research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A one-dimensional coordination polymer, catena-poly[[[[N-ethyl-N-(pyridin-4-ylmeth­yl)di­thio­carbamato-κ2S,S′]zinc(II)]-μ2-N-ethyl-N-(pyridin-4-ylmeth­yl)di­thio­carbamato-κ3S,S′:N] 4-methyl­pyridine hemisolvate]

CROSSMARK_Color_square_no_text.svg

aChemical Abstracts Service, 2540 Olentangy River Rd, Columbus, Ohio 43202, USA, bDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and cCentre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 6 July 2017; accepted 8 July 2017; online 13 July 2017)

The title compound, {[Zn(C9H11N2S2)2]·0.5C6H7N}n, comprises two independent, but chemically similar, Zn[S2CN(Et)CH2py]2 residues and a 4-methyl­pyridine solvent mol­ecule in the asymmetric unit. The Zn-containing units are connected into a one-dimensional coordination polymer (zigzag topology) propagating in the [010] direction, with one di­thio­carbamate ligand bridging in a μ2-κ3 mode, employing one pyridyl N and both di­thio­carbamate S atoms, while the other is κ2-chelating. In each case, the resultant ZnNS4 coordination geometry approximates a square pyramid, with the pyridyl N atom in the apical position. In the crystal, the chains are linked into a three-dimensional architecture by methyl- and pyridyl-C—H⋯S, methyl­ene-C—H⋯N(pyrid­yl) and pyridyl-C—H⋯π(ZnS2C) inter­actions. The connection between the chain and the 4-methyl­pyridine solvent mol­ecule is of the type pyridyl-C—H⋯N(4-methyl­pyridine).

1. Chemical context

The most recent surveys of the structural chemistry of the binary zinc-triad di­thio­carbamates, i.e. mol­ecules of the general formula M(S2CNRR′)2 for M = Zn, Cd and Hg, indicated that up to that point, R and R′ were generally restricted to alkyl groups, with only rare examples of R being an aryl group (Tiekink, 2003[Tiekink, E. R. T. (2003). CrystEngComm, 5, 101-113.]; Hogarth, 2005[Hogarth, G. (2005). Prog. Inorg. Chem. 53, 271-561.]). However, since around that time there has been increasing inter­est in elaborating di­thio­carbamate ligands to enhance their functionality for systematic structural studies. This enhancement can be achieved in two ways utilizing their facile procedure of synthesis, i.e. the reaction of CS2 with an amine in the presence of base. Hence, the utilization of di­amines can lead to bis­(di­thio­carbamates), e.g. S2CN—R—CS2, R = alk­yl/aryl (e.g. Cookson & Beer, 2007[Cookson, J. & Beer, P. D. (2007). Dalton Trans. pp. 1459-1472.]; Knight et al., 2009[Knight, E. R., Cowley, A. R., Hogarth, G. & Wilton-Ely, J. D. E. T. (2009). Dalton Trans. pp. 607-609.]; Oliver et al. 2011[Oliver, K., White, A. J. P., Hogarth, G. & Wilton-Ely, J. D. E. T. (2011). Dalton Trans. 40, 5852-5864.]). Alternatively, the chosen amine can carry a functional group capable of additional coordination to a metal cation, typically a pyridyl group (e.g. Barba et al., 2012[Barba, V. B., Arenaza, B., Guerrero, J. & Reyes, R. (2012). Heteroatom Chem. 23, 422-428.]; Singh et al., 2014[Singh, V., Kumar, V., Gupta, A. N., Drew, M. G. B. & Singh, N. (2014). New J. Chem. 38, 3737-3748.]) or groups capable of forming hydrogen-bonding inter­actions (e.g. Benson et al., 2007[Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930-940.]; Howie et al., 2008[Howie, R. A., de Lima, G. M., Menezes, D. C., Wardell, J. L., Wardell, S. M. S. V., Young, D. J. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 1626-1637.]). It is the former class of ligand with a pyridyl substituent which forms the focus of the present contribution.

Previous structural studies have revealed a diversity of coordination modes in the zinc-triad elements coordinated by di­thio­carbamate ligands functionalized with pyridyl substituents. Thus, a two-dimensional architecture is found in centrosymmetric {Zn[S2CN(CH2ferrocen­yl)CH2py]2}n, with both pyridyl N atoms being coordinating (Kumar et al., 2016[Kumar, V., Manar, K. K., Gupta, A. N., Singh, V., Drew, M. G. B. & Singh, N. (2016). J. Organomet. Chem. 820, 62-69.]). In the cadmium analogue, isolated as a 1,10-phenanthroline (phen) adduct, i.e. Cd[S2CN(CH2ferrocen­yl)CH2py]2(phen), no additional Cd—N(pyrid­yl) inter­actions are formed in the crystal as the cadmium cation is coordinatively saturated (Kumar et al., 2016[Kumar, V., Manar, K. K., Gupta, A. N., Singh, V., Drew, M. G. B. & Singh, N. (2016). J. Organomet. Chem. 820, 62-69.]). However, in {Cd{[S2CN(CH2Ph)CH2py]2}n and related species, all potential donor atoms are coordinating, leading to a two-dimensional coordination polymer (Kumar et al., 2014[Kumar, V., Singh, V., Gupta, A. N., Manar, K. K., Drew, M. G. B. & Singh, N. (2014). CrystEngComm, 16, 6765-6774.]). It is inter­esting to note that zero-dimensional aggregation can also occur, as in the case of {Cd[S2CN(1H-indol-3-ylmeth­yl)CH2(CH2py)]2}2, where the tridentate mode of coordination of one di­thio­carbamate is retained, but aggregation leads to a dimer only (Kumar et al., 2014[Kumar, V., Singh, V., Gupta, A. N., Manar, K. K., Drew, M. G. B. & Singh, N. (2014). CrystEngComm, 16, 6765-6774.]). This may be a result of the now well established steric effects in 1,1-di­thiol­ate chemistry (Tiekink, 2003[Tiekink, E. R. T. (2003). CrystEngComm, 5, 101-113.], 2006[Tiekink, E. R. T. (2006). CrystEngComm, 8, 104-118.]). Several related structures are also available for mercury. In {Hg[S2CN(CH2Py)2]2]}n, with two pyridyl groups per di­thio­carbamate ligand, an unusual one-dimensional coordination polymer with a twisted topology is found in the crystal, as one pyridyl N atom is noncoordinating (Yadav et al., 2014[Yadav, M. K., Rajput, G., Gupta, A. N., Kumar, V., Drew, M. G. B. & Singh, N. (2014). Inorg. Chim. Acta, 421, 210-217.]; Jotani et al., 2016[Jotani, M. M., Tan, Y. S. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 403-413.]). When one CH2py group is replaced by a methyl substitutent, as in {Hg[S2CN(Me)CH2Py]2}n (Singh et al., 2014[Singh, V., Kumar, V., Gupta, A. N., Drew, M. G. B. & Singh, N. (2014). New J. Chem. 38, 3737-3748.]), a one-dimensional coordination polymer is also found. Again, when one substituent is large, i.e. as in {Hg[S2CN{CH2(1-methyl-1H-pyrrol-2-yl)}CH2Py]2}n (Yadav et al., 2014[Yadav, M. K., Rajput, G., Gupta, A. N., Kumar, V., Drew, M. G. B. & Singh, N. (2014). Inorg. Chim. Acta, 421, 210-217.]), no Hg—N(pyrid­yl) inter­actions are found. Very recently, the crystal structure of a binary compound, isolated as the 3-methyl­pyridine monosolvate, i.e. {Cd[S2CN(Et)CH2py]2·3-methyl­pyridine}n, was described and found to feature two S,S′,N-tridentate di­thio­carbamate ligands, leading to a two-dimensional coordination polymer (Arman et al., 2017[Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 488-492.]), as seen earlier in some of the precedents mentioned above (Kumar et al., 2014[Kumar, V., Singh, V., Gupta, A. N., Manar, K. K., Drew, M. G. B. & Singh, N. (2014). CrystEngComm, 16, 6765-6774.]); the 3-methyl­pyridine solvent mol­ecules reside in square-shaped channels. In continuation of these structural studies, herein, the crystallographic characterization of a closely related zinc compound to the last mentioned species, namely {Zn[S2CN(Et)CH2py]2·(4-methyl­pyri­dine)0.5}n, is described.

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] comprises two independent Zn[S2CN(Et)CH2py]2 residues, shown in Fig. 1[link], and a 4-methyl­pyridine solvent mol­ecule. Each of the di­thio­carbamate ligands is chelating, forming approximately similar Zn—S bond lengths, see data in Table 1[link]. For the Zn1-containing mol­ecule, the disparity in the Zn—S bond lengths, i.e. Δ(Zn—S) = [Zn—S(long) − Zn—S(short)], for the S1-di­thio­carbamate ligand of 0.32 Å is greater than the value of 0.10 Å for the S3-di­thio­carbamate ligand. For the Zn2-mol­ecule, these differences diminish to 0.23 and 0.09 Å for the S5- and S7-di­thio­carbamate ligands, respectively. The similarity of the structures is emphasized in the overlay diagram of Fig. 2[link], showing minor variations in the orientations of the pyridyl rings and in the relationship between the two chelate rings. In each of the Zn-containing mol­ecules, one di­thio­carbamate ligand coordinates in a μ2-κ3 mode, chelating one ZnII cation and simultaneously bridging another via the pyridyl N atom. It is noted that it is the di­thio­carbamate ligand that forms the more equivalent Zn—S bond lengths in each residue that forms the bridging inter­actions. The resultant coordination geometry for each ZnII cation is based on an NS4 donor set.

Table 1
Selected bond lengths (Å)

Zn1—N6 2.050 (3) Zn2—N2i 2.074 (3)
Zn1—S1 2.3510 (11) Zn2—S5 2.3723 (11)
Zn1—S2 2.6741 (11) Zn2—S6 2.5783 (12)
Zn1—S3 2.3962 (11) Zn2—S7 2.4036 (11)
Zn1—S4 2.4972 (11) Zn2—S8 2.4917 (12)
Symmetry code: (i) x, y-1, z.
[Figure 1]
Figure 1
The mol­ecular structures of the two independent Zn[S2CN(Et)CH2py]2 fragments in the asymmetric unit of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2]
Figure 2
A mol­ecular overlay diagram of the two independent mol­ecules of Zn[S2CN(Et)CH2py]2. The Zn1-containing mol­ecule is shown in red and the mol­ecules have been overlapped so that the two more symmetrically chelating di­thio­carbamate ligands are coincident.

For five-coordinate species, the value computed for τ is a useful indicator of the adopted coordination geometry, with the values of τ ranging from 0 to 1 for ideal square-pyramidal and trigonal–bipyramidal geometries, respectively (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). In (I)[link], the values of τ for Zn1 and Zn2 are 0.33 and 0.23, respectively, indicating that Zn2 is closer to a square pyramid than Zn1. In each case, the pyridyl N atom occupies the approximately apical position, as indicated by the range of N—Zn1—S angles of 97.62 (8)–111.76 (9)° and the narrower range of N—Zn2—S angles of 99.72 (9)–110.48 (9)°. In this description, the Zn1 cation lies 0.6827 (6) Å above the best plane through the four S atoms, i.e. S1–S4 (r.m.s. deviation = 0.1721 Å), in the direction of the pyridyl N6 atom. For the Zn2-mol­ecule, the deviation of the Zn2 cation from the S4 plane is 0.6018 (6) Å and the r.m.s. deviation through the S5–S8 atoms is 0.1273 Å.

The result of the presence of equal numbers of chelating and bridging ligands in (I)[link] is the formation of a supra­molecular polymer aligned along [010], as illustrated in Fig. 3[link]. The topology of the chain is zigzag. Finally, the 4-methyl­pyridine solvent mol­ecule is non-coordinating.

[Figure 3]
Figure 3
The one-dimensional coordination polymer in (I)[link], aligned along [010].

The most closely related structure in the literature for comparison is that of the aforementioned recently reported {Cd[S2CN(Et)CH2py]2·3-methyl­pyridine}n, which was also isolated from an experiment attempting to coordinate isomeric methyl­pyridines to the heavy element (Arman et al., 2017[Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 488-492.]). The crucial difference between the two structures is that in the cadmium crystal, both di­thio­carbamates adopt a μ2-κ3 coordination mode, leading to a cis-N2S4 coordination geometry and a two-dimensional framework with a flat topology. It is highly likely that the disparity in supra­molecular aggregation in the zinc and cadmium compounds arises from the greater ability of the larger Cd atom to expand its donor set.

3. Supra­molecular features

As mentioned above, the supra­molecular chains in the crystal of (I)[link] are aligned along [010]. In the crystal, these chains are connected into a three-dimensional architecture by a number of weak inter­molecular inter­actions, as summarized in Table 2[link]. There are two distinct C—H⋯S inter­actions, with the donors being methyl- and pyridyl-C—H groups, as well as a methyl­ene-C—H⋯N(pyrid­yl) inter­action. The other connection between chains is of the type pyridyl-C—H⋯π(Zn1,S3,S4,C10), an inter­action well known in metal di­thio­carbamates (Tiekink & Zukerman-Schpector, 2011[Tiekink, E. R. T. & Zukerman-Schpector, J. (2011). Chem. Commun. 47, 6623-6625.]) and, indeed, other metal systems (Tiekink, 2017[Tiekink, E. R. T. (2017). Coord. Chem. Rev. 345, 209-228.]). The main connection identified between the 4-methyl­pyridine solvent mol­ecule and the chain is of the type pyridyl-C—H⋯N(4-methyl­pyridine). An illustration of the mol­ecular packing is given in Fig. 4[link].

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the ring centroid of the Zn1/S3/S4/C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯N8ii 0.99 2.41 3.197 (5) 136
C30—H30C⋯S8iii 0.98 2.86 3.433 (5) 118
C36—H36⋯S5iv 0.95 2.87 3.773 (4) 158
C6—H6⋯Cg1v 0.95 2.91 3.708 (4) 142
C26—H26⋯N9vi 0.95 2.61 3.256 (5) 126
Symmetry codes: (ii) x+1, y, z+1; (iii) -x+1, -y, -z+1; (iv) x-1, y, z; (v) -x+1, -y+2, -z+2; (vi) -x+1, -y+1, -z+1.
[Figure 4]
Figure 4
A view of the unit-cell contents in projection down the b axis. The C—H⋯S, C—H⋯N and C—H⋯π inter­actions are shown in orange, blue and purple dashed lines, respectively.

4. Database survey

The di­thio­carabmate anion, [S2CN(Et)CH2py], found in (I)[link] and in {Cd[S2CN(Et)CH2py]2·3-methyl­pyridine}n (Arman et al., 2017[Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 488-492.]), has been structurally characterized in its free form, i.e. as its potassium 1,4,7,10,13,16-hexa­oxa­cyclo­octa­decane (i.e. 18-crown-6) salt (Arman et al., 2013[Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2013). Acta Cryst. E69, m479-m480.]). The pyridyl N atom is noncoordinating in this structure, the K+ ion being connected to S and O atoms only, within an O6S2 donor set. There is also a series of three diorganotin structures with this di­thio­carbamate ligand, i.e. of the general formula R2Sn[S2CN(Et)CH2py]2, for R = Me, nBu and Ph (Barba et al., 2012[Barba, V. B., Arenaza, B., Guerrero, J. & Reyes, R. (2012). Heteroatom Chem. 23, 422-428.]). In only the R = Me compound is there a weak inter­molecular Sn⋯N(pyrid­yl) inter­action of 2.98 Å between the two mol­ecules comprising the asymmetric unit. This result is consistent with surveys of diorganotin bis­(di­thio­carbamate)s in general (Tiekink, 2008[Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533-550.]) which suggest that the Sn atom in these compounds does not usually increase its coordination number by forming secondary bonding inter­actions (Tiekink, 2017[Tiekink, E. R. T. (2017). Coord. Chem. Rev. 345, 209-228.]). Specifically, for di­methyl­tin compounds, R2Sn(S2CNRR′′)2, a recent survey indicated that secondary bonding inter­actions occur in only 10% of their crystal structures (Zaldi et al., 2017[Zaldi, N. B., Hussen, R. S. D., Lee, S. M., Halcovitch, N. R., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 842-848.])

5. Synthesis and crystallization

The title compound was isolated from the recrystallization of Zn{[S2CN(Et)CH2py]2 (generated from the reaction of Zn(NO3)2·H2O and [S2CN(Et)CH2py]) from 4-picoline. Suitable single crystals formed upon slow evaporation of the solvent (m.p. 337–339 K).

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) values set at 1.2–1.5Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Zn(C9H11N2S2)2]·0.5C6H7N
Mr 534.57
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 98
a, b, c (Å) 9.419 (2), 15.299 (4), 17.149 (4)
α, β, γ (°) 88.871 (9), 83.914 (8), 75.766 (6)
V3) 2381.8 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.40
Crystal size (mm) 0.30 × 0.20 × 0.08
 
Data collection
Diffractometer AFC12K/SATURN724
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.549, 1
No. of measured, independent and observed [I > 2σ(I)] reflections 13748, 9827, 8634
Rint 0.037
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.120, 1.14
No. of reflections 9827
No. of parameters 555
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.55, −0.81
Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

catena-Poly[[[[N-ethyl-N-(pyridin-4-ylmethyl)dithiocarbamato-κ2S,S']zinc(II)]-µ-2-N-ethyl-N-(pyridin-4-ylmethyl)dithiocarbamato-κ3S,S':N] 4-methylpyridine hemisolvate] top
Crystal data top
[Zn(C9H11N2S2)2]·0.5C6H7NZ = 4
Mr = 534.57F(000) = 1108
Triclinic, P1Dx = 1.491 Mg m3
a = 9.419 (2) ÅMo Kα radiation, λ = 0.71069 Å
b = 15.299 (4) ÅCell parameters from 10781 reflections
c = 17.149 (4) Åθ = 2.2–40.7°
α = 88.871 (9)°µ = 1.40 mm1
β = 83.914 (8)°T = 98 K
γ = 75.766 (6)°Block, colourless
V = 2381.8 (10) Å30.30 × 0.20 × 0.08 mm
Data collection top
AFC12K/SATURN724
diffractometer
9827 independent reflections
Radiation source: fine-focus sealed tube8634 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 26.5°, θmin = 2.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1111
Tmin = 0.549, Tmax = 1k = 1918
13748 measured reflectionsl = 2121
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0424P)2 + 1.244P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.001
9827 reflectionsΔρmax = 0.55 e Å3
555 parametersΔρmin = 0.81 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.54704 (5)0.72964 (3)0.93393 (2)0.01760 (11)
Zn20.43549 (5)0.25774 (3)0.57576 (2)0.01760 (11)
S10.32468 (10)0.83898 (6)0.96346 (5)0.01963 (19)
S20.58234 (10)0.88714 (6)0.87543 (5)0.01821 (18)
S30.78618 (10)0.68982 (6)0.97969 (5)0.01919 (19)
S40.53708 (10)0.61206 (6)1.03606 (5)0.01912 (19)
S50.67047 (10)0.28992 (6)0.55549 (5)0.0212 (2)
S60.40191 (10)0.42263 (6)0.61908 (5)0.01971 (19)
S70.20336 (10)0.27671 (6)0.52307 (5)0.02089 (19)
S80.46521 (10)0.12755 (6)0.48528 (5)0.0217 (2)
N10.3378 (3)1.0087 (2)0.92953 (16)0.0176 (6)
N20.4298 (3)1.19659 (19)0.68468 (17)0.0187 (6)
N30.8009 (3)0.56341 (19)1.09051 (17)0.0173 (6)
N41.0896 (4)0.7366 (3)1.2448 (2)0.0345 (8)
N50.6620 (3)0.46253 (19)0.58467 (17)0.0178 (6)
N60.5447 (3)0.66729 (19)0.82948 (16)0.0162 (6)
N70.2023 (3)0.1338 (2)0.43693 (17)0.0198 (6)
N80.0182 (4)0.3770 (2)0.24530 (18)0.0260 (7)
N90.7781 (4)0.1256 (2)0.2852 (2)0.0318 (8)
C10.4081 (4)0.9211 (2)0.92226 (19)0.0175 (7)
C20.1861 (4)1.0407 (3)0.9680 (2)0.0258 (8)
H2A0.19001.06641.02000.031*
H2B0.14140.98860.97640.031*
C30.0895 (4)1.1112 (3)0.9207 (2)0.0242 (8)
H3A0.01041.12830.94790.036*
H3B0.08621.08650.86880.036*
H3C0.12991.16440.91480.036*
C40.4188 (4)1.0786 (2)0.91370 (19)0.0186 (7)
H4A0.52251.05280.92350.022*
H4B0.37751.12820.95200.022*
C50.4183 (4)1.1186 (2)0.8325 (2)0.0183 (7)
C60.4609 (4)1.1986 (2)0.8213 (2)0.0187 (7)
H60.48551.22820.86430.022*
C70.4674 (4)1.2355 (2)0.7466 (2)0.0194 (7)
H70.49921.28970.73910.023*
C80.3872 (4)1.1200 (2)0.6959 (2)0.0192 (7)
H80.35981.09280.65250.023*
C90.3813 (4)1.0782 (2)0.76892 (19)0.0185 (7)
H90.35221.02300.77470.022*
C100.7165 (4)0.6157 (2)1.04110 (19)0.0151 (7)
C110.7438 (4)0.4998 (2)1.1437 (2)0.0212 (8)
H11A0.63780.52551.15960.025*
H11B0.79570.49221.19160.025*
C120.7640 (4)0.4080 (3)1.1055 (2)0.0248 (8)
H12A0.73340.36641.14410.037*
H12B0.86780.38431.08610.037*
H12C0.70360.41431.06150.037*
C130.9591 (4)0.5577 (2)1.0897 (2)0.0185 (7)
H13A0.99850.56881.03550.022*
H13B1.00920.49551.10360.022*
C140.9978 (4)0.6223 (2)1.1441 (2)0.0185 (7)
C151.1310 (4)0.6461 (3)1.1276 (2)0.0277 (9)
H151.19410.62381.08160.033*
C161.1711 (5)0.7026 (3)1.1786 (3)0.0359 (10)
H161.26230.71831.16580.043*
C170.9631 (5)0.7129 (3)1.2598 (2)0.0283 (9)
H170.90290.73561.30660.034*
C180.9122 (4)0.6575 (3)1.2122 (2)0.0249 (8)
H180.81970.64381.22610.030*
C190.5864 (4)0.3983 (2)0.58684 (19)0.0175 (7)
C200.8195 (4)0.4443 (3)0.5556 (2)0.0305 (9)
H20A0.82930.46850.50180.037*
H20B0.86110.37830.55260.037*
C210.9081 (4)0.4856 (3)0.6068 (2)0.0281 (9)
H21A1.01290.46600.58790.042*
H21B0.89240.46600.66110.042*
H21C0.87610.55150.60440.042*
C220.5849 (4)0.5575 (2)0.5968 (2)0.0202 (8)
H22A0.48570.56670.57890.024*
H22B0.63880.59450.56290.024*
C230.5673 (4)0.5923 (2)0.68008 (19)0.0170 (7)
C240.6113 (4)0.5384 (2)0.7445 (2)0.0181 (7)
H240.64920.47510.73810.022*
C250.5989 (4)0.5782 (2)0.8170 (2)0.0184 (7)
H250.63000.54110.86010.022*
C260.4962 (4)0.7180 (2)0.7679 (2)0.0189 (7)
H260.45330.78060.77620.023*
C270.5060 (4)0.6832 (2)0.6938 (2)0.0205 (8)
H270.47070.72150.65210.025*
C280.2825 (4)0.1734 (2)0.4770 (2)0.0182 (7)
C290.2630 (4)0.0457 (2)0.3968 (2)0.0241 (8)
H29A0.37190.03140.39300.029*
H29B0.23370.04990.34280.029*
C300.2093 (5)0.0302 (3)0.4398 (3)0.0323 (10)
H30A0.25250.08720.41150.048*
H30B0.10160.01720.44230.048*
H30C0.23900.03510.49300.048*
C310.0470 (4)0.1766 (2)0.4283 (2)0.0213 (8)
H31A0.00140.20490.47880.026*
H31B0.00310.12960.41560.026*
C320.0291 (4)0.2475 (2)0.36478 (19)0.0167 (7)
C330.1391 (4)0.2508 (3)0.3047 (2)0.0229 (8)
H330.23290.20940.30320.027*
C340.1093 (4)0.3154 (3)0.2470 (2)0.0264 (9)
H340.18490.31590.20580.032*
C350.1227 (4)0.3728 (3)0.3038 (2)0.0275 (9)
H350.21480.41570.30420.033*
C360.1056 (4)0.3105 (3)0.3632 (2)0.0231 (8)
H360.18450.31050.40270.028*
C370.8173 (4)0.0465 (3)0.3202 (2)0.0282 (9)
H370.75250.03280.36240.034*
C380.9486 (4)0.0178 (3)0.2986 (2)0.0288 (9)
H380.97030.07420.32450.035*
C391.0473 (4)0.0021 (3)0.2383 (2)0.0269 (8)
C401.0051 (5)0.0859 (3)0.2018 (2)0.0322 (9)
H401.06770.10270.16020.039*
C410.8712 (5)0.1440 (3)0.2271 (3)0.0353 (10)
H410.84440.20040.20150.042*
C421.1917 (5)0.0633 (3)0.2133 (3)0.0387 (11)
H42A1.20490.11550.24820.058*
H42B1.27220.03370.21610.058*
H42C1.19210.08330.15930.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0182 (2)0.0187 (2)0.0157 (2)0.00322 (16)0.00350 (16)0.00183 (16)
Zn20.0214 (2)0.0196 (2)0.0143 (2)0.00902 (17)0.00376 (16)0.00265 (16)
S10.0195 (5)0.0172 (4)0.0221 (5)0.0057 (3)0.0010 (3)0.0019 (3)
S20.0184 (4)0.0189 (4)0.0176 (4)0.0056 (3)0.0010 (3)0.0013 (3)
S30.0194 (5)0.0199 (4)0.0201 (4)0.0077 (4)0.0040 (3)0.0040 (3)
S40.0170 (4)0.0214 (5)0.0211 (4)0.0079 (3)0.0044 (3)0.0017 (3)
S50.0227 (5)0.0166 (4)0.0240 (5)0.0072 (4)0.0047 (4)0.0042 (3)
S60.0192 (5)0.0188 (4)0.0213 (4)0.0052 (3)0.0014 (3)0.0017 (3)
S70.0222 (5)0.0199 (4)0.0208 (5)0.0040 (4)0.0051 (4)0.0024 (3)
S80.0195 (5)0.0237 (5)0.0222 (5)0.0039 (4)0.0059 (3)0.0023 (4)
N10.0176 (16)0.0186 (15)0.0157 (15)0.0037 (12)0.0003 (11)0.0021 (12)
N20.0240 (17)0.0169 (15)0.0171 (15)0.0075 (12)0.0049 (12)0.0042 (12)
N30.0167 (15)0.0166 (15)0.0200 (15)0.0055 (12)0.0051 (12)0.0022 (12)
N40.038 (2)0.038 (2)0.032 (2)0.0151 (17)0.0091 (16)0.0055 (16)
N50.0215 (16)0.0153 (15)0.0185 (15)0.0095 (12)0.0012 (12)0.0023 (12)
N60.0150 (15)0.0174 (15)0.0168 (15)0.0042 (12)0.0038 (11)0.0019 (11)
N70.0173 (16)0.0196 (16)0.0224 (16)0.0027 (12)0.0062 (12)0.0001 (12)
N80.0211 (17)0.0340 (19)0.0215 (17)0.0042 (14)0.0028 (13)0.0042 (14)
N90.028 (2)0.0290 (19)0.039 (2)0.0058 (15)0.0105 (16)0.0053 (16)
C10.0194 (18)0.0211 (18)0.0123 (16)0.0049 (14)0.0026 (13)0.0005 (13)
C20.022 (2)0.024 (2)0.028 (2)0.0031 (16)0.0052 (16)0.0058 (16)
C30.020 (2)0.027 (2)0.026 (2)0.0041 (15)0.0064 (15)0.0005 (16)
C40.0234 (19)0.0183 (18)0.0155 (17)0.0070 (14)0.0042 (14)0.0003 (14)
C50.0152 (18)0.0196 (18)0.0203 (18)0.0050 (14)0.0009 (13)0.0013 (14)
C60.0215 (19)0.0168 (17)0.0190 (18)0.0061 (14)0.0036 (14)0.0003 (14)
C70.0222 (19)0.0175 (18)0.0207 (18)0.0092 (14)0.0030 (14)0.0022 (14)
C80.0225 (19)0.0207 (18)0.0153 (17)0.0064 (15)0.0033 (14)0.0001 (14)
C90.025 (2)0.0180 (17)0.0153 (17)0.0103 (15)0.0035 (14)0.0002 (14)
C100.0172 (17)0.0121 (16)0.0164 (17)0.0040 (13)0.0016 (13)0.0030 (13)
C110.0202 (19)0.0246 (19)0.0213 (19)0.0107 (15)0.0034 (14)0.0083 (15)
C120.024 (2)0.024 (2)0.031 (2)0.0141 (16)0.0082 (16)0.0081 (16)
C130.0141 (17)0.0193 (18)0.0216 (18)0.0024 (14)0.0031 (14)0.0004 (14)
C140.0183 (18)0.0182 (17)0.0200 (18)0.0044 (14)0.0076 (14)0.0041 (14)
C150.023 (2)0.030 (2)0.030 (2)0.0088 (17)0.0029 (16)0.0066 (17)
C160.028 (2)0.045 (3)0.041 (3)0.020 (2)0.0033 (19)0.008 (2)
C170.031 (2)0.031 (2)0.023 (2)0.0057 (17)0.0042 (16)0.0016 (16)
C180.023 (2)0.024 (2)0.028 (2)0.0068 (16)0.0029 (16)0.0010 (16)
C190.0235 (19)0.0225 (18)0.0086 (16)0.0096 (15)0.0014 (13)0.0000 (13)
C200.026 (2)0.034 (2)0.034 (2)0.0154 (18)0.0086 (17)0.0108 (18)
C210.028 (2)0.029 (2)0.030 (2)0.0108 (17)0.0022 (17)0.0037 (17)
C220.032 (2)0.0171 (18)0.0138 (17)0.0101 (15)0.0033 (14)0.0015 (14)
C230.0177 (18)0.0224 (18)0.0141 (17)0.0111 (14)0.0007 (13)0.0010 (14)
C240.0208 (19)0.0135 (17)0.0199 (18)0.0041 (14)0.0019 (14)0.0006 (14)
C250.0225 (19)0.0192 (18)0.0159 (17)0.0096 (15)0.0020 (14)0.0034 (14)
C260.0204 (19)0.0157 (17)0.0208 (18)0.0033 (14)0.0068 (14)0.0010 (14)
C270.0215 (19)0.0202 (18)0.0210 (18)0.0057 (15)0.0072 (14)0.0039 (15)
C280.0196 (18)0.0202 (18)0.0166 (17)0.0076 (14)0.0043 (14)0.0049 (14)
C290.025 (2)0.0213 (19)0.028 (2)0.0065 (16)0.0086 (16)0.0061 (16)
C300.033 (2)0.020 (2)0.047 (3)0.0070 (17)0.0152 (19)0.0016 (18)
C310.0170 (18)0.0229 (19)0.0258 (19)0.0067 (15)0.0058 (14)0.0007 (15)
C320.0191 (18)0.0188 (17)0.0133 (16)0.0059 (14)0.0041 (13)0.0020 (13)
C330.0158 (18)0.028 (2)0.026 (2)0.0065 (15)0.0048 (14)0.0016 (16)
C340.020 (2)0.038 (2)0.023 (2)0.0103 (17)0.0006 (15)0.0019 (17)
C350.023 (2)0.030 (2)0.024 (2)0.0010 (16)0.0029 (16)0.0011 (16)
C360.022 (2)0.028 (2)0.0168 (18)0.0025 (16)0.0002 (14)0.0025 (15)
C370.024 (2)0.040 (2)0.025 (2)0.0143 (18)0.0054 (16)0.0079 (17)
C380.025 (2)0.033 (2)0.034 (2)0.0124 (17)0.0104 (17)0.0052 (18)
C390.021 (2)0.030 (2)0.033 (2)0.0088 (16)0.0095 (16)0.0062 (17)
C400.033 (2)0.036 (2)0.028 (2)0.0092 (19)0.0010 (17)0.0058 (18)
C410.040 (3)0.032 (2)0.036 (2)0.009 (2)0.014 (2)0.0038 (19)
C420.028 (2)0.034 (2)0.054 (3)0.0081 (19)0.001 (2)0.013 (2)
Geometric parameters (Å, º) top
Zn1—N62.050 (3)C12—H12A0.9800
Zn1—S12.3510 (11)C12—H12B0.9800
Zn1—S22.6741 (11)C12—H12C0.9800
Zn1—S32.3962 (11)C13—C141.505 (5)
Zn1—S42.4972 (11)C13—H13A0.9900
Zn2—N2i2.074 (3)C13—H13B0.9900
Zn2—S52.3723 (11)C14—C181.384 (5)
Zn2—S62.5783 (12)C14—C151.391 (5)
Zn2—S72.4036 (11)C15—C161.384 (6)
Zn2—S82.4917 (12)C15—H150.9500
S1—C11.740 (4)C16—H160.9500
S2—C11.710 (4)C17—C181.389 (5)
S3—C101.732 (3)C17—H170.9500
S4—C101.715 (3)C18—H180.9500
S5—C191.721 (4)C20—C211.518 (5)
S6—C191.718 (4)C20—H20A0.9900
S7—C281.738 (4)C20—H20B0.9900
S8—C281.711 (4)C21—H21A0.9800
N1—C11.342 (4)C21—H21B0.9800
N1—C41.465 (4)C21—H21C0.9800
N1—C21.478 (5)C22—C231.513 (5)
N2—C81.333 (4)C22—H22A0.9900
N2—C71.348 (5)C22—H22B0.9900
N2—Zn2ii2.074 (3)C23—C271.383 (5)
N3—C101.339 (4)C23—C241.402 (5)
N3—C131.469 (4)C24—C251.377 (5)
N3—C111.479 (4)C24—H240.9500
N4—C171.328 (5)C25—H250.9500
N4—C161.339 (6)C26—C271.372 (5)
N5—C191.345 (4)C26—H260.9500
N5—C221.463 (4)C27—H270.9500
N5—C201.475 (5)C29—C301.525 (5)
N6—C261.350 (4)C29—H29A0.9900
N6—C251.345 (4)C29—H29B0.9900
N7—C281.327 (4)C30—H30A0.9800
N7—C311.469 (4)C30—H30B0.9800
N7—C291.481 (5)C30—H30C0.9800
N8—C341.335 (5)C31—C321.515 (5)
N8—C351.341 (5)C31—H31A0.9900
N9—C371.327 (5)C31—H31B0.9900
N9—C411.329 (6)C32—C331.391 (5)
C2—C31.513 (5)C32—C361.394 (5)
C2—H2A0.9900C33—C341.384 (5)
C2—H2B0.9900C33—H330.9500
C3—H3A0.9800C34—H340.9500
C3—H3B0.9800C35—C361.376 (5)
C3—H3C0.9800C35—H350.9500
C4—C51.510 (5)C36—H360.9500
C4—H4A0.9900C37—C381.398 (6)
C4—H4B0.9900C37—H370.9500
C5—C91.381 (5)C38—C391.396 (6)
C5—C61.383 (5)C38—H380.9500
C6—C71.391 (5)C39—C401.401 (6)
C6—H60.9500C39—C421.503 (6)
C7—H70.9500C40—C411.384 (6)
C8—C91.397 (5)C40—H400.9500
C8—H80.9500C41—H410.9500
C9—H90.9500C42—H42A0.9800
C11—C121.521 (5)C42—H42B0.9800
C11—H11A0.9900C42—H42C0.9800
C11—H11B0.9900
N6—Zn1—S1109.98 (8)C18—C14—C13124.4 (3)
N6—Zn1—S3111.76 (9)C15—C14—C13118.7 (3)
S1—Zn1—S3137.18 (4)C16—C15—C14119.5 (4)
N6—Zn1—S4105.21 (8)C16—C15—H15120.2
S1—Zn1—S4103.71 (4)C14—C15—H15120.2
S3—Zn1—S474.11 (3)N4—C16—C15124.2 (4)
N6—Zn1—S297.62 (8)N4—C16—H16117.9
S1—Zn1—S271.89 (3)C15—C16—H16117.9
S3—Zn1—S293.44 (3)N4—C17—C18124.8 (4)
S4—Zn1—S2156.73 (3)N4—C17—H17117.6
N2i—Zn2—S5105.06 (9)C18—C17—H17117.6
N2i—Zn2—S7110.48 (9)C14—C18—C17119.2 (4)
S5—Zn2—S7144.31 (4)C14—C18—H18120.4
N2i—Zn2—S8101.93 (9)C17—C18—H18120.4
S5—Zn2—S8102.19 (4)N5—C19—S6120.9 (3)
S7—Zn2—S873.89 (3)N5—C19—S5121.2 (3)
N2i—Zn2—S699.72 (9)S6—C19—S5117.9 (2)
S5—Zn2—S672.94 (3)N5—C20—C21113.1 (3)
S7—Zn2—S697.50 (3)N5—C20—H20A108.9
S8—Zn2—S6158.31 (3)C21—C20—H20A108.9
C1—S1—Zn189.47 (13)N5—C20—H20B108.9
C1—S2—Zn179.95 (12)C21—C20—H20B108.9
C10—S3—Zn185.51 (12)H20A—C20—H20B107.8
C10—S4—Zn182.71 (11)C20—C21—H21A109.5
C19—S5—Zn287.66 (12)C20—C21—H21B109.5
C19—S6—Zn281.29 (12)H21A—C21—H21B109.5
C28—S7—Zn285.37 (12)C20—C21—H21C109.5
C28—S8—Zn283.19 (13)H21A—C21—H21C109.5
C1—N1—C4120.4 (3)H21B—C21—H21C109.5
C1—N1—C2123.2 (3)N5—C22—C23115.9 (3)
C4—N1—C2115.2 (3)N5—C22—H22A108.3
C8—N2—C7118.4 (3)C23—C22—H22A108.3
C8—N2—Zn2ii121.8 (2)N5—C22—H22B108.3
C7—N2—Zn2ii119.7 (2)C23—C22—H22B108.3
C10—N3—C13122.7 (3)H22A—C22—H22B107.4
C10—N3—C11121.6 (3)C27—C23—C24117.7 (3)
C13—N3—C11115.4 (3)C27—C23—C22118.3 (3)
C17—N4—C16115.5 (4)C24—C23—C22124.1 (3)
C19—N5—C22120.7 (3)C25—C24—C23119.2 (3)
C19—N5—C20122.2 (3)C25—C24—H24120.4
C22—N5—C20116.1 (3)C23—C24—H24120.4
C26—N6—C25117.4 (3)N6—C25—C24123.0 (3)
C26—N6—Zn1119.1 (2)N6—C25—H25118.5
C25—N6—Zn1123.3 (2)C24—C25—H25118.5
C28—N7—C31121.5 (3)N6—C26—C27122.9 (3)
C28—N7—C29122.7 (3)N6—C26—H26118.5
C31—N7—C29115.8 (3)C27—C26—H26118.5
C34—N8—C35115.7 (3)C26—C27—C23119.8 (3)
C37—N9—C41117.2 (4)C26—C27—H27120.1
N1—C1—S2121.6 (3)C23—C27—H27120.1
N1—C1—S1120.2 (3)N7—C28—S8122.7 (3)
S2—C1—S1118.2 (2)N7—C28—S7120.1 (3)
N1—C2—C3112.9 (3)S8—C28—S7117.1 (2)
N1—C2—H2A109.0N7—C29—C30112.2 (3)
C3—C2—H2A109.0N7—C29—H29A109.2
N1—C2—H2B109.0C30—C29—H29A109.2
C3—C2—H2B109.0N7—C29—H29B109.2
H2A—C2—H2B107.8C30—C29—H29B109.2
C2—C3—H3A109.5H29A—C29—H29B107.9
C2—C3—H3B109.5C29—C30—H30A109.5
H3A—C3—H3B109.5C29—C30—H30B109.5
C2—C3—H3C109.5H30A—C30—H30B109.5
H3A—C3—H3C109.5C29—C30—H30C109.5
H3B—C3—H3C109.5H30A—C30—H30C109.5
N1—C4—C5116.8 (3)H30B—C30—H30C109.5
N1—C4—H4A108.1N7—C31—C32112.6 (3)
C5—C4—H4A108.1N7—C31—H31A109.1
N1—C4—H4B108.1C32—C31—H31A109.1
C5—C4—H4B108.1N7—C31—H31B109.1
H4A—C4—H4B107.3C32—C31—H31B109.1
C9—C5—C6118.7 (3)H31A—C31—H31B107.8
C9—C5—C4123.3 (3)C33—C32—C36117.4 (3)
C6—C5—C4117.9 (3)C33—C32—C31123.1 (3)
C5—C6—C7119.4 (3)C36—C32—C31119.4 (3)
C5—C6—H6120.3C34—C33—C32118.8 (4)
C7—C6—H6120.3C34—C33—H33120.6
N2—C7—C6121.9 (3)C32—C33—H33120.6
N2—C7—H7119.1N8—C34—C33124.6 (4)
C6—C7—H7119.1N8—C34—H34117.7
N2—C8—C9122.8 (3)C33—C34—H34117.7
N2—C8—H8118.6N8—C35—C36124.5 (4)
C9—C8—H8118.6N8—C35—H35117.8
C5—C9—C8118.7 (3)C36—C35—H35117.8
C5—C9—H9120.6C35—C36—C32119.0 (3)
C8—C9—H9120.6C35—C36—H36120.5
N3—C10—S4121.8 (2)C32—C36—H36120.5
N3—C10—S3120.5 (3)N9—C37—C38123.7 (4)
S4—C10—S3117.67 (19)N9—C37—H37118.1
N3—C11—C12112.2 (3)C38—C37—H37118.1
N3—C11—H11A109.2C39—C38—C37119.0 (4)
C12—C11—H11A109.2C39—C38—H38120.5
N3—C11—H11B109.2C37—C38—H38120.5
C12—C11—H11B109.2C38—C39—C40116.8 (4)
H11A—C11—H11B107.9C38—C39—C42121.7 (4)
C11—C12—H12A109.5C40—C39—C42121.5 (4)
C11—C12—H12B109.5C41—C40—C39119.4 (4)
H12A—C12—H12B109.5C41—C40—H40120.3
C11—C12—H12C109.5C39—C40—H40120.3
H12A—C12—H12C109.5N9—C41—C40123.9 (4)
H12B—C12—H12C109.5N9—C41—H41118.1
N3—C13—C14115.2 (3)C40—C41—H41118.1
N3—C13—H13A108.5C39—C42—H42A109.5
C14—C13—H13A108.5C39—C42—H42B109.5
N3—C13—H13B108.5H42A—C42—H42B109.5
C14—C13—H13B108.5C39—C42—H42C109.5
H13A—C13—H13B107.5H42A—C42—H42C109.5
C18—C14—C15116.8 (4)H42B—C42—H42C109.5
C4—N1—C1—S214.0 (4)Zn2—S6—C19—N5175.0 (3)
C2—N1—C1—S2178.6 (3)Zn2—S6—C19—S53.67 (17)
C4—N1—C1—S1164.1 (2)Zn2—S5—C19—N5174.7 (3)
C2—N1—C1—S13.4 (5)Zn2—S5—C19—S63.94 (18)
Zn1—S2—C1—N1172.1 (3)C19—N5—C20—C21136.1 (4)
Zn1—S2—C1—S15.99 (17)C22—N5—C20—C2155.4 (4)
Zn1—S1—C1—N1171.4 (3)C19—N5—C22—C2393.2 (4)
Zn1—S1—C1—S26.71 (19)C20—N5—C22—C2398.1 (4)
C1—N1—C2—C3132.8 (4)N5—C22—C23—C27174.9 (3)
C4—N1—C2—C359.1 (4)N5—C22—C23—C244.2 (5)
C1—N1—C4—C595.4 (4)C27—C23—C24—C253.3 (5)
C2—N1—C4—C596.2 (4)C22—C23—C24—C25175.8 (3)
N1—C4—C5—C917.5 (5)C26—N6—C25—C242.4 (5)
N1—C4—C5—C6164.2 (3)Zn1—N6—C25—C24172.9 (3)
C9—C5—C6—C71.0 (5)C23—C24—C25—N60.7 (5)
C4—C5—C6—C7177.4 (3)C25—N6—C26—C272.9 (5)
C8—N2—C7—C60.9 (5)Zn1—N6—C26—C27172.6 (3)
Zn2ii—N2—C7—C6177.9 (3)N6—C26—C27—C230.3 (5)
C5—C6—C7—N21.7 (6)C24—C23—C27—C262.8 (5)
C7—N2—C8—C90.6 (5)C22—C23—C27—C26176.3 (3)
Zn2ii—N2—C8—C9179.4 (3)C31—N7—C28—S8177.6 (2)
C6—C5—C9—C80.4 (5)C29—N7—C28—S81.0 (5)
C4—C5—C9—C8178.7 (3)C31—N7—C28—S71.8 (4)
N2—C8—C9—C51.3 (6)C29—N7—C28—S7179.7 (3)
C13—N3—C10—S4172.8 (3)Zn2—S8—C28—N7174.7 (3)
C11—N3—C10—S40.2 (5)Zn2—S8—C28—S75.98 (17)
C13—N3—C10—S37.2 (5)Zn2—S7—C28—N7174.5 (3)
C11—N3—C10—S3179.8 (3)Zn2—S7—C28—S86.17 (18)
Zn1—S4—C10—N3180.0 (3)C28—N7—C29—C30106.3 (4)
Zn1—S4—C10—S30.04 (18)C31—N7—C29—C3075.1 (4)
Zn1—S3—C10—N3180.0 (3)C28—N7—C31—C3280.4 (4)
Zn1—S3—C10—S40.04 (18)C29—N7—C31—C3298.2 (4)
C10—N3—C11—C1288.3 (4)N7—C31—C32—C3320.6 (5)
C13—N3—C11—C1285.2 (4)N7—C31—C32—C36162.7 (3)
C10—N3—C13—C1492.3 (4)C36—C32—C33—C340.2 (5)
C11—N3—C13—C1494.3 (4)C31—C32—C33—C34176.6 (4)
N3—C13—C14—C1826.5 (5)C35—N8—C34—C331.2 (6)
N3—C13—C14—C15156.3 (3)C32—C33—C34—N81.3 (6)
C18—C14—C15—C160.1 (6)C34—N8—C35—C360.0 (6)
C13—C14—C15—C16177.5 (4)N8—C35—C36—C320.9 (6)
C17—N4—C16—C150.2 (7)C33—C32—C36—C350.8 (5)
C14—C15—C16—N40.5 (7)C31—C32—C36—C35177.8 (4)
C16—N4—C17—C180.5 (6)C41—N9—C37—C381.0 (6)
C15—C14—C18—C170.5 (5)N9—C37—C38—C391.9 (6)
C13—C14—C18—C17176.7 (3)C37—C38—C39—C401.5 (5)
N4—C17—C18—C140.8 (6)C37—C38—C39—C42178.7 (4)
C22—N5—C19—S610.5 (4)C38—C39—C40—C410.5 (6)
C20—N5—C19—S6178.5 (3)C42—C39—C40—C41179.7 (4)
C22—N5—C19—S5168.1 (2)C37—N9—C41—C400.1 (6)
C20—N5—C19—S50.1 (5)C39—C40—C41—N90.3 (7)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the ring centroid of the Zn1/S3/S4/C10 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11B···N8iii0.992.413.197 (5)136
C30—H30C···S8iv0.982.863.433 (5)118
C36—H36···S5v0.952.873.773 (4)158
C6—H6···Cg1vi0.952.913.708 (4)142
C26—H26···N9vii0.952.613.256 (5)126
Symmetry codes: (iii) x+1, y, z+1; (iv) x+1, y, z+1; (v) x1, y, z; (vi) x+1, y+2, z+2; (vii) x+1, y+1, z+1.
 

Acknowledgements

We thank Sunway University for support of biological and crystal engineering studies of metal di­thio­carbamates.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationArman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2013). Acta Cryst. E69, m479–m480.  CSD CrossRef IUCr Journals Google Scholar
First citationArman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 488–492.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarba, V. B., Arenaza, B., Guerrero, J. & Reyes, R. (2012). Heteroatom Chem. 23, 422–428.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930–940.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCookson, J. & Beer, P. D. (2007). Dalton Trans. pp. 1459–1472.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHogarth, G. (2005). Prog. Inorg. Chem. 53, 271–561.  Google Scholar
First citationHowie, R. A., de Lima, G. M., Menezes, D. C., Wardell, J. L., Wardell, S. M. S. V., Young, D. J. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 1626–1637.  Web of Science CSD CrossRef CAS Google Scholar
First citationJotani, M. M., Tan, Y. S. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 403–413.  CAS Google Scholar
First citationKnight, E. R., Cowley, A. R., Hogarth, G. & Wilton-Ely, J. D. E. T. (2009). Dalton Trans. pp. 607–609.  Web of Science CSD CrossRef Google Scholar
First citationKumar, V., Manar, K. K., Gupta, A. N., Singh, V., Drew, M. G. B. & Singh, N. (2016). J. Organomet. Chem. 820, 62–69.  Web of Science CSD CrossRef CAS Google Scholar
First citationKumar, V., Singh, V., Gupta, A. N., Manar, K. K., Drew, M. G. B. & Singh, N. (2014). CrystEngComm, 16, 6765–6774.  Web of Science CSD CrossRef CAS Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationOliver, K., White, A. J. P., Hogarth, G. & Wilton-Ely, J. D. E. T. (2011). Dalton Trans. 40, 5852–5864.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, V., Kumar, V., Gupta, A. N., Drew, M. G. B. & Singh, N. (2014). New J. Chem. 38, 3737–3748.  Web of Science CSD CrossRef CAS Google Scholar
First citationTiekink, E. R. T. (2003). CrystEngComm, 5, 101–113.  Web of Science CrossRef CAS Google Scholar
First citationTiekink, E. R. T. (2006). CrystEngComm, 8, 104–118.  Web of Science CrossRef CAS Google Scholar
First citationTiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533–550.  Web of Science CrossRef CAS Google Scholar
First citationTiekink, E. R. T. (2017). Coord. Chem. Rev. 345, 209–228.  Web of Science CrossRef CAS Google Scholar
First citationTiekink, E. R. T. & Zukerman-Schpector, J. (2011). Chem. Commun. 47, 6623–6625.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYadav, M. K., Rajput, G., Gupta, A. N., Kumar, V., Drew, M. G. B. & Singh, N. (2014). Inorg. Chim. Acta, 421, 210–217.  Web of Science CSD CrossRef CAS Google Scholar
First citationZaldi, N. B., Hussen, R. S. D., Lee, S. M., Halcovitch, N. R., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 842–848.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds