research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tri­phenylphosphonium­meth­yl­enetri­fluoroborate

CROSSMARK_Color_square_no_text.svg

aDept. of Chemistry, Biochemistry, and Physics, Eastern Washington University, Cheney, WA 99004, USA, and bDepartment of Chemistry and Biochemistry, CAMCOR, University of Oregon, Eugene, OR 97403, USA
*Correspondence e-mail: eabbey@ewu.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 16 May 2017; accepted 3 July 2017; online 7 July 2017)

The title compound, C19H17BF3P {alternative name: triphen­yl[(tri­fluoro­boran­yl)meth­yl]phosphanium}, was formed by the reaction of tri­phenyl­phosphine with potassium iodo­methyl­tri­fluoro­borate. The mol­ecule features a nearly staggered conformation along the P—C bond and a less than staggered conformation along the C—B bond. In the crystal, weak C—H⋯F hydrogen bonds between the meta-phenyl C—H groups and the tri­fluoro­borate B—F groups form chains of R22(16) rings along [100]. These chains are are further stabilized by weak C—H⋯π inter­actions. A weak intra­molecular C—H⋯F hydrogen bond is also observed.

1. Chemical context

Alkyl­tri­phenyl­phospho­nium (Ph3PRX) salts are widely used as precursors in the preparation of phospho­rus ylides for Wittig-type olefination (Julia, 1985[Julia, M. (1985). Pure Appl. Chem. 57, 763-768.]). Such olefination reactions continue to be one of the most important means of alkene generation. Potassium organotri­fluoro­borates (KRBF3) are common substrates used in Suzuki–Miyaura coupling as stable boronic acid precursors. Additionally, they may be used to produce organodihaloboranes (RBX2) (Darses & Genet, 2008[Darses, S. & Genet, J.-P. (2008). Chem. Rev. 108, 288-325.]). Seyferth & Grim (1961[Seyferth, D. & Grim, S. O. (1961). J. Am. Chem. Soc. 83, 1613-1616.]) showed that reaction of tri­phenyl­phosphine­methyl­ene ylide (Ph3PCH2) with boron trifluoride di­ethyl­etherate (BF3-OEt2) yields triphen­yl[(tri­fluoro­boran­yl)meth­yl]phosphonium (Ph3PCH2BF3). We have synthesized Ph3PCH2BF3 via an alternate route, by reacting tri­phenyl­phosphine (PPh3) with potassium iodo­methyl­tri­fluoro­borate (ICH2BF3K) in 45% yield.

[Scheme 2]

There are many examples of zwitterionic organotri­fluoro­borates containing ammonium moieties, but very few containing phospho­nium groups have been reported (see Database survey). Phospho­nium tri­fluoro­borates have been shown to enhance the hydrolytic stability of the RBF3 moiety (Wade et al., 2010[Wade, C. R., Zhao, H. & Gabbai, F. (2010). Chem. Commun. 46, 6830-6831.].) In this context we synthesized Ph3PCH2BF3 and report herein its crystal structure.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. A weak intra­molecular C—H⋯F hydrogen bond forms an S(7) ring (Table 1[link]). The mol­ecule features a nearly anti conformation along the P1—C1 bond [B1—C1—P1—C8 torsion angle = 172.4 (2)°] and a less staggered conformation along the C1—B1 bond [F2—B1—C1—P1 torsion angle = 158.3 (2)°].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯F1i 0.95 (3) 2.44 (2) 3.293 (4) 149.7 (17)
C12—H12⋯F1ii 0.96 (3) 2.37 (3) 3.084 (3) 131 (2)
C19—H19⋯F1 0.97 (2) 2.43 (2) 3.263 (3) 143.9 (18)
C11—H11⋯Cgii 0.89 (3) 2.77 (3) 3.639 (3) 165 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

The B-F bond lengths fall within normal ranges for organotri­fluoro­borate compounds. The methyl­ene C—P bond length [1.787 (4) Å] and the C—B bond length [1.636 (4) Å] also fall within the normal range for similar compounds (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1-S19.]). In terms of the surrounding angles, the B and P atoms appear to be sp3 hybridized. The methyl­ene carbon is predominantly sp3 hybridized, but has a distorted tetra­hedral geometry with a P1—C1—B1 angle of 119.7 (2)°.

3. Supra­molecular features

In the crystal, two weak C—H⋯F hydrogen bonds between the meta hydrogen atoms on the tri­phenyl­phospho­nium rings and the tri­fluoro­borate moiety (Table 1[link]) fall within the range of distances observed in other tri­phenyl­phospho­nium tri­fluoro­borates (Wade et al., 2010[Wade, C. R., Zhao, H. & Gabbai, F. (2010). Chem. Commun. 46, 6830-6831.]) and form chains of R22(16) rings along the [100] axis (Fig. 2[link]). These chains are further stabilized by herringbone edge-to-face weak C—H⋯π inter­actions (Fig. 3[link]).

[Figure 2]
Figure 2
Part of the crystal structure, showing weak C—H⋯F hydrogen bonds as dashed lines.
[Figure 3]
Figure 3
Part of the crystal structure, showing weak C—H⋯π inter­actions along [100] as dashed lines. Only the H atoms involved in these inter­actions are shown.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, update February 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for phospho­nium-containing tri­fluoro­borates yielded only five structures: FUYDIN (Wade et al., 2010[Wade, C. R., Zhao, H. & Gabbai, F. (2010). Chem. Commun. 46, 6830-6831.]), OZOJOD (Gott et al., 2011[Gott, A. L., Piers, W. E., Dutton, J. L., McDonald, R. & Parvez, M. (2011). Organometallics, 30, 4236-4249.]), PUXWEL (Piskunov et al., 2010[Piskunov, A. V., Mescheryakova, I. N., Fukin, G. K., Cherkasov, V. K. & Abakumov, G. A. (2010). New J. Chem. 34, 1746-1750.]), ZEKLEI (Li et al., 2012[Li, Z., Chansaenpak, K., Liu, S., Wade, C. R., Conti, P. S. & Gabbaï, F. P. (2012). Med. Chem. Commun. 3, 1305-1308.]) and ZEKLOS (Zibo et al., 2012[Li, Z., Chansaenpak, K., Liu, S., Wade, C. R., Conti, P. S. & Gabbaï, F. P. (2012). Med. Chem. Commun. 3, 1305-1308.]).

5. Synthesis and crystallization

Potassium iodo­methyl­tri­fluoro­borate (1.00 g, 4.04 mmol) and tri­phenyl­phosphine (1.11 g, 4.23 mmol) were combined in a pressure flask containing a stir bar under nitro­gen, and anhydrous THF (25.0 mL) was added. The flask was sealed and heated to 343 K for 18 h. The reaction was cooled to room temperature and the solvent was removed in vacuo. The residue was washed with Et2O (3 x 10 mL) and the resulting solid was dissolved in a minimal amount of acetone and the product was precipitated with water and collected by filtration, to afford a white solid (0.63 g, 1.82 mmol, 45%.) X-ray quality crystals were grown by slow diffusion of pentane into a solution of the title compound dissolved in di­chloro­methane.

1H NMR (500 MHz, CDCl3) δ (ppm): 7.66 (m, 9H), 7.56 (m, 6H), 2.07 (br d, 2H, J = 15 Hz). 13C NMR (126 MHz, CDCl3) δ (ppm): 133.7 (d, J = 3 Hz), 133.5 (d, J = 10 Hz), 129.6 (d, J = 12 Hz) 123.2 (d, J = 87 Hz) (C—B not observed). 11B NMR (160 MHz, CDCl3) δ (ppm): 2.49 (q, J = 47 Hz). 19F NMR (470 MHz, CDCl3) δ (ppm): −138.9 (q, J = 37 Hz). FTIR (ATR, cm−1): 3070, 2960, 1587, 1484, 1438, 1146, 1104, 1025, 994, 969, 824, 754, 725, 691, 511, 497.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were refined independently with isotropic displacement parameters.

Table 2
Experimental details

Crystal data
Chemical formula C19H17BF3P
Mr 344.10
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 9.514 (2), 9.870 (3), 9.883 (3)
α, β, γ (°) 64.609 (6), 87.539 (7), 86.660 (7)
V3) 836.8 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.13 × 0.07 × 0.01
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT, SADABS and SHELXS97. Bruker AXS inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.925, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11811, 2953, 2090
Rint 0.061
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.094, 1.02
No. of reflections 2953
No. of parameters 285
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.26, −0.29
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT, SADABS and SHELXS97. Bruker AXS inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2013 (Sheldrick 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Triphenylphosphoniummethylenetrifluoroborate top
Crystal data top
C19H17BF3PZ = 2
Mr = 344.10F(000) = 356
Triclinic, P1Dx = 1.366 Mg m3
a = 9.514 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.870 (3) ÅCell parameters from 2126 reflections
c = 9.883 (3) Åθ = 2.3–23.9°
α = 64.609 (6)°µ = 0.19 mm1
β = 87.539 (7)°T = 173 K
γ = 86.660 (7)°Plate, colorless
V = 836.8 (4) Å30.13 × 0.07 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
2090 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.061
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1111
Tmin = 0.925, Tmax = 1.000k = 1011
11811 measured reflectionsl = 1111
2953 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041All H-atom parameters refined
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0458P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2953 reflectionsΔρmax = 0.26 e Å3
285 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.88100 (6)0.18041 (7)0.68950 (7)0.01697 (18)
B10.6884 (3)0.2752 (3)0.8793 (3)0.0230 (7)
F10.58103 (14)0.26765 (16)0.79007 (15)0.0321 (4)
F20.66153 (16)0.40289 (16)0.90564 (16)0.0385 (4)
F30.68558 (16)0.14803 (16)1.01567 (15)0.0381 (4)
C10.8421 (3)0.2870 (3)0.7950 (3)0.0208 (6)
C20.7769 (2)0.2468 (2)0.5241 (2)0.0159 (5)
C30.7246 (3)0.3952 (3)0.4576 (3)0.0244 (6)
C40.6496 (3)0.4457 (3)0.3269 (3)0.0290 (6)
C50.6268 (3)0.3508 (3)0.2611 (3)0.0260 (6)
C60.6785 (3)0.2042 (3)0.3260 (3)0.0270 (6)
C70.7526 (3)0.1511 (3)0.4578 (3)0.0227 (6)
C81.0645 (2)0.1992 (2)0.6332 (2)0.0177 (5)
C91.1081 (3)0.2542 (3)0.4834 (3)0.0208 (6)
C101.2509 (3)0.2685 (3)0.4467 (3)0.0271 (6)
C111.3487 (3)0.2274 (3)0.5571 (3)0.0282 (6)
C121.3064 (3)0.1730 (3)0.7066 (3)0.0249 (6)
C131.1648 (2)0.1596 (3)0.7452 (3)0.0224 (6)
C140.8521 (2)0.0170 (3)0.7952 (2)0.0175 (5)
C150.9617 (3)0.1247 (3)0.8201 (3)0.0221 (6)
C160.9361 (3)0.2760 (3)0.8966 (3)0.0276 (6)
C170.8011 (3)0.3208 (3)0.9478 (3)0.0296 (6)
C180.6919 (3)0.2144 (3)0.9237 (3)0.0293 (6)
C190.7161 (3)0.0636 (3)0.8475 (3)0.0234 (6)
H1A0.860 (3)0.389 (3)0.727 (3)0.034 (8)*
H1B0.913 (3)0.256 (3)0.864 (3)0.036 (8)*
H30.736 (3)0.457 (3)0.510 (3)0.048 (8)*
H40.616 (2)0.547 (3)0.282 (2)0.024 (7)*
H50.578 (2)0.385 (3)0.171 (3)0.029 (7)*
H60.662 (3)0.139 (3)0.281 (3)0.032 (7)*
H70.785 (2)0.043 (3)0.508 (2)0.022 (6)*
H91.043 (2)0.282 (2)0.404 (2)0.019 (6)*
H101.279 (2)0.310 (3)0.342 (3)0.030 (7)*
H111.441 (3)0.233 (3)0.535 (3)0.028 (7)*
H121.374 (3)0.148 (3)0.784 (3)0.039 (8)*
H131.135 (2)0.119 (2)0.851 (3)0.024 (6)*
H151.055 (2)0.099 (2)0.789 (2)0.020 (6)*
H161.014 (3)0.352 (3)0.915 (3)0.036 (7)*
H170.785 (3)0.429 (3)1.000 (3)0.042 (8)*
H180.603 (3)0.246 (3)0.958 (3)0.032 (7)*
H190.639 (2)0.011 (3)0.829 (2)0.023 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0150 (3)0.0181 (4)0.0176 (3)0.0004 (2)0.0011 (2)0.0073 (3)
B10.0240 (16)0.0278 (18)0.0209 (15)0.0002 (13)0.0003 (12)0.0141 (13)
F10.0175 (7)0.0438 (10)0.0395 (9)0.0008 (6)0.0033 (6)0.0220 (8)
F20.0425 (9)0.0369 (10)0.0466 (10)0.0011 (7)0.0079 (7)0.0287 (8)
F30.0475 (10)0.0350 (9)0.0237 (8)0.0007 (7)0.0056 (7)0.0058 (7)
C10.0199 (13)0.0252 (16)0.0203 (13)0.0003 (11)0.0050 (11)0.0123 (12)
C20.0132 (12)0.0185 (14)0.0163 (12)0.0006 (10)0.0006 (9)0.0078 (10)
C30.0286 (14)0.0200 (15)0.0252 (13)0.0005 (11)0.0048 (11)0.0100 (12)
C40.0344 (16)0.0198 (16)0.0270 (14)0.0022 (12)0.0058 (12)0.0044 (12)
C50.0255 (14)0.0309 (17)0.0167 (13)0.0010 (12)0.0047 (11)0.0051 (12)
C60.0273 (14)0.0368 (17)0.0250 (14)0.0013 (12)0.0035 (11)0.0205 (13)
C70.0283 (14)0.0198 (15)0.0220 (13)0.0021 (11)0.0040 (11)0.0108 (12)
C80.0173 (12)0.0140 (13)0.0212 (12)0.0012 (10)0.0003 (10)0.0069 (10)
C90.0215 (13)0.0191 (14)0.0224 (13)0.0003 (10)0.0006 (11)0.0093 (11)
C100.0301 (15)0.0254 (16)0.0269 (15)0.0053 (12)0.0085 (12)0.0124 (12)
C110.0174 (14)0.0246 (16)0.0433 (17)0.0053 (11)0.0070 (13)0.0153 (13)
C120.0182 (14)0.0222 (15)0.0332 (15)0.0034 (11)0.0032 (12)0.0102 (12)
C130.0190 (13)0.0228 (14)0.0221 (13)0.0027 (10)0.0001 (11)0.0063 (11)
C140.0188 (12)0.0195 (14)0.0152 (12)0.0023 (10)0.0021 (9)0.0081 (10)
C150.0210 (14)0.0238 (15)0.0205 (13)0.0042 (11)0.0007 (11)0.0082 (11)
C160.0343 (16)0.0196 (15)0.0277 (14)0.0022 (12)0.0050 (12)0.0091 (12)
C170.0448 (18)0.0187 (16)0.0238 (14)0.0086 (13)0.0007 (12)0.0070 (12)
C180.0292 (16)0.0316 (17)0.0293 (15)0.0142 (13)0.0073 (12)0.0145 (13)
C190.0192 (13)0.0257 (15)0.0264 (14)0.0030 (12)0.0012 (11)0.0120 (12)
Geometric parameters (Å, º) top
P1—C11.787 (2)C8—C131.401 (3)
P1—C21.796 (2)C9—C101.390 (3)
P1—C81.805 (2)C9—H90.96 (2)
P1—C141.804 (2)C10—C111.373 (4)
B1—F31.394 (3)C10—H100.96 (2)
B1—F21.400 (3)C11—C121.388 (4)
B1—F11.404 (3)C11—H110.89 (2)
B1—C11.636 (4)C12—C131.383 (3)
C1—H1A0.96 (3)C12—H120.95 (3)
C1—H1B0.92 (3)C13—H130.99 (2)
C2—C31.394 (3)C14—C151.395 (3)
C2—C71.395 (3)C14—C191.401 (3)
C3—C41.383 (3)C15—C161.385 (3)
C3—H30.97 (3)C15—H150.94 (2)
C4—C51.380 (4)C16—C171.385 (4)
C4—H40.95 (2)C16—H160.99 (3)
C5—C61.377 (4)C17—C181.385 (4)
C5—H50.94 (2)C17—H170.99 (3)
C6—C71.385 (3)C18—C191.378 (3)
C6—H60.95 (2)C18—H180.92 (3)
C7—H71.00 (2)C19—H190.97 (2)
C8—C91.394 (3)
C1—P1—C2111.67 (12)C9—C8—C13119.8 (2)
C1—P1—C8108.25 (11)C9—C8—P1122.17 (18)
C2—P1—C8108.48 (10)C13—C8—P1118.04 (17)
C1—P1—C14113.04 (12)C10—C9—C8119.6 (2)
C2—P1—C14107.54 (10)C10—C9—H9117.9 (13)
C8—P1—C14107.70 (11)C8—C9—H9122.5 (13)
F3—B1—F2109.0 (2)C11—C10—C9120.4 (2)
F3—B1—F1108.4 (2)C11—C10—H10121.1 (14)
F2—B1—F1108.5 (2)C9—C10—H10118.5 (14)
F3—B1—C1110.9 (2)C10—C11—C12120.6 (2)
F2—B1—C1109.1 (2)C10—C11—H11121.3 (15)
F1—B1—C1110.84 (19)C12—C11—H11118.1 (15)
B1—C1—P1119.66 (17)C13—C12—C11119.9 (2)
B1—C1—H1A111.2 (15)C13—C12—H12119.0 (15)
P1—C1—H1A105.1 (15)C11—C12—H12121.1 (15)
B1—C1—H1B110.3 (16)C12—C13—C8119.8 (2)
P1—C1—H1B103.3 (16)C12—C13—H13120.1 (13)
H1A—C1—H1B106 (2)C8—C13—H13120.1 (13)
C3—C2—C7119.4 (2)C15—C14—C19119.2 (2)
C3—C2—P1120.63 (17)C15—C14—P1121.19 (17)
C7—C2—P1119.90 (17)C19—C14—P1119.50 (18)
C4—C3—C2119.7 (2)C16—C15—C14120.3 (2)
C4—C3—H3122.1 (16)C16—C15—H15117.2 (14)
C2—C3—H3118.0 (16)C14—C15—H15122.5 (14)
C5—C4—C3120.6 (3)C17—C16—C15120.0 (3)
C5—C4—H4120.7 (14)C17—C16—H16120.0 (15)
C3—C4—H4118.7 (14)C15—C16—H16120.0 (15)
C6—C5—C4120.0 (2)C16—C17—C18120.1 (3)
C6—C5—H5118.9 (15)C16—C17—H17118.8 (15)
C4—C5—H5121.1 (15)C18—C17—H17121.2 (15)
C5—C6—C7120.3 (2)C19—C18—C17120.4 (3)
C5—C6—H6119.8 (15)C19—C18—H18120.3 (16)
C7—C6—H6119.9 (15)C17—C18—H18119.2 (16)
C6—C7—C2120.0 (2)C18—C19—C14120.0 (2)
C6—C7—H7120.3 (13)C18—C19—H19120.6 (13)
C2—C7—H7119.6 (13)C14—C19—H19119.4 (13)
F3—B1—C1—P181.6 (2)C2—P1—C8—C13177.28 (18)
F2—B1—C1—P1158.33 (17)C14—P1—C8—C1366.6 (2)
F1—B1—C1—P138.9 (3)C13—C8—C9—C100.4 (3)
C2—P1—C1—B168.2 (2)P1—C8—C9—C10178.94 (18)
C8—P1—C1—B1172.42 (19)C8—C9—C10—C110.6 (4)
C14—P1—C1—B153.2 (2)C9—C10—C11—C120.8 (4)
C1—P1—C2—C325.8 (2)C10—C11—C12—C130.1 (4)
C8—P1—C2—C393.4 (2)C11—C12—C13—C80.8 (4)
C14—P1—C2—C3150.38 (18)C9—C8—C13—C121.1 (3)
C1—P1—C2—C7156.73 (19)P1—C8—C13—C12179.71 (19)
C8—P1—C2—C784.1 (2)C1—P1—C14—C15119.9 (2)
C14—P1—C2—C732.2 (2)C2—P1—C14—C15116.40 (19)
C7—C2—C3—C40.1 (4)C8—P1—C14—C150.3 (2)
P1—C2—C3—C4177.32 (19)C1—P1—C14—C1963.0 (2)
C2—C3—C4—C50.3 (4)C2—P1—C14—C1960.7 (2)
C3—C4—C5—C60.2 (4)C8—P1—C14—C19177.42 (18)
C4—C5—C6—C70.5 (4)C19—C14—C15—C160.4 (3)
C5—C6—C7—C21.0 (4)P1—C14—C15—C16177.49 (18)
C3—C2—C7—C60.8 (4)C14—C15—C16—C170.4 (4)
P1—C2—C7—C6176.70 (18)C15—C16—C17—C180.5 (4)
C1—P1—C8—C9122.6 (2)C16—C17—C18—C190.6 (4)
C2—P1—C8—C91.3 (2)C17—C18—C19—C140.6 (4)
C14—P1—C8—C9114.8 (2)C15—C14—C19—C180.5 (3)
C1—P1—C8—C1355.9 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···F1i0.95 (3)2.44 (2)3.293 (4)149.7 (17)
C12—H12···F1ii0.96 (3)2.37 (3)3.084 (3)131 (2)
C19—H19···F10.97 (2)2.43 (2)3.263 (3)143.9 (18)
C11—H11···Cgii0.89 (3)2.77 (3)3.639 (3)165 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.
 

Funding information

Funding for this research was provided by: Eastern Washington University Faculty Grants for Research and Creative Works .

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–S19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2012). APEX2, SAINT, SADABS and SHELXS97. Bruker AXS inc., Madison, Wisconsin, USA.  Google Scholar
First citationDarses, S. & Genet, J.-P. (2008). Chem. Rev. 108, 288–325.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGott, A. L., Piers, W. E., Dutton, J. L., McDonald, R. & Parvez, M. (2011). Organometallics, 30, 4236–4249.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJulia, M. (1985). Pure Appl. Chem. 57, 763–768.  CrossRef CAS Web of Science Google Scholar
First citationLi, Z., Chansaenpak, K., Liu, S., Wade, C. R., Conti, P. S. & Gabbaï, F. P. (2012). Med. Chem. Commun. 3, 1305–1308.  Web of Science CSD CrossRef CAS Google Scholar
First citationPiskunov, A. V., Mescheryakova, I. N., Fukin, G. K., Cherkasov, V. K. & Abakumov, G. A. (2010). New J. Chem. 34, 1746–1750.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeyferth, D. & Grim, S. O. (1961). J. Am. Chem. Soc. 83, 1613–1616.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWade, C. R., Zhao, H. & Gabbai, F. (2010). Chem. Commun. 46, 6830–6831.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds