research communications
of triphenylphosphoniummethylenetrifluoroborate
aDept. of Chemistry, Biochemistry, and Physics, Eastern Washington University, Cheney, WA 99004, USA, and bDepartment of Chemistry and Biochemistry, CAMCOR, University of Oregon, Eugene, OR 97403, USA
*Correspondence e-mail: eabbey@ewu.edu
The title compound, C19H17BF3P {alternative name: triphenyl[(trifluoroboranyl)methyl]phosphanium}, was formed by the reaction of triphenylphosphine with potassium iodomethyltrifluoroborate. The molecule features a nearly along the P—C bond and a less than along the C—B bond. In the crystal, weak C—H⋯F hydrogen bonds between the meta-phenyl C—H groups and the trifluoroborate B—F groups form chains of R22(16) rings along [100]. These chains are are further stabilized by weak C—H⋯π interactions. A weak intramolecular C—H⋯F hydrogen bond is also observed.
Keywords: crystal structure; trifluoroborates; zwitterions; phosphonium.
CCDC reference: 1560028
1. Chemical context
Alkyltriphenylphosphonium (Ph3PRX) salts are widely used as precursors in the preparation of phosphorus for Wittig-type olefination (Julia, 1985). Such olefination reactions continue to be one of the most important means of alkene generation. Potassium organotrifluoroborates (KRBF3) are common substrates used in Suzuki–Miyaura coupling as stable boronic acid precursors. Additionally, they may be used to produce organodihaloboranes (RBX2) (Darses & Genet, 2008). Seyferth & Grim (1961) showed that reaction of triphenylphosphinemethylene ylide (Ph3PCH2−) with boron trifluoride diethyletherate (BF3-OEt2) yields triphenyl[(trifluoroboranyl)methyl]phosphonium (Ph3PCH2BF3). We have synthesized Ph3PCH2BF3 via an alternate route, by reacting triphenylphosphine (PPh3) with potassium iodomethyltrifluoroborate (ICH2BF3K) in 45% yield.
There are many examples of zwitterionic organotrifluoroborates containing ammonium moieties, but very few containing phosphonium groups have been reported (see Database survey). Phosphonium trifluoroborates have been shown to enhance the hydrolytic stability of the RBF3 moiety (Wade et al., 2010.) In this context we synthesized Ph3PCH2BF3 and report herein its crystal structure.
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. A weak intramolecular C—H⋯F hydrogen bond forms an S(7) ring (Table 1). The molecule features a nearly anti conformation along the P1—C1 bond [B1—C1—P1—C8 torsion angle = 172.4 (2)°] and a less along the C1—B1 bond [F2—B1—C1—P1 torsion angle = 158.3 (2)°].
The B-F bond lengths fall within normal ranges for organotrifluoroborate compounds. The methylene C—P bond length [1.787 (4) Å] and the C—B bond length [1.636 (4) Å] also fall within the normal range for similar compounds (Allen et al., 1987). In terms of the surrounding angles, the B and P atoms appear to be sp3 hybridized. The methylene carbon is predominantly sp3 hybridized, but has a distorted tetrahedral geometry with a P1—C1—B1 angle of 119.7 (2)°.
3. Supramolecular features
In the crystal, two weak C—H⋯F hydrogen bonds between the meta hydrogen atoms on the triphenylphosphonium rings and the trifluoroborate moiety (Table 1) fall within the range of distances observed in other triphenylphosphonium trifluoroborates (Wade et al., 2010) and form chains of R22(16) rings along the [100] axis (Fig. 2). These chains are further stabilized by herringbone edge-to-face weak C—H⋯π interactions (Fig. 3).
4. Database survey
A search of the Cambridge Structural Database (Version 5.37, update February 2017; Groom et al., 2016) for phosphonium-containing trifluoroborates yielded only five structures: FUYDIN (Wade et al., 2010), OZOJOD (Gott et al., 2011), PUXWEL (Piskunov et al., 2010), ZEKLEI (Li et al., 2012) and ZEKLOS (Zibo et al., 2012).
5. Synthesis and crystallization
Potassium iodomethyltrifluoroborate (1.00 g, 4.04 mmol) and triphenylphosphine (1.11 g, 4.23 mmol) were combined in a pressure flask containing a stir bar under nitrogen, and anhydrous THF (25.0 mL) was added. The flask was sealed and heated to 343 K for 18 h. The reaction was cooled to room temperature and the solvent was removed in vacuo. The residue was washed with Et2O (3 x 10 mL) and the resulting solid was dissolved in a minimal amount of acetone and the product was precipitated with water and collected by filtration, to afford a white solid (0.63 g, 1.82 mmol, 45%.) X-ray quality crystals were grown by slow diffusion of pentane into a solution of the title compound dissolved in dichloromethane.
1H NMR (500 MHz, CDCl3) δ (ppm): 7.66 (m, 9H), 7.56 (m, 6H), 2.07 (br d, 2H, J = 15 Hz). 13C NMR (126 MHz, CDCl3) δ (ppm): 133.7 (d, J = 3 Hz), 133.5 (d, J = 10 Hz), 129.6 (d, J = 12 Hz) 123.2 (d, J = 87 Hz) (C—B not observed). 11B NMR (160 MHz, CDCl3) δ (ppm): 2.49 (q, J = 47 Hz). 19F NMR (470 MHz, CDCl3) δ (ppm): −138.9 (q, J = 37 Hz). FTIR (ATR, cm−1): 3070, 2960, 1587, 1484, 1438, 1146, 1104, 1025, 994, 969, 824, 754, 725, 691, 511, 497.
6. details
Crystal data, data collection and structure . All H atoms were refined independently with isotropic displacement parameters.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1560028
https://doi.org/10.1107/S2056989017009884/lh5846sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017009884/lh5846Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017009884/lh5846Isup3.cml
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C19H17BF3P | Z = 2 |
Mr = 344.10 | F(000) = 356 |
Triclinic, P1 | Dx = 1.366 Mg m−3 |
a = 9.514 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.870 (3) Å | Cell parameters from 2126 reflections |
c = 9.883 (3) Å | θ = 2.3–23.9° |
α = 64.609 (6)° | µ = 0.19 mm−1 |
β = 87.539 (7)° | T = 173 K |
γ = 86.660 (7)° | Plate, colorless |
V = 836.8 (4) Å3 | 0.13 × 0.07 × 0.01 mm |
Bruker APEXII CCD diffractometer | 2090 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.061 |
φ and ω scans | θmax = 25.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −11→11 |
Tmin = 0.925, Tmax = 1.000 | k = −10→11 |
11811 measured reflections | l = −11→11 |
2953 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | All H-atom parameters refined |
wR(F2) = 0.094 | w = 1/[σ2(Fo2) + (0.0458P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
2953 reflections | Δρmax = 0.26 e Å−3 |
285 parameters | Δρmin = −0.29 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.88100 (6) | 0.18041 (7) | 0.68950 (7) | 0.01697 (18) | |
B1 | 0.6884 (3) | 0.2752 (3) | 0.8793 (3) | 0.0230 (7) | |
F1 | 0.58103 (14) | 0.26765 (16) | 0.79007 (15) | 0.0321 (4) | |
F2 | 0.66153 (16) | 0.40289 (16) | 0.90564 (16) | 0.0385 (4) | |
F3 | 0.68558 (16) | 0.14803 (16) | 1.01567 (15) | 0.0381 (4) | |
C1 | 0.8421 (3) | 0.2870 (3) | 0.7950 (3) | 0.0208 (6) | |
C2 | 0.7769 (2) | 0.2468 (2) | 0.5241 (2) | 0.0159 (5) | |
C3 | 0.7246 (3) | 0.3952 (3) | 0.4576 (3) | 0.0244 (6) | |
C4 | 0.6496 (3) | 0.4457 (3) | 0.3269 (3) | 0.0290 (6) | |
C5 | 0.6268 (3) | 0.3508 (3) | 0.2611 (3) | 0.0260 (6) | |
C6 | 0.6785 (3) | 0.2042 (3) | 0.3260 (3) | 0.0270 (6) | |
C7 | 0.7526 (3) | 0.1511 (3) | 0.4578 (3) | 0.0227 (6) | |
C8 | 1.0645 (2) | 0.1992 (2) | 0.6332 (2) | 0.0177 (5) | |
C9 | 1.1081 (3) | 0.2542 (3) | 0.4834 (3) | 0.0208 (6) | |
C10 | 1.2509 (3) | 0.2685 (3) | 0.4467 (3) | 0.0271 (6) | |
C11 | 1.3487 (3) | 0.2274 (3) | 0.5571 (3) | 0.0282 (6) | |
C12 | 1.3064 (3) | 0.1730 (3) | 0.7066 (3) | 0.0249 (6) | |
C13 | 1.1648 (2) | 0.1596 (3) | 0.7452 (3) | 0.0224 (6) | |
C14 | 0.8521 (2) | −0.0170 (3) | 0.7952 (2) | 0.0175 (5) | |
C15 | 0.9617 (3) | −0.1247 (3) | 0.8201 (3) | 0.0221 (6) | |
C16 | 0.9361 (3) | −0.2760 (3) | 0.8966 (3) | 0.0276 (6) | |
C17 | 0.8011 (3) | −0.3208 (3) | 0.9478 (3) | 0.0296 (6) | |
C18 | 0.6919 (3) | −0.2144 (3) | 0.9237 (3) | 0.0293 (6) | |
C19 | 0.7161 (3) | −0.0636 (3) | 0.8475 (3) | 0.0234 (6) | |
H1A | 0.860 (3) | 0.389 (3) | 0.727 (3) | 0.034 (8)* | |
H1B | 0.913 (3) | 0.256 (3) | 0.864 (3) | 0.036 (8)* | |
H3 | 0.736 (3) | 0.457 (3) | 0.510 (3) | 0.048 (8)* | |
H4 | 0.616 (2) | 0.547 (3) | 0.282 (2) | 0.024 (7)* | |
H5 | 0.578 (2) | 0.385 (3) | 0.171 (3) | 0.029 (7)* | |
H6 | 0.662 (3) | 0.139 (3) | 0.281 (3) | 0.032 (7)* | |
H7 | 0.785 (2) | 0.043 (3) | 0.508 (2) | 0.022 (6)* | |
H9 | 1.043 (2) | 0.282 (2) | 0.404 (2) | 0.019 (6)* | |
H10 | 1.279 (2) | 0.310 (3) | 0.342 (3) | 0.030 (7)* | |
H11 | 1.441 (3) | 0.233 (3) | 0.535 (3) | 0.028 (7)* | |
H12 | 1.374 (3) | 0.148 (3) | 0.784 (3) | 0.039 (8)* | |
H13 | 1.135 (2) | 0.119 (2) | 0.851 (3) | 0.024 (6)* | |
H15 | 1.055 (2) | −0.099 (2) | 0.789 (2) | 0.020 (6)* | |
H16 | 1.014 (3) | −0.352 (3) | 0.915 (3) | 0.036 (7)* | |
H17 | 0.785 (3) | −0.429 (3) | 1.000 (3) | 0.042 (8)* | |
H18 | 0.603 (3) | −0.246 (3) | 0.958 (3) | 0.032 (7)* | |
H19 | 0.639 (2) | 0.011 (3) | 0.829 (2) | 0.023 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0150 (3) | 0.0181 (4) | 0.0176 (3) | −0.0004 (2) | −0.0011 (2) | −0.0073 (3) |
B1 | 0.0240 (16) | 0.0278 (18) | 0.0209 (15) | 0.0002 (13) | −0.0003 (12) | −0.0141 (13) |
F1 | 0.0175 (7) | 0.0438 (10) | 0.0395 (9) | 0.0008 (6) | −0.0033 (6) | −0.0220 (8) |
F2 | 0.0425 (9) | 0.0369 (10) | 0.0466 (10) | −0.0011 (7) | 0.0079 (7) | −0.0287 (8) |
F3 | 0.0475 (10) | 0.0350 (9) | 0.0237 (8) | 0.0007 (7) | 0.0056 (7) | −0.0058 (7) |
C1 | 0.0199 (13) | 0.0252 (16) | 0.0203 (13) | −0.0003 (11) | −0.0050 (11) | −0.0123 (12) |
C2 | 0.0132 (12) | 0.0185 (14) | 0.0163 (12) | −0.0006 (10) | 0.0006 (9) | −0.0078 (10) |
C3 | 0.0286 (14) | 0.0200 (15) | 0.0252 (13) | −0.0005 (11) | −0.0048 (11) | −0.0100 (12) |
C4 | 0.0344 (16) | 0.0198 (16) | 0.0270 (14) | 0.0022 (12) | −0.0058 (12) | −0.0044 (12) |
C5 | 0.0255 (14) | 0.0309 (17) | 0.0167 (13) | −0.0010 (12) | −0.0047 (11) | −0.0051 (12) |
C6 | 0.0273 (14) | 0.0368 (17) | 0.0250 (14) | −0.0013 (12) | −0.0035 (11) | −0.0205 (13) |
C7 | 0.0283 (14) | 0.0198 (15) | 0.0220 (13) | 0.0021 (11) | −0.0040 (11) | −0.0108 (12) |
C8 | 0.0173 (12) | 0.0140 (13) | 0.0212 (12) | −0.0012 (10) | −0.0003 (10) | −0.0069 (10) |
C9 | 0.0215 (13) | 0.0191 (14) | 0.0224 (13) | −0.0003 (10) | −0.0006 (11) | −0.0093 (11) |
C10 | 0.0301 (15) | 0.0254 (16) | 0.0269 (15) | −0.0053 (12) | 0.0085 (12) | −0.0124 (12) |
C11 | 0.0174 (14) | 0.0246 (16) | 0.0433 (17) | −0.0053 (11) | 0.0070 (13) | −0.0153 (13) |
C12 | 0.0182 (14) | 0.0222 (15) | 0.0332 (15) | −0.0034 (11) | −0.0032 (12) | −0.0102 (12) |
C13 | 0.0190 (13) | 0.0228 (14) | 0.0221 (13) | −0.0027 (10) | 0.0001 (11) | −0.0063 (11) |
C14 | 0.0188 (12) | 0.0195 (14) | 0.0152 (12) | −0.0023 (10) | −0.0021 (9) | −0.0081 (10) |
C15 | 0.0210 (14) | 0.0238 (15) | 0.0205 (13) | −0.0042 (11) | −0.0007 (11) | −0.0082 (11) |
C16 | 0.0343 (16) | 0.0196 (15) | 0.0277 (14) | 0.0022 (12) | −0.0050 (12) | −0.0091 (12) |
C17 | 0.0448 (18) | 0.0187 (16) | 0.0238 (14) | −0.0086 (13) | 0.0007 (12) | −0.0070 (12) |
C18 | 0.0292 (16) | 0.0316 (17) | 0.0293 (15) | −0.0142 (13) | 0.0073 (12) | −0.0145 (13) |
C19 | 0.0192 (13) | 0.0257 (15) | 0.0264 (14) | −0.0030 (12) | 0.0012 (11) | −0.0120 (12) |
P1—C1 | 1.787 (2) | C8—C13 | 1.401 (3) |
P1—C2 | 1.796 (2) | C9—C10 | 1.390 (3) |
P1—C8 | 1.805 (2) | C9—H9 | 0.96 (2) |
P1—C14 | 1.804 (2) | C10—C11 | 1.373 (4) |
B1—F3 | 1.394 (3) | C10—H10 | 0.96 (2) |
B1—F2 | 1.400 (3) | C11—C12 | 1.388 (4) |
B1—F1 | 1.404 (3) | C11—H11 | 0.89 (2) |
B1—C1 | 1.636 (4) | C12—C13 | 1.383 (3) |
C1—H1A | 0.96 (3) | C12—H12 | 0.95 (3) |
C1—H1B | 0.92 (3) | C13—H13 | 0.99 (2) |
C2—C3 | 1.394 (3) | C14—C15 | 1.395 (3) |
C2—C7 | 1.395 (3) | C14—C19 | 1.401 (3) |
C3—C4 | 1.383 (3) | C15—C16 | 1.385 (3) |
C3—H3 | 0.97 (3) | C15—H15 | 0.94 (2) |
C4—C5 | 1.380 (4) | C16—C17 | 1.385 (4) |
C4—H4 | 0.95 (2) | C16—H16 | 0.99 (3) |
C5—C6 | 1.377 (4) | C17—C18 | 1.385 (4) |
C5—H5 | 0.94 (2) | C17—H17 | 0.99 (3) |
C6—C7 | 1.385 (3) | C18—C19 | 1.378 (3) |
C6—H6 | 0.95 (2) | C18—H18 | 0.92 (3) |
C7—H7 | 1.00 (2) | C19—H19 | 0.97 (2) |
C8—C9 | 1.394 (3) | ||
C1—P1—C2 | 111.67 (12) | C9—C8—C13 | 119.8 (2) |
C1—P1—C8 | 108.25 (11) | C9—C8—P1 | 122.17 (18) |
C2—P1—C8 | 108.48 (10) | C13—C8—P1 | 118.04 (17) |
C1—P1—C14 | 113.04 (12) | C10—C9—C8 | 119.6 (2) |
C2—P1—C14 | 107.54 (10) | C10—C9—H9 | 117.9 (13) |
C8—P1—C14 | 107.70 (11) | C8—C9—H9 | 122.5 (13) |
F3—B1—F2 | 109.0 (2) | C11—C10—C9 | 120.4 (2) |
F3—B1—F1 | 108.4 (2) | C11—C10—H10 | 121.1 (14) |
F2—B1—F1 | 108.5 (2) | C9—C10—H10 | 118.5 (14) |
F3—B1—C1 | 110.9 (2) | C10—C11—C12 | 120.6 (2) |
F2—B1—C1 | 109.1 (2) | C10—C11—H11 | 121.3 (15) |
F1—B1—C1 | 110.84 (19) | C12—C11—H11 | 118.1 (15) |
B1—C1—P1 | 119.66 (17) | C13—C12—C11 | 119.9 (2) |
B1—C1—H1A | 111.2 (15) | C13—C12—H12 | 119.0 (15) |
P1—C1—H1A | 105.1 (15) | C11—C12—H12 | 121.1 (15) |
B1—C1—H1B | 110.3 (16) | C12—C13—C8 | 119.8 (2) |
P1—C1—H1B | 103.3 (16) | C12—C13—H13 | 120.1 (13) |
H1A—C1—H1B | 106 (2) | C8—C13—H13 | 120.1 (13) |
C3—C2—C7 | 119.4 (2) | C15—C14—C19 | 119.2 (2) |
C3—C2—P1 | 120.63 (17) | C15—C14—P1 | 121.19 (17) |
C7—C2—P1 | 119.90 (17) | C19—C14—P1 | 119.50 (18) |
C4—C3—C2 | 119.7 (2) | C16—C15—C14 | 120.3 (2) |
C4—C3—H3 | 122.1 (16) | C16—C15—H15 | 117.2 (14) |
C2—C3—H3 | 118.0 (16) | C14—C15—H15 | 122.5 (14) |
C5—C4—C3 | 120.6 (3) | C17—C16—C15 | 120.0 (3) |
C5—C4—H4 | 120.7 (14) | C17—C16—H16 | 120.0 (15) |
C3—C4—H4 | 118.7 (14) | C15—C16—H16 | 120.0 (15) |
C6—C5—C4 | 120.0 (2) | C16—C17—C18 | 120.1 (3) |
C6—C5—H5 | 118.9 (15) | C16—C17—H17 | 118.8 (15) |
C4—C5—H5 | 121.1 (15) | C18—C17—H17 | 121.2 (15) |
C5—C6—C7 | 120.3 (2) | C19—C18—C17 | 120.4 (3) |
C5—C6—H6 | 119.8 (15) | C19—C18—H18 | 120.3 (16) |
C7—C6—H6 | 119.9 (15) | C17—C18—H18 | 119.2 (16) |
C6—C7—C2 | 120.0 (2) | C18—C19—C14 | 120.0 (2) |
C6—C7—H7 | 120.3 (13) | C18—C19—H19 | 120.6 (13) |
C2—C7—H7 | 119.6 (13) | C14—C19—H19 | 119.4 (13) |
F3—B1—C1—P1 | 81.6 (2) | C2—P1—C8—C13 | 177.28 (18) |
F2—B1—C1—P1 | −158.33 (17) | C14—P1—C8—C13 | −66.6 (2) |
F1—B1—C1—P1 | −38.9 (3) | C13—C8—C9—C10 | 0.4 (3) |
C2—P1—C1—B1 | 68.2 (2) | P1—C8—C9—C10 | 178.94 (18) |
C8—P1—C1—B1 | −172.42 (19) | C8—C9—C10—C11 | 0.6 (4) |
C14—P1—C1—B1 | −53.2 (2) | C9—C10—C11—C12 | −0.8 (4) |
C1—P1—C2—C3 | 25.8 (2) | C10—C11—C12—C13 | 0.1 (4) |
C8—P1—C2—C3 | −93.4 (2) | C11—C12—C13—C8 | 0.8 (4) |
C14—P1—C2—C3 | 150.38 (18) | C9—C8—C13—C12 | −1.1 (3) |
C1—P1—C2—C7 | −156.73 (19) | P1—C8—C13—C12 | −179.71 (19) |
C8—P1—C2—C7 | 84.1 (2) | C1—P1—C14—C15 | −119.9 (2) |
C14—P1—C2—C7 | −32.2 (2) | C2—P1—C14—C15 | 116.40 (19) |
C7—C2—C3—C4 | −0.1 (4) | C8—P1—C14—C15 | −0.3 (2) |
P1—C2—C3—C4 | 177.32 (19) | C1—P1—C14—C19 | 63.0 (2) |
C2—C3—C4—C5 | −0.3 (4) | C2—P1—C14—C19 | −60.7 (2) |
C3—C4—C5—C6 | 0.2 (4) | C8—P1—C14—C19 | −177.42 (18) |
C4—C5—C6—C7 | 0.5 (4) | C19—C14—C15—C16 | −0.4 (3) |
C5—C6—C7—C2 | −1.0 (4) | P1—C14—C15—C16 | −177.49 (18) |
C3—C2—C7—C6 | 0.8 (4) | C14—C15—C16—C17 | 0.4 (4) |
P1—C2—C7—C6 | −176.70 (18) | C15—C16—C17—C18 | −0.5 (4) |
C1—P1—C8—C9 | −122.6 (2) | C16—C17—C18—C19 | 0.6 (4) |
C2—P1—C8—C9 | −1.3 (2) | C17—C18—C19—C14 | −0.6 (4) |
C14—P1—C8—C9 | 114.8 (2) | C15—C14—C19—C18 | 0.5 (3) |
C1—P1—C8—C13 | 55.9 (2) |
Cg1 is the centroid of the C2–C7 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···F1i | 0.95 (3) | 2.44 (2) | 3.293 (4) | 149.7 (17) |
C12—H12···F1ii | 0.96 (3) | 2.37 (3) | 3.084 (3) | 131 (2) |
C19—H19···F1 | 0.97 (2) | 2.43 (2) | 3.263 (3) | 143.9 (18) |
C11—H11···Cgii | 0.89 (3) | 2.77 (3) | 3.639 (3) | 165 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z. |
Funding information
Funding for this research was provided by: Eastern Washington University Faculty Grants for Research and Creative Works .
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–S19. CSD CrossRef Web of Science Google Scholar
Bruker (2012). APEX2, SAINT, SADABS and SHELXS97. Bruker AXS inc., Madison, Wisconsin, USA. Google Scholar
Darses, S. & Genet, J.-P. (2008). Chem. Rev. 108, 288–325. Web of Science CrossRef PubMed CAS Google Scholar
Gott, A. L., Piers, W. E., Dutton, J. L., McDonald, R. & Parvez, M. (2011). Organometallics, 30, 4236–4249. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Julia, M. (1985). Pure Appl. Chem. 57, 763–768. CrossRef CAS Web of Science Google Scholar
Li, Z., Chansaenpak, K., Liu, S., Wade, C. R., Conti, P. S. & Gabbaï, F. P. (2012). Med. Chem. Commun. 3, 1305–1308. Web of Science CSD CrossRef CAS Google Scholar
Piskunov, A. V., Mescheryakova, I. N., Fukin, G. K., Cherkasov, V. K. & Abakumov, G. A. (2010). New J. Chem. 34, 1746–1750. Web of Science CSD CrossRef CAS Google Scholar
Seyferth, D. & Grim, S. O. (1961). J. Am. Chem. Soc. 83, 1613–1616. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wade, C. R., Zhao, H. & Gabbai, F. (2010). Chem. Commun. 46, 6830–6831. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.