) |
Zn1—S2—C1—S1 | −5.99 (17) | C22—N5—C20—C21 | 55.4 (4) |
Zn1—S1—C1—N1 | −171.4 (3) | C19—N5—C22—C23 | 93.2 (4) |
Zn1—S1—C1—S2 | 6.71 (19) | C20—N5—C22—C23 | −98.1 (4) |
C1—N1—C2—C3 | −132.8 (4) | N5—C22—C23—C27 | 174.9 (3) |
C4—N1—C2—C3 | 59.1 (4) | N5—C22—C23—C24 | −4.2 (5) |
C1—N1—C4—C5 | 95.4 (4) | C27—C23—C24—C25 | −3.3 (5) |
C2—N1—C4—C5 | −96.2 (4) | C22—C23—C24—C25 | 175.8 (3) |
N1—C4—C5—C9 | −17.5 (5) | C26—N6—C25—C24 | 2.4 (5) |
N1—C4—C5—C6 | 164.2 (3) | Zn1—N6—C25—C24 | −172.9 (3) |
C9—C5—C6—C7 | −1.0 (5) | C23—C24—C25—N6 | 0.7 (5) |
C4—C5—C6—C7 | 177.4 (3) | C25—N6—C26—C27 | −2.9 (5) |
C8—N2—C7—C6 | −0.9 (5) | Zn1—N6—C26—C27 | 172.6 (3) |
Zn2ii—N2—C7—C6 | 177.9 (3) | N6—C26—C27—C23 | 0.3 (5) |
C5—C6—C7—N2 | 1.7 (6) | C24—C23—C27—C26 | 2.8 (5) |
C7—N2—C8—C9 | −0.6 (5) | C22—C23—C27—C26 | −176.3 (3) |
Zn2ii—N2—C8—C9 | −179.4 (3) | C31—N7—C28—S8 | −177.6 (2) |
C6—C5—C9—C8 | −0.4 (5) | C29—N7—C28—S8 | 1.0 (5) |
C4—C5—C9—C8 | −178.7 (3) | C31—N7—C28—S7 | 1.8 (4) |
N2—C8—C9—C5 | 1.3 (6) | C29—N7—C28—S7 | −179.7 (3) |
C13—N3—C10—S4 | 172.8 (3) | Zn2—S8—C28—N7 | −174.7 (3) |
C11—N3—C10—S4 | −0.2 (5) | Zn2—S8—C28—S7 | 5.98 (17) |
C13—N3—C10—S3 | −7.2 (5) | Zn2—S7—C28—N7 | 174.5 (3) |
C11—N3—C10—S3 | 179.8 (3) | Zn2—S7—C28—S8 | −6.17 (18) |
Zn1—S4—C10—N3 | −180.0 (3) | C28—N7—C29—C30 | 106.3 (4) |
Zn1—S4—C10—S3 | 0.04 (18) | C31—N7—C29—C30 | −75.1 (4) |
Zn1—S3—C10—N3 | 180.0 (3) | C28—N7—C31—C32 | 80.4 (4) |
Zn1—S3—C10—S4 | −0.04 (18) | C29—N7—C31—C32 | −98.2 (4) |
C10—N3—C11—C12 | 88.3 (4) | N7—C31—C32—C33 | 20.6 (5) |
C13—N3—C11—C12 | −85.2 (4) | N7—C31—C32—C36 | −162.7 (3) |
C10—N3—C13—C14 | 92.3 (4) | C36—C32—C33—C34 | −0.2 (5) |
C11—N3—C13—C14 | −94.3 (4) | C31—C32—C33—C34 | 176.6 (4) |
N3—C13—C14—C18 | 26.5 (5) | C35—N8—C34—C33 | −1.2 (6) |
N3—C13—C14—C15 | −156.3 (3) | C32—C33—C34—N8 | 1.3 (6) |
C18—C14—C15—C16 | −0.1 (6) | C34—N8—C35—C36 | 0.0 (6) |
C13—C14—C15—C16 | −177.5 (4) | N8—C35—C36—C32 | 0.9 (6) |
C17—N4—C16—C15 | −0.2 (7) | C33—C32—C36—C35 | −0.8 (5) |
C14—C15—C16—N4 | 0.5 (7) | C31—C32—C36—C35 | −177.8 (4) |
C16—N4—C17—C18 | −0.5 (6) | C41—N9—C37—C38 | −1.0 (6) |
C15—C14—C18—C17 | −0.5 (5) | N9—C37—C38—C39 | 1.9 (6) |
C13—C14—C18—C17 | 176.7 (3) | C37—C38—C39—C40 | −1.5 (5) |
N4—C17—C18—C14 | 0.8 (6) | C37—C38—C39—C42 | 178.7 (4) |
C22—N5—C19—S6 | −10.5 (4) | C38—C39—C40—C41 | 0.5 (6) |
C20—N5—C19—S6 | −178.5 (3) | C42—C39—C40—C41 | −179.7 (4) |
C22—N5—C19—S5 | 168.1 (2) | C37—N9—C41—C40 | −0.1 (6) |
C20—N5—C19—S5 | 0.1 (5) | C39—C40—C41—N9 | 0.3 (7) |
Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z. |
Cg1 is the ring centroid of the Zn1/S3/S4/C10 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11B···N8iii | 0.99 | 2.41 | 3.197 (5) | 136 |
C30—H30C···S8iv | 0.98 | 2.86 | 3.433 (5) | 118 |
C36—H36···S5v | 0.95 | 2.87 | 3.773 (4) | 158 |
C6—H6···Cg1vi | 0.95 | 2.91 | 3.708 (4) | 142 |
C26—H26···N9vii | 0.95 | 2.61 | 3.256 (5) | 126 |
Symmetry codes: (iii) x+1, y, z+1; (iv) −x+1, −y, −z+1; (v) x−1, y, z; (vi) −x+1, −y+2, −z+2; (vii) −x+1, −y+1, −z+1. |
Acknowledgements
We thank Sunway University for support of biological and crystal engineering studies of metal dithiocarbamates.
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2013). Acta Cryst. E69, m479–m480. CSD CrossRef IUCr Journals Google Scholar
Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 488–492. Web of Science CSD CrossRef IUCr Journals Google Scholar
Barba, V. B., Arenaza, B., Guerrero, J. & Reyes, R. (2012). Heteroatom Chem. 23, 422–428. Web of Science CSD CrossRef CAS Google Scholar
Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930–940. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Cookson, J. & Beer, P. D. (2007). Dalton Trans. pp. 1459–1472. Web of Science CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Hogarth, G. (2005). Prog. Inorg. Chem. 53, 271–561. Google Scholar
Howie, R. A., de Lima, G. M., Menezes, D. C., Wardell, J. L., Wardell, S. M. S. V., Young, D. J. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 1626–1637. Web of Science CSD CrossRef CAS Google Scholar
Jotani, M. M., Tan, Y. S. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 403–413. CAS Google Scholar
Knight, E. R., Cowley, A. R., Hogarth, G. & Wilton-Ely, J. D. E. T. (2009). Dalton Trans. pp. 607–609. Web of Science CSD CrossRef Google Scholar
Kumar, V., Manar, K. K., Gupta, A. N., Singh, V., Drew, M. G. B. & Singh, N. (2016). J. Organomet. Chem. 820, 62–69. Web of Science CSD CrossRef CAS Google Scholar
Kumar, V., Singh, V., Gupta, A. N., Manar, K. K., Drew, M. G. B. & Singh, N. (2014). CrystEngComm, 16, 6765–6774. Web of Science CSD CrossRef CAS Google Scholar
Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Google Scholar
Oliver, K., White, A. J. P., Hogarth, G. & Wilton-Ely, J. D. E. T. (2011). Dalton Trans. 40, 5852–5864. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, V., Kumar, V., Gupta, A. N., Drew, M. G. B. & Singh, N. (2014). New J. Chem. 38, 3737–3748. Web of Science CSD CrossRef CAS Google Scholar
Tiekink, E. R. T. (2003). CrystEngComm, 5, 101–113. Web of Science CrossRef CAS Google Scholar
Tiekink, E. R. T. (2006). CrystEngComm, 8, 104–118. Web of Science CrossRef CAS Google Scholar
Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533–550. Web of Science CrossRef CAS Google Scholar
Tiekink, E. R. T. (2017). Coord. Chem. Rev. 345, 209–228. Web of Science CrossRef CAS Google Scholar
Tiekink, E. R. T. & Zukerman-Schpector, J. (2011). Chem. Commun. 47, 6623–6625. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yadav, M. K., Rajput, G., Gupta, A. N., Kumar, V., Drew, M. G. B. & Singh, N. (2014). Inorg. Chim. Acta, 421, 210–217. Web of Science CSD CrossRef CAS Google Scholar
Zaldi, N. B., Hussen, R. S. D., Lee, S. M., Halcovitch, N. R., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 842–848. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.