research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 4-meth­­oxy­benzoic acid–1,3-bis­­(pyridin-4-yl)propane (2/1) and bi­phenyl-4,4′-di­carb­­oxy­lic acid–4-meth­­oxy­pyridine (1/2)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

Edited by A. J. Lough, University of Toronto, Canada (Received 29 June 2017; accepted 8 July 2017; online 17 July 2017)

The crystal structures of two hydrogen-bonded compounds, namely 4-meth­oxy­benzoic acid–1,3-bis­(pyridin-4-yl)propane (2/1), C13H14.59N2·C8H7.67O3·C8H7.74O3, (I), and biphenyl-4,4′-di­carb­oxy­lic acid–4-meth­oxy­pyridine (1/2), C14H9.43O4·C6H7.32NO·C6H7.25NO, (II), have been determined at 93 K. In (I), the asymmetric unit consists of two crystallographically independent 4-meth­oxy­benzoic acid mol­ecules and one 1,3-bis­(pyridin-4-yl)propane mol­ecule. The asymmetric unit of (II) comprises one biphenyl-4,4′-di­carb­oxy­lic acid mol­ecule and two independent 4-meth­oxy­pyridine mol­ecules. In each crystal, the acid and base mol­ecules are linked by short O—H⋯N/N—H⋯O hydrogen bonds, in which H atoms are disordered over the acid O-atom and base N-atom sites, forming a linear hydrogen-bonded 2:1 or 1:2 unit of the acid and the base. The 2:1 units of (I) are linked via C—H⋯π, ππ and C—H⋯O inter­actions into a tape structure along [101], while the 1:2 units of (II) form a double-chain structure along [-101] through ππ and C—H⋯O inter­actions.

1. Chemical context

Co-crystals of the 4-alk­oxy­benzoic acid–4,4′-bipyridyl (2/1) and 4-alk­oxy­benzoic acid–(E)-1,2-bis­(pyridin-4-yl)ethene (2/1) systems show thermotropic liquid crystallinity (Kato et al., 1990[Kato, T., Wilson, P. G., Fujishima, A. & Fréchet, J. M. J. (1990). Chem. Lett. pp. 2003-2006.], 1993[Kato, T., Fréchet, J. M. J., Wilson, P. G., Saito, T., Uryu, T., Fujishima, A., Jin, C. & Kaneuchi, F. (1993). Chem. Mater. 5, 1094-1100.]; Grunert et al., 1997[Grunert, M., Howie, A., Kaeding, A. & Imrie, C. T. (1997). J. Mater. Chem. 7, 211-214.]). Of these co-crystals, the crystal structures of 4,4′-bipyridyl with 4-meth­oxy­benzoic acid (Mukherjee & Desiraju, 2014[Mukherjee, A. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 1375-1385.]; Ramon et al., 2014[Ramon, G., Davies, K. & Nassimbeni, L. R. (2014). CrstEngComm, 16, 5802-5810.]), 4-eth­oxy, 4-(n-prop­oxy)- and 4-(n-but­oxy)benzoic acid (Tabuchi et al., 2015a[Tabuchi, Y., Gotoh, K. & Ishida, H. (2015a). Acta Cryst. E71, 1290-1295.]), and the crystal structures of (E)-1,2-bis­(pyridin-4-yl)ethene with 4-meth­oxy-, 4-eth­oxy-, 4-(n-prop­oxy)-, 4-(n-but­oxy)-, 4-(n-pent­yloxy)- and 4-(n-hex­yloxy)benzoic acid (Tabuchi et al., 2016a[Tabuchi, Y., Gotoh, K. & Ishida, H. (2016a). Acta Cryst. E72, 1666-1671.],b[Tabuchi, Y., Gotoh, K. & Ishida, H. (2016b). Acta Cryst. E72, 1771-1775.]) have been reported. In these crystals, the two acids and the base are held together by short inter­molecular O—H⋯N hydrogen bonds, forming linear 2:1 units of the acid and the base. As an expansion of our work on the structural characterization of hydrogen-bonded co-crystals with organic acid and base mol­ecules, we have prepared 4-meth­oxy­benzoic acid–1,3-bis­(pyridin-4-yl)propane (2/1), (I)[link], and biphenyl-4,4′-di­carb­oxy­lic acid–4-meth­oxy­pyridine (1/2), (II)[link], and analyzed the crystal structures.

2. Structural commentary

The mol­ecular structures of (I)[link] and (II)[link] are shown in Figs. 1[link] and 2[link], respectively. The asymmetric unit of (I)[link] consists of two crystallographically independent 4-meth­oxy­benzoic acid mol­ecules and one 1,3-bis­(pyridin-4-yl)propane mol­ecule. The acid and base mol­ecules are held together via short O—H⋯N/N—H⋯O hydrogen bonds between the carboxyl O and pyridine N atoms (Table 1[link]), forming a 2:1 unit. In the hydrogen bonds, the H atoms are disordered over O- and N-atom sites, with occupancy ratios of 0.67 (3):0.33 (3) between atoms O1 and N1, and 0.74 (3):0.26 (3) between atoms O4 and N2. The O1/C7/O2 and N1/C17–C21 planes in one hydrogen-bonded unit are approximately perpendicular to each other, with a dihedral angle of 85.97 (13)°. On the other hand, the O4/C15/O5 and N2/C22–C26 planes in the other hydrogen-bonded unit are approximately planar, with a dihedral angle of 10.18 (14)°, and a weak C—H⋯O hydrogen bond (C26—H26⋯O5) is observed in the hydrogen-bonded unit. The dihedral angles between the pyridine N1/C17–C21 and N2/C22–C26 rings, between the benzene C1–C6 and pyridine N1/C17–C21 planes, and between the benzene C9–C14 and pyridine N2/C22–C26 planes are 8.68 (6), 72.93 (6) and 9.05 (6)°, respectively.

[Scheme 1]

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg2, Cg3 and Cg4 are the centroids of the N2/C22–C26, C1–C6 and C9–C14 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.87 (2) 1.71 (2) 2.5730 (16) 170 (3)
O4—H4A⋯N2 0.88 (2) 1.80 (2) 2.6721 (17) 171 (2)
N1—H1B⋯O1 0.89 (2) 1.69 (4) 2.5730 (16) 171 (5)
N2—H4B⋯O4 0.87 (2) 1.80 (4) 2.6720 (16) 177 (7)
C17—H17⋯O6i 0.95 2.48 3.342 (2) 151
C18—H18⋯O2ii 0.95 2.60 3.515 (2) 162
C21—H21⋯O2iii 0.95 2.43 3.2563 (19) 145
C26—H26⋯O5 0.95 2.36 3.0890 (18) 133
C3—H3⋯Cg4iv 0.95 2.64 3.4265 (19) 140
C5—H5⋯Cg2v 0.95 2.71 3.5440 (18) 146
C10—H10⋯Cg3vi 0.95 2.89 3.5859 (19) 131
C28—H28BCg4vii 0.99 2.91 3.7154 (19) 139
Symmetry codes: (i) x+1, y, z+1; (ii) -x+1, -y+1, -z+1; (iii) -x, -y, -z+1; (iv) x+1, y-1, z+1; (v) -x, -y+1, -z+1; (vi) x, y+1, z-1; (vii) -x, -y+1, -z.
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom-numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level and H atoms are drawn as circles of arbitrary size.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], showing the atom-numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level and H atoms are drawn as circles of arbitrary size.

The asymmetric unit of (II)[link] is composed of one biphenyl-4,4′-di­carb­oxy­lic acid mol­ecule and two crystallographically independent 4-meth­oxy­pyridine mol­ecules, and the acid and the two bases are held together by short O—H⋯N/N—H⋯O hydrogen bonds (Table 2[link]), forming a linear 1:2 aggregate with pseudo-inversion symmetry. Similar to compound (I)[link], the H atoms in the hydrogen bonds are disordered over two sites, with occupancy ratios of 0.68 (3):0.32 (3) between atoms O1 and N1, and 0.75 (3):0.25 (3) between atoms O3 and N2. The hydrogen-bonded 1:2 unit is approximately planar and weak C—H⋯O hydrogen bonds (C19—H19⋯O2 and C25—H25⋯O4) are observed. The dihedral angle between the benzene rings of the biphenyl-4,4′-di­carb­oxy­lic acid is 3.87 (5)°. The N1/C15–C19 pyridine ring makes dihedral angles of 5.62 (12) and 2.55 (5)°, respectively, with the O1/C7/O2 and C1–C6 planes. The N2/C21–C25 pyridine ring makes dihedral angles of 6.84 (12) and 9.50 (5)°, respectively, with the O3/C14/O4 and C8–C13 planes.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg2 and Cg4 are the centroids of the C8–C13 and N2/C21–C25 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.87 (2) 1.73 (2) 2.5882 (15) 173 (2)
O3—H3A⋯N2 0.87 (2) 1.74 (2) 2.6078 (15) 175 (2)
N1—H1B⋯O1 0.88 (2) 1.73 (5) 2.5882 (16) 167 (5)
N2—H3B⋯O3 0.88 (2) 1.74 (6) 2.6077 (15) 169 (5)
C10—H10⋯O2i 0.95 2.57 3.4146 (17) 148
C19—H19⋯O2 0.95 2.52 3.1901 (17) 128
C20—H20A⋯O6ii 0.98 2.60 3.3210 (18) 131
C25—H25⋯O4 0.95 2.54 3.2035 (17) 127
C26—H26B⋯O4iii 0.98 2.43 3.3874 (17) 167
C12—H12⋯Cg4iv 0.95 2.90 3.6968 (16) 142
C21—H21⋯Cg2iv 0.95 2.64 3.5284 (16) 155
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z+1; (iii) -x+2, -y, -z; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

3. Supra­molecular features

In the crystal of (I)[link], the 2:1 units are linked by a pair of C—H⋯π inter­actions (C5—H5⋯Cg2v; Cg2 in the centroid of the pyridine N2/C22–C26 ring; symmetry code as given in Table 1[link]), and a ππ inter­action [Cg1⋯Cg1v = 3.6588 (16) Å; Cg1 is the centroid of the pyridine N1/C17–C21 ring], forming an inversion dimer. The dimers are linked via C—H⋯O inter­actions (C17—H17⋯O6i; Table 1[link]) into a tape structure running along [101] (Fig. 3[link]). The tapes running along the same direction are further linked via the rest of the C—H⋯O and C—H⋯π inter­actions (Table 1[link]), forming a three-dimensional network (Fig. 4[link]).

[Figure 3]
Figure 3
A partial packing diagram of compound (I)[link], showing inversion dimers formed by C—H⋯π inter­actions (orange–red dashed lines) and ππ stacking inter­actions (brown dashed lines), and a tape structure formed by C—H⋯O hydrogen bonds (black dashed lines) between the dimers. H atoms not involved in the above inter­actions and O—H⋯N/N—H⋯O hydrogen bonds have been omitted. [Symmetry codes: (i) x + 1, y, z + 1; (v) −x, −y + 1, −z + 1.]
[Figure 4]
Figure 4
A packing diagram of compound (I)[link], viewed approximately along [101], showing C—H⋯O hydrogen bonds (black dashed lines). C—H⋯π inter­actions (orange–red dashed lines) and ππ stacking inter­actions (brown dashed lines) formed between mol­ecular tapes. H atoms not involved in the above inter­actions have been omitted.

In the crystal of (II)[link], the 1:2 units are linked by a C—H⋯O inter­action (C20—H20A⋯O6ii; symmetry code as given in Table 2[link]) into a chain structure along [[\overline{1}]01]. Ajacent chains, which are related by an inversion centre, are further linked via ππ inter­actions between pyridine N2/C21–C25 rings [centroid-centroid distance = 3.8113 (13) Å] and between the benzene C1–C6 and pyridine N1/C15–C19 rings [centroid-centroid distance = 3.6613 (12) Å], forming a double-chain structure (Fig. 5[link]). Weak C—H⋯O and C—H⋯π inter­actions are observed between the double chains (Table 2[link]) and the 1:2 units are arranged in the crystals with their long axes parallel to each other (Fig. 6[link]).

[Figure 5]
Figure 5
A partial packing diagram of compound (II)[link], showing a double-chain structure formed by O—H⋯N/N—H⋯O hydrogen bonds, C—H⋯O inter­actions (black dashed lines) and ππ stacking inter­actions (brown dashed lines). H atoms not involved in the above inter­actions have been omitted. [Symmetry codes: (ii) x − 1, y, z + 1; (v) −x + 1, −y + 1, −z + 1: (vi) −x + 2, −y + 1, −z.]
[Figure 6]
Figure 6
A partial packing diagram of compound (II)[link], viewed along [[\overline{1}]01], showing the arrangement of the mol­ecular chains. C—H⋯O hydrogen bonds, C—H⋯π inter­actions and ππ stacking inter­actions are shown by black, orange–red and brown dashed lines, respectively. H atoms not involved in the above inter­actions have been omitted.

4. Database survey

The crystal structures of co-crystals similar to compound (I)[link], namely 4-meth­oxy­benzoic acid–1,2-bis­(pyridin-4-yl)ethane (2/1) (Mukherjee & Desiraju, 2014[Mukherjee, A. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 1375-1385.]), 4-eth­oxy­benzoic acid–1,2-bis­(pyridin-4-yl)ethane (2/1), 4-(n-prop­oxy)benzoic acid–bis­(pyridin-4-yl)ethane (2/1) and 4-(n-but­oxy)benzoic acid–1,2-bis­(pyridin-4-yl)ethane (2/1) (Tabuchi et al., 2015b[Tabuchi, Y., Gotoh, K. & Ishida, H. (2015b). Acta Cryst. E71, 1340-1344.]) have been reported. These compounds also show thermotropic liquid crystallinity (Tabuchi et al., 2015b[Tabuchi, Y., Gotoh, K. & Ishida, H. (2015b). Acta Cryst. E71, 1340-1344.]). A search of the Cambridge Structural Database (CSD, Version 5.38, last update February 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for organic co-crystals or salts similar to compound (II)[link], namely 4,4′-bi­phenyldi­carb­oxy­lic acid with pyridine derivatives, gave three structures, with CSD refcodes ATOJEZ (Gong et al., 2011[Gong, H.-Y., Rambo, B. M., Karnas, E., Lynch, V. M., Keller, K. M. & Sessler, J. L. (2011). J. Am. Chem. Soc. 133, 1526-1533.]), BIKFUX (Cruz et al., 2004[Cruz, C., Delgado, R., Drew, M. G. B. & Felix, V. (2004). Org. Biomol. Chem. 2, 2911-2918.]) and MAZYUI (Du et al., 2006[Du, M., You, Y.-P. & Zhang, Z.-H. (2006). Acta Cryst. C62, o33-o35.]).

5. Synthesis and crystallization

Single crystals of compound (I)[link] were obtained by slow evaporation from an ethanol solution (200 ml) of 1,3-bis­(pyridin-4-yl)propane (100 mg) with 4-meth­oxy­benzoic acid (155 mg) at room temperature. Crystals of compound (I) were obtained by slow evaporation from a 4-meth­oxy­pyridine solution (5 ml) of bi­phenyl-4,4′-di­carb­oxy­lic acid (100 mg) at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms in compounds (I)[link] and (II)[link] were found in difference Fourier maps. The H atoms in both compounds which are involved in the O—H⋯N/N—H⋯O hydrogen bonds were found to be disordered over two positions in difference Fourier maps. The positional parameters and the occupancy factors were refined with bond-length restraints of O—H = 0.84 (2) Å and N—H = 0.88 (2) Å, and with Uiso(H) = 1.5Ueq(O,N). Other H atoms were positioned geometrically (C—H = 0.95–0.99 Å) and were treated as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). For compound (I)[link], six reflections were omitted in the final refinement owing to poor agreement between the measured and calculated intensities.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C13H14.59N2·C8H7.67O3·C8H7.74O3 C14H9.43O4·C6H7.32NO·C6H7.25NO
Mr 502.55 460.47
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 93 93
a, b, c (Å) 7.759 (3), 8.733 (4), 19.904 (7) 18.354 (6), 7.4166 (16), 16.674 (5)
α, β, γ (°) 91.087 (16), 90.593 (17), 113.241 (15) 90, 104.943 (12), 90
V3) 1238.7 (8) 2192.9 (10)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.10 0.10
Crystal size (mm) 0.54 × 0.50 × 0.19 0.45 × 0.40 × 0.35
 
Data collection
Diffractometer Rigaku R-AXIS RAPID II Rigaku R-AXIS RAPID II
Absorption correction Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.970, 0.982 0.963, 0.966
No. of measured, independent and observed [I > 2σ(I)] reflections 12378, 5653, 4561 20851, 5026, 4085
Rint 0.033 0.035
(sin θ/λ)max−1) 0.649 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 1.07 0.038, 0.108, 1.06
No. of reflections 5653 5026
No. of parameters 350 323
No. of restraints 4 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.30 0.35, −0.26
Computer programs: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), Il Milione (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both structures, data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2010) and PLATON (Spek, 2009).

4-Methoxybenzoic acid–1,3-bis(pyridin-4-yl)propane (2/1) (I) top
Crystal data top
C13H14.59N2·C8H7.67O3·C8H7.74O3Z = 2
Mr = 502.55F(000) = 532.00
Triclinic, P1Dx = 1.347 Mg m3
a = 7.759 (3) ÅMo Kα radiation, λ = 0.71075 Å
b = 8.733 (4) ÅCell parameters from 13611 reflections
c = 19.904 (7) Åθ = 3.0–30.1°
α = 91.087 (16)°µ = 0.10 mm1
β = 90.593 (17)°T = 93 K
γ = 113.241 (15)°Platelet, colorless
V = 1238.7 (8) Å30.54 × 0.50 × 0.19 mm
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
4561 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.033
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 1010
Tmin = 0.970, Tmax = 0.982k = 1111
12378 measured reflectionsl = 2525
5653 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: mixed
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0644P)2]
where P = (Fo2 + 2Fc2)/3
5653 reflections(Δ/σ)max = 0.001
350 parametersΔρmax = 0.27 e Å3
4 restraintsΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

_reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.13329 (12)0.23348 (10)0.63470 (4)0.02284 (19)
H1A0.132 (4)0.258 (3)0.5927 (8)0.034*0.67 (3)
O20.29365 (12)0.08921 (10)0.59389 (4)0.0251 (2)
O30.39277 (11)0.01871 (10)0.90676 (4)0.02030 (18)
O40.32465 (11)0.58373 (10)0.08794 (4)0.02144 (18)
H4A0.280 (3)0.580 (3)0.0475 (8)0.032*0.74 (3)
O50.10967 (13)0.84664 (10)0.08750 (4)0.0271 (2)
O60.44746 (12)0.77002 (10)0.38406 (4)0.02324 (19)
N10.12203 (14)0.33437 (12)0.51474 (5)0.0211 (2)
H1B0.126 (7)0.290 (5)0.5542 (14)0.032*0.33 (3)
N20.15522 (13)0.57544 (12)0.02868 (5)0.0190 (2)
H4B0.208 (7)0.577 (7)0.0101 (16)0.028*0.26 (3)
C10.27123 (14)0.11283 (13)0.71215 (5)0.0159 (2)
C20.34417 (15)0.00596 (13)0.72592 (5)0.0181 (2)
H20.3669 (19)0.0701 (16)0.6893 (7)0.020 (3)*
C30.38150 (15)0.03646 (13)0.79103 (6)0.0185 (2)
H30.4294410.1189890.7996980.022*
C40.34844 (14)0.05478 (13)0.84434 (5)0.0159 (2)
C50.27662 (14)0.17456 (13)0.83148 (5)0.0163 (2)
H50.2547840.2372970.8674500.020*
C60.23720 (14)0.20155 (12)0.76565 (5)0.0157 (2)
H60.1861150.2819240.7569370.019*
C70.23409 (15)0.14359 (13)0.64133 (5)0.0176 (2)
C80.35498 (18)0.10742 (15)0.96211 (5)0.0244 (3)
H8A0.4285960.2271920.9578340.037*
H8B0.3894430.0698841.0043410.037*
H8C0.2210740.0858510.9620130.037*
C90.29525 (14)0.73995 (13)0.18604 (5)0.0159 (2)
C100.19209 (15)0.88110 (13)0.22204 (5)0.0175 (2)
H100.0888270.9684680.2007110.021*
C110.23745 (15)0.89642 (13)0.28853 (5)0.0180 (2)
H110.1655310.9929370.3126750.022*
C120.38967 (15)0.76852 (13)0.31932 (5)0.0174 (2)
C130.49534 (15)0.62658 (13)0.28356 (5)0.0184 (2)
H130.5998120.5398920.3046220.022*
C140.44744 (15)0.61277 (13)0.21759 (5)0.0173 (2)
H140.5187060.5159030.1935210.021*
C150.23371 (15)0.73027 (13)0.11581 (5)0.0172 (2)
C160.34828 (18)0.91561 (15)0.42219 (6)0.0263 (3)
H16A0.3650211.0117810.4018500.039*
H16B0.3976330.8976160.4684880.039*
H16C0.2144670.9368130.4222420.039*
C170.26553 (17)0.48170 (15)0.50821 (6)0.0252 (3)
H170.3477760.5281360.5456920.030*
C180.29914 (17)0.56891 (15)0.44953 (6)0.0238 (3)
H180.4031640.6728650.4469640.029*
C190.18023 (15)0.50428 (13)0.39398 (5)0.0168 (2)
C200.03222 (17)0.35114 (14)0.40097 (6)0.0226 (2)
H200.0521700.3015470.3643260.027*
C210.00822 (17)0.27103 (14)0.46161 (6)0.0241 (3)
H210.0938650.1662850.4655570.029*
C220.20434 (16)0.45762 (14)0.07493 (5)0.0203 (2)
H220.3140480.3593570.0668000.024*
C230.10326 (16)0.47160 (13)0.13413 (5)0.0193 (2)
H230.1435130.3842250.1654540.023*
C240.05757 (15)0.61441 (13)0.14743 (5)0.0165 (2)
C250.11057 (15)0.73538 (13)0.09840 (5)0.0189 (2)
H250.2209690.8339440.1047890.023*
C260.00299 (16)0.71201 (14)0.04075 (5)0.0198 (2)
H260.0420300.7959850.0079560.024*
C270.21952 (16)0.60443 (13)0.33100 (5)0.0203 (2)
H27A0.3502220.6275640.3181570.024*
H27B0.2133360.7130500.3422220.024*
C280.09391 (15)0.53060 (13)0.26962 (5)0.0171 (2)
H28A0.0352740.5208280.2785370.021*
H28B0.0895350.4180130.2587520.021*
C290.17452 (15)0.64592 (13)0.21094 (5)0.0188 (2)
H29A0.2020960.7614470.2268540.023*
H29B0.2957210.6403330.1993590.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0278 (4)0.0288 (4)0.0157 (4)0.0149 (3)0.0010 (3)0.0051 (3)
O20.0313 (4)0.0287 (4)0.0168 (4)0.0133 (4)0.0017 (3)0.0015 (3)
O30.0236 (4)0.0241 (4)0.0163 (4)0.0128 (3)0.0020 (3)0.0023 (3)
O40.0218 (4)0.0214 (4)0.0188 (4)0.0059 (3)0.0023 (3)0.0059 (3)
O50.0331 (5)0.0214 (4)0.0199 (4)0.0034 (4)0.0091 (4)0.0014 (3)
O60.0308 (4)0.0205 (4)0.0151 (4)0.0068 (3)0.0054 (3)0.0003 (3)
N10.0261 (5)0.0240 (5)0.0157 (4)0.0126 (4)0.0012 (4)0.0013 (4)
N20.0197 (4)0.0230 (5)0.0156 (4)0.0100 (4)0.0013 (4)0.0008 (4)
C10.0125 (4)0.0152 (5)0.0169 (5)0.0021 (4)0.0002 (4)0.0011 (4)
C20.0172 (5)0.0170 (5)0.0186 (5)0.0053 (4)0.0014 (4)0.0009 (4)
C30.0176 (5)0.0170 (5)0.0228 (5)0.0087 (4)0.0004 (4)0.0023 (4)
C40.0129 (4)0.0168 (5)0.0158 (5)0.0033 (4)0.0004 (4)0.0027 (4)
C50.0162 (5)0.0158 (5)0.0161 (5)0.0053 (4)0.0010 (4)0.0001 (4)
C60.0148 (5)0.0137 (5)0.0178 (5)0.0046 (4)0.0009 (4)0.0027 (4)
C70.0161 (5)0.0158 (5)0.0171 (5)0.0023 (4)0.0012 (4)0.0016 (4)
C80.0321 (6)0.0304 (6)0.0151 (5)0.0169 (5)0.0011 (5)0.0019 (4)
C90.0165 (5)0.0168 (5)0.0155 (5)0.0077 (4)0.0002 (4)0.0004 (4)
C100.0166 (5)0.0161 (5)0.0182 (5)0.0047 (4)0.0005 (4)0.0003 (4)
C110.0182 (5)0.0172 (5)0.0175 (5)0.0057 (4)0.0018 (4)0.0023 (4)
C120.0215 (5)0.0197 (5)0.0140 (5)0.0113 (4)0.0013 (4)0.0010 (4)
C130.0184 (5)0.0158 (5)0.0192 (5)0.0050 (4)0.0034 (4)0.0025 (4)
C140.0168 (5)0.0154 (5)0.0196 (5)0.0062 (4)0.0006 (4)0.0015 (4)
C150.0182 (5)0.0185 (5)0.0166 (5)0.0090 (4)0.0004 (4)0.0013 (4)
C160.0360 (7)0.0253 (6)0.0153 (5)0.0095 (5)0.0002 (5)0.0034 (4)
C170.0271 (6)0.0292 (6)0.0171 (5)0.0092 (5)0.0063 (5)0.0007 (5)
C180.0238 (6)0.0237 (6)0.0190 (5)0.0042 (5)0.0049 (5)0.0003 (4)
C190.0195 (5)0.0188 (5)0.0149 (5)0.0108 (4)0.0011 (4)0.0003 (4)
C200.0242 (6)0.0236 (6)0.0166 (5)0.0061 (5)0.0047 (4)0.0002 (4)
C210.0265 (6)0.0219 (5)0.0198 (5)0.0052 (5)0.0009 (5)0.0025 (4)
C220.0190 (5)0.0217 (5)0.0192 (5)0.0071 (4)0.0004 (4)0.0013 (4)
C230.0203 (5)0.0192 (5)0.0179 (5)0.0072 (4)0.0016 (4)0.0038 (4)
C240.0173 (5)0.0206 (5)0.0147 (5)0.0109 (4)0.0008 (4)0.0015 (4)
C250.0175 (5)0.0194 (5)0.0190 (5)0.0063 (4)0.0002 (4)0.0026 (4)
C260.0209 (5)0.0216 (5)0.0175 (5)0.0088 (4)0.0017 (4)0.0043 (4)
C270.0238 (5)0.0185 (5)0.0165 (5)0.0061 (4)0.0032 (4)0.0020 (4)
C280.0174 (5)0.0182 (5)0.0166 (5)0.0078 (4)0.0015 (4)0.0014 (4)
C290.0188 (5)0.0195 (5)0.0168 (5)0.0062 (4)0.0027 (4)0.0025 (4)
Geometric parameters (Å, º) top
O1—C71.3158 (15)C11—C121.3914 (16)
O1—H1A0.869 (17)C11—H110.9500
O2—C71.2229 (13)C12—C131.3995 (15)
O3—C41.3610 (14)C13—C141.3814 (16)
O3—C81.4330 (13)C13—H130.9500
O4—C151.3289 (13)C14—H140.9500
O4—H4A0.879 (16)C16—H16A0.9800
O5—C151.2132 (14)C16—H16B0.9800
O6—C121.3620 (14)C16—H16C0.9800
O6—C161.4356 (14)C17—C181.3769 (17)
N1—C211.3330 (16)C17—H170.9500
N1—C171.3382 (16)C18—C191.3915 (16)
N1—H1B0.889 (19)C18—H180.9500
N2—C221.3360 (15)C19—C201.3874 (16)
N2—C261.3470 (15)C19—C271.5061 (15)
N2—H4B0.87 (2)C20—C211.3838 (17)
C1—C61.3928 (14)C20—H200.9500
C1—C21.3938 (17)C21—H210.9500
C1—C71.4864 (16)C22—C231.3850 (17)
C2—C31.3786 (16)C22—H220.9500
C2—H20.971 (13)C23—C241.3910 (16)
C3—C41.4005 (15)C23—H230.9500
C3—H30.9500C24—C251.3936 (15)
C4—C51.3919 (16)C24—C291.5043 (16)
C5—C61.3878 (15)C25—C261.3755 (17)
C5—H50.9500C25—H250.9500
C6—H60.9500C26—H260.9500
C8—H8A0.9800C27—C281.5190 (16)
C8—H8B0.9800C27—H27A0.9900
C8—H8C0.9800C27—H27B0.9900
C9—C101.3930 (14)C28—C291.5271 (15)
C9—C141.3947 (16)C28—H28A0.9900
C9—C151.4871 (16)C28—H28B0.9900
C10—C111.3882 (16)C29—H29A0.9900
C10—H100.9500C29—H29B0.9900
C7—O1—H1A108.6 (17)O5—C15—C9122.12 (10)
C4—O3—C8116.51 (9)O4—C15—C9114.09 (9)
C15—O4—H4A111.9 (14)O6—C16—H16A109.5
C12—O6—C16117.68 (9)O6—C16—H16B109.5
C21—N1—C17117.75 (10)H16A—C16—H16B109.5
C21—N1—H1B130 (3)O6—C16—H16C109.5
C17—N1—H1B112 (3)H16A—C16—H16C109.5
C22—N2—C26117.21 (10)H16B—C16—H16C109.5
C22—N2—H4B130 (4)N1—C17—C18122.84 (11)
C26—N2—H4B113 (4)N1—C17—H17118.6
C6—C1—C2118.66 (10)C18—C17—H17118.6
C6—C1—C7121.65 (10)C17—C18—C19119.78 (11)
C2—C1—C7119.69 (9)C17—C18—H18120.1
C3—C2—C1121.08 (10)C19—C18—H18120.1
C3—C2—H2119.2 (9)C20—C19—C18117.10 (10)
C1—C2—H2119.7 (9)C20—C19—C27124.59 (10)
C2—C3—C4119.70 (11)C18—C19—C27118.31 (10)
C2—C3—H3120.1C21—C20—C19119.63 (11)
C4—C3—H3120.1C21—C20—H20120.2
O3—C4—C5124.33 (9)C19—C20—H20120.2
O3—C4—C3115.68 (10)N1—C21—C20122.90 (11)
C5—C4—C3119.98 (10)N1—C21—H21118.6
C6—C5—C4119.44 (10)C20—C21—H21118.6
C6—C5—H5120.3N2—C22—C23123.27 (11)
C4—C5—H5120.3N2—C22—H22118.4
C5—C6—C1121.13 (10)C23—C22—H22118.4
C5—C6—H6119.4C22—C23—C24119.58 (11)
C1—C6—H6119.4C22—C23—H23120.2
O2—C7—O1123.73 (11)C24—C23—H23120.2
O2—C7—C1122.00 (11)C23—C24—C25116.96 (11)
O1—C7—C1114.28 (9)C23—C24—C29124.26 (10)
O3—C8—H8A109.5C25—C24—C29118.78 (10)
O3—C8—H8B109.5C26—C25—C24119.98 (10)
H8A—C8—H8B109.5C26—C25—H25120.0
O3—C8—H8C109.5C24—C25—H25120.0
H8A—C8—H8C109.5N2—C26—C25122.97 (10)
H8B—C8—H8C109.5N2—C26—H26118.5
C10—C9—C14119.04 (10)C25—C26—H26118.5
C10—C9—C15117.96 (10)C19—C27—C28118.18 (9)
C14—C9—C15122.98 (10)C19—C27—H27A107.8
C11—C10—C9121.19 (10)C28—C27—H27A107.8
C11—C10—H10119.4C19—C27—H27B107.8
C9—C10—H10119.4C28—C27—H27B107.8
C10—C11—C12119.11 (10)H27A—C27—H27B107.1
C10—C11—H11120.4C27—C28—C29108.07 (9)
C12—C11—H11120.4C27—C28—H28A110.1
O6—C12—C11124.28 (10)C29—C28—H28A110.1
O6—C12—C13115.45 (10)C27—C28—H28B110.1
C11—C12—C13120.27 (10)C29—C28—H28B110.1
C14—C13—C12119.88 (10)H28A—C28—H28B108.4
C14—C13—H13120.1C24—C29—C28117.92 (9)
C12—C13—H13120.1C24—C29—H29A107.8
C13—C14—C9120.51 (10)C28—C29—H29A107.8
C13—C14—H14119.7C24—C29—H29B107.8
C9—C14—H14119.7C28—C29—H29B107.8
O5—C15—O4123.78 (11)H29A—C29—H29B107.2
C6—C1—C2—C30.30 (16)C15—C9—C14—C13178.28 (10)
C7—C1—C2—C3179.49 (9)C10—C9—C15—O57.14 (16)
C1—C2—C3—C40.95 (16)C14—C9—C15—O5174.62 (10)
C8—O3—C4—C52.42 (14)C10—C9—C15—O4172.09 (9)
C8—O3—C4—C3178.29 (9)C14—C9—C15—O46.15 (15)
C2—C3—C4—O3178.75 (9)C21—N1—C17—C180.08 (18)
C2—C3—C4—C50.57 (15)N1—C17—C18—C190.39 (19)
O3—C4—C5—C6179.70 (9)C17—C18—C19—C200.65 (17)
C3—C4—C5—C60.44 (15)C17—C18—C19—C27179.03 (11)
C4—C5—C6—C11.10 (15)C18—C19—C20—C210.48 (17)
C2—C1—C6—C50.73 (15)C27—C19—C20—C21179.17 (11)
C7—C1—C6—C5178.44 (9)C17—N1—C21—C200.26 (18)
C6—C1—C7—O2166.69 (10)C19—C20—C21—N10.03 (19)
C2—C1—C7—O212.48 (15)C26—N2—C22—C231.34 (16)
C6—C1—C7—O113.18 (14)N2—C22—C23—C240.23 (17)
C2—C1—C7—O1167.66 (9)C22—C23—C24—C251.59 (15)
C14—C9—C10—C110.44 (16)C22—C23—C24—C29177.80 (10)
C15—C9—C10—C11177.87 (10)C23—C24—C25—C261.39 (15)
C9—C10—C11—C120.44 (16)C29—C24—C25—C26178.03 (10)
C16—O6—C12—C112.11 (16)C22—N2—C26—C251.55 (16)
C16—O6—C12—C13177.66 (9)C24—C25—C26—N20.18 (17)
C10—C11—C12—O6179.81 (10)C20—C19—C27—C282.62 (17)
C10—C11—C12—C130.04 (16)C18—C19—C27—C28177.73 (10)
O6—C12—C13—C14179.69 (10)C19—C27—C28—C29173.98 (9)
C11—C12—C13—C140.52 (16)C23—C24—C29—C2811.68 (16)
C12—C13—C14—C90.53 (16)C25—C24—C29—C28167.70 (9)
C10—C9—C14—C130.05 (16)C27—C28—C29—C24170.16 (9)
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3 and Cg4 are the centroids of the N2/C22–C26, C1–C6 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.87 (2)1.71 (2)2.5730 (16)170 (3)
O4—H4A···N20.88 (2)1.80 (2)2.6721 (17)171 (2)
N1—H1B···O10.89 (2)1.69 (4)2.5730 (16)171 (5)
N2—H4B···O40.87 (2)1.80 (4)2.6720 (16)177 (7)
C17—H17···O6i0.952.483.342 (2)151
C18—H18···O2ii0.952.603.515 (2)162
C21—H21···O2iii0.952.433.2563 (19)145
C26—H26···O50.952.363.0890 (18)133
C3—H3···Cg4iv0.952.643.4265 (19)140
C5—H5···Cg2v0.952.713.5440 (18)146
C10—H10···Cg3vi0.952.893.5859 (19)131
C28—H28B···Cg4vii0.992.913.7154 (19)139
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y, z+1; (iv) x+1, y1, z+1; (v) x, y+1, z+1; (vi) x, y+1, z1; (vii) x, y+1, z.
Biphenyl-4,4'-dicarboxylic acid–4-methoxypyridine (1/2) (II) top
Crystal data top
C14H9.43O4·C6H7.32NO·C6H7.25NOF(000) = 968.00
Mr = 460.47Dx = 1.395 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 18.354 (6) ÅCell parameters from 20884 reflections
b = 7.4166 (16) Åθ = 3.0–33.0°
c = 16.674 (5) ŵ = 0.10 mm1
β = 104.943 (12)°T = 93 K
V = 2192.9 (10) Å3Block, colorless
Z = 40.45 × 0.40 × 0.35 mm
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
4085 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.035
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 2323
Tmin = 0.963, Tmax = 0.966k = 89
20851 measured reflectionsl = 2121
5026 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: mixed
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0656P)2 + 0.1824P]
where P = (Fo2 + 2Fc2)/3
5026 reflections(Δ/σ)max = 0.001
323 parametersΔρmax = 0.35 e Å3
4 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

_reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.50808 (4)0.28798 (11)0.54421 (5)0.02581 (19)
H1A0.4857 (13)0.300 (3)0.5837 (12)0.039*0.68 (3)
O20.59317 (5)0.45187 (11)0.63520 (5)0.02892 (19)
O30.97286 (4)0.40830 (10)0.19753 (5)0.02486 (18)
H3A0.9981 (11)0.387 (3)0.1612 (11)0.037*0.75 (3)
O40.89523 (5)0.21022 (11)0.11695 (5)0.02858 (19)
O50.31541 (4)0.32860 (10)0.83543 (5)0.02399 (18)
O61.16611 (4)0.33625 (10)0.09371 (5)0.02332 (18)
N10.43554 (5)0.29753 (12)0.65825 (6)0.0224 (2)
H1B0.457 (2)0.279 (6)0.618 (2)0.034*0.32 (3)
N21.05080 (5)0.36571 (12)0.08839 (6)0.0214 (2)
H3B1.029 (3)0.375 (8)0.130 (3)0.032*0.25 (3)
C10.61880 (6)0.37495 (13)0.50687 (6)0.0189 (2)
C20.68583 (6)0.47177 (14)0.52414 (6)0.0209 (2)
H20.69970.54360.57290.025*
C30.73242 (6)0.46464 (14)0.47108 (6)0.0217 (2)
H30.77830.53080.48440.026*
C40.71359 (6)0.36215 (13)0.39803 (6)0.0174 (2)
C50.64529 (6)0.26812 (15)0.38096 (7)0.0234 (2)
H50.63050.19860.33160.028*
C60.59875 (6)0.27387 (15)0.43431 (7)0.0244 (2)
H60.55270.20820.42120.029*
C70.57184 (6)0.37705 (13)0.56804 (6)0.0200 (2)
C80.86113 (6)0.32919 (13)0.23465 (6)0.0194 (2)
C90.79105 (6)0.24541 (14)0.21431 (6)0.0214 (2)
H90.77570.17880.16410.026*
C100.74320 (6)0.25758 (14)0.26609 (6)0.0206 (2)
H100.69540.20000.25050.025*
C110.76402 (6)0.35335 (13)0.34110 (6)0.0178 (2)
C120.83442 (6)0.43886 (14)0.36029 (7)0.0224 (2)
H120.84990.50570.41040.027*
C130.88208 (6)0.42841 (14)0.30799 (7)0.0222 (2)
H130.92920.48920.32220.027*
C140.91111 (6)0.30991 (13)0.17715 (7)0.0204 (2)
C150.37013 (6)0.21013 (14)0.65102 (7)0.0233 (2)
H150.35080.13890.60290.028*
C160.32982 (6)0.21856 (14)0.70967 (7)0.0232 (2)
H160.28390.15380.70230.028*
C170.35741 (6)0.32408 (13)0.78043 (6)0.0198 (2)
C180.42461 (6)0.41775 (14)0.78814 (6)0.0222 (2)
H180.44480.49210.83500.027*
C190.46117 (6)0.39954 (15)0.72562 (7)0.0240 (2)
H190.50710.46320.73090.029*
C200.34345 (7)0.43321 (17)0.90933 (7)0.0282 (2)
H20A0.30740.42800.94360.042*
H20B0.35000.55870.89420.042*
H20C0.39210.38430.94060.042*
C211.11352 (6)0.46206 (14)0.09146 (7)0.0240 (2)
H211.13210.53910.13770.029*
C221.15210 (6)0.45467 (14)0.03100 (7)0.0236 (2)
H221.19590.52620.03530.028*
C231.12592 (6)0.34022 (13)0.03684 (6)0.0192 (2)
C241.06118 (6)0.23911 (14)0.04050 (7)0.0210 (2)
H241.04180.15910.08550.025*
C251.02579 (6)0.25802 (14)0.02294 (7)0.0221 (2)
H250.98110.19050.01970.027*
C261.13950 (7)0.21987 (15)0.16463 (7)0.0261 (2)
H26A1.08870.25700.19520.039*
H26B1.13820.09500.14580.039*
H26C1.17360.22850.20110.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0224 (4)0.0336 (4)0.0239 (4)0.0043 (3)0.0104 (3)0.0059 (3)
O20.0271 (4)0.0399 (5)0.0216 (4)0.0053 (3)0.0095 (3)0.0067 (3)
O30.0229 (4)0.0294 (4)0.0249 (4)0.0019 (3)0.0108 (3)0.0029 (3)
O40.0351 (5)0.0281 (4)0.0277 (4)0.0069 (3)0.0176 (4)0.0069 (3)
O50.0257 (4)0.0266 (4)0.0228 (4)0.0030 (3)0.0119 (3)0.0018 (3)
O60.0227 (4)0.0254 (4)0.0245 (4)0.0023 (3)0.0109 (3)0.0028 (3)
N10.0239 (5)0.0245 (4)0.0211 (4)0.0038 (4)0.0096 (4)0.0032 (4)
N20.0214 (4)0.0209 (4)0.0237 (5)0.0025 (3)0.0092 (4)0.0015 (3)
C10.0203 (5)0.0185 (5)0.0182 (5)0.0041 (4)0.0057 (4)0.0032 (4)
C20.0238 (5)0.0215 (5)0.0170 (4)0.0001 (4)0.0047 (4)0.0017 (4)
C30.0202 (5)0.0240 (5)0.0207 (5)0.0034 (4)0.0051 (4)0.0012 (4)
C40.0187 (5)0.0161 (4)0.0172 (5)0.0037 (4)0.0044 (4)0.0027 (4)
C50.0243 (5)0.0260 (5)0.0209 (5)0.0037 (4)0.0076 (4)0.0057 (4)
C60.0212 (5)0.0290 (5)0.0245 (5)0.0053 (4)0.0083 (4)0.0051 (4)
C70.0198 (5)0.0209 (5)0.0196 (5)0.0037 (4)0.0055 (4)0.0025 (4)
C80.0222 (5)0.0178 (4)0.0194 (5)0.0029 (4)0.0075 (4)0.0030 (4)
C90.0238 (5)0.0227 (5)0.0172 (5)0.0002 (4)0.0047 (4)0.0021 (4)
C100.0186 (5)0.0229 (5)0.0201 (5)0.0010 (4)0.0047 (4)0.0004 (4)
C110.0191 (5)0.0160 (4)0.0183 (5)0.0033 (4)0.0051 (4)0.0024 (4)
C120.0239 (5)0.0231 (5)0.0209 (5)0.0020 (4)0.0069 (4)0.0043 (4)
C130.0205 (5)0.0234 (5)0.0233 (5)0.0026 (4)0.0072 (4)0.0014 (4)
C140.0232 (5)0.0182 (5)0.0210 (5)0.0020 (4)0.0081 (4)0.0031 (4)
C150.0288 (6)0.0205 (5)0.0209 (5)0.0009 (4)0.0071 (4)0.0004 (4)
C160.0246 (5)0.0206 (5)0.0255 (5)0.0026 (4)0.0087 (4)0.0003 (4)
C170.0215 (5)0.0191 (5)0.0203 (5)0.0037 (4)0.0082 (4)0.0048 (4)
C180.0211 (5)0.0254 (5)0.0199 (5)0.0004 (4)0.0051 (4)0.0008 (4)
C190.0213 (5)0.0279 (5)0.0234 (5)0.0007 (4)0.0070 (4)0.0022 (4)
C200.0280 (6)0.0383 (6)0.0206 (5)0.0024 (5)0.0103 (4)0.0039 (5)
C210.0244 (5)0.0237 (5)0.0249 (5)0.0014 (4)0.0077 (4)0.0042 (4)
C220.0204 (5)0.0230 (5)0.0280 (5)0.0031 (4)0.0075 (4)0.0021 (4)
C230.0184 (5)0.0181 (5)0.0222 (5)0.0042 (4)0.0070 (4)0.0038 (4)
C240.0204 (5)0.0201 (5)0.0226 (5)0.0006 (4)0.0057 (4)0.0003 (4)
C250.0198 (5)0.0200 (5)0.0270 (5)0.0002 (4)0.0069 (4)0.0032 (4)
C260.0307 (6)0.0246 (5)0.0255 (5)0.0005 (4)0.0114 (5)0.0036 (4)
Geometric parameters (Å, º) top
O1—C71.3130 (13)C9—C101.3841 (15)
O1—H1A0.866 (17)C9—H90.9500
O2—C71.2202 (13)C10—C111.4029 (14)
O3—C141.3168 (13)C10—H100.9500
O3—H3A0.868 (16)C11—C121.4003 (15)
O4—C141.2198 (13)C12—C131.3875 (15)
O5—C171.3420 (13)C12—H120.9500
O5—C201.4345 (13)C13—H130.9500
O6—C231.3435 (13)C15—C161.3715 (16)
O6—C261.4436 (13)C15—H150.9500
N1—C191.3353 (15)C16—C171.3974 (15)
N1—C151.3422 (15)C16—H160.9500
N1—H1B0.88 (2)C17—C181.3924 (15)
N2—C251.3347 (14)C18—C191.3841 (16)
N2—C211.3446 (15)C18—H180.9500
N2—H3B0.88 (2)C19—H190.9500
C1—C21.3890 (15)C20—H20A0.9800
C1—C61.3899 (15)C20—H20B0.9800
C1—C71.4955 (15)C20—H20C0.9800
C2—C31.3809 (15)C21—C221.3743 (16)
C2—H20.9500C21—H210.9500
C3—C41.4013 (14)C22—C231.3967 (15)
C3—H30.9500C22—H220.9500
C4—C51.3981 (15)C23—C241.3931 (15)
C4—C111.4885 (15)C24—C251.3838 (16)
C5—C61.3837 (15)C24—H240.9500
C5—H50.9500C25—H250.9500
C6—H60.9500C26—H26A0.9800
C8—C91.3894 (15)C26—H26B0.9800
C8—C131.3937 (15)C26—H26C0.9800
C8—C141.4949 (15)
C7—O1—H1A106.0 (15)C12—C13—H13119.8
C14—O3—H3A107.3 (14)C8—C13—H13119.8
C17—O5—C20117.29 (9)O4—C14—O3123.73 (10)
C23—O6—C26117.38 (8)O4—C14—C8121.99 (10)
C19—N1—C15117.52 (10)O3—C14—C8114.27 (9)
C19—N1—H1B127 (3)N1—C15—C16123.26 (10)
C15—N1—H1B115 (3)N1—C15—H15118.4
C25—N2—C21117.36 (10)C16—C15—H15118.4
C25—N2—H3B124 (4)C15—C16—C17118.88 (10)
C21—N2—H3B119 (4)C15—C16—H16120.6
C2—C1—C6118.75 (10)C17—C16—H16120.6
C2—C1—C7119.25 (9)O5—C17—C18125.15 (10)
C6—C1—C7121.97 (9)O5—C17—C16116.36 (9)
C3—C2—C1120.60 (9)C18—C17—C16118.48 (10)
C3—C2—H2119.7C19—C18—C17118.15 (10)
C1—C2—H2119.7C19—C18—H18120.9
C2—C3—C4121.53 (10)C17—C18—H18120.9
C2—C3—H3119.2N1—C19—C18123.71 (10)
C4—C3—H3119.2N1—C19—H19118.1
C5—C4—C3117.05 (9)C18—C19—H19118.1
C5—C4—C11121.38 (9)O5—C20—H20A109.5
C3—C4—C11121.57 (9)O5—C20—H20B109.5
C6—C5—C4121.57 (10)H20A—C20—H20B109.5
C6—C5—H5119.2O5—C20—H20C109.5
C4—C5—H5119.2H20A—C20—H20C109.5
C5—C6—C1120.49 (10)H20B—C20—H20C109.5
C5—C6—H6119.8N2—C21—C22123.29 (10)
C1—C6—H6119.8N2—C21—H21118.4
O2—C7—O1123.81 (10)C22—C21—H21118.4
O2—C7—C1121.71 (10)C21—C22—C23118.92 (10)
O1—C7—C1114.45 (9)C21—C22—H22120.5
C9—C8—C13118.61 (10)C23—C22—H22120.5
C9—C8—C14118.90 (9)O6—C23—C24125.08 (9)
C13—C8—C14122.50 (9)O6—C23—C22116.62 (9)
C10—C9—C8121.00 (10)C24—C23—C22118.30 (10)
C10—C9—H9119.5C25—C24—C23118.37 (10)
C8—C9—H9119.5C25—C24—H24120.8
C9—C10—C11121.21 (10)C23—C24—H24120.8
C9—C10—H10119.4N2—C25—C24123.75 (10)
C11—C10—H10119.4N2—C25—H25118.1
C12—C11—C10117.15 (10)C24—C25—H25118.1
C12—C11—C4121.55 (9)O6—C26—H26A109.5
C10—C11—C4121.30 (9)O6—C26—H26B109.5
C13—C12—C11121.68 (10)H26A—C26—H26B109.5
C13—C12—H12119.2O6—C26—H26C109.5
C11—C12—H12119.2H26A—C26—H26C109.5
C12—C13—C8120.33 (10)H26B—C26—H26C109.5
C6—C1—C2—C31.35 (15)C9—C8—C13—C121.60 (15)
C7—C1—C2—C3176.47 (9)C14—C8—C13—C12178.50 (9)
C1—C2—C3—C40.75 (15)C9—C8—C14—O46.65 (15)
C2—C3—C4—C50.35 (15)C13—C8—C14—O4173.45 (10)
C2—C3—C4—C11179.56 (9)C9—C8—C14—O3173.64 (9)
C3—C4—C5—C60.85 (15)C13—C8—C14—O36.26 (14)
C11—C4—C5—C6179.06 (10)C19—N1—C15—C161.16 (15)
C4—C5—C6—C10.25 (17)N1—C15—C16—C170.51 (16)
C2—C1—C6—C50.86 (16)C20—O5—C17—C182.33 (14)
C7—C1—C6—C5176.90 (9)C20—O5—C17—C16178.78 (9)
C2—C1—C7—O24.87 (15)C15—C16—C17—O5179.48 (9)
C6—C1—C7—O2172.88 (10)C15—C16—C17—C180.51 (15)
C2—C1—C7—O1177.12 (9)O5—C17—C18—C19179.69 (9)
C6—C1—C7—O15.13 (14)C16—C17—C18—C190.81 (15)
C13—C8—C9—C100.89 (15)C15—N1—C19—C180.82 (15)
C14—C8—C9—C10179.21 (9)C17—C18—C19—N10.15 (16)
C8—C9—C10—C110.58 (15)C25—N2—C21—C220.17 (15)
C9—C10—C11—C121.30 (15)N2—C21—C22—C230.80 (16)
C9—C10—C11—C4178.20 (9)C26—O6—C23—C240.86 (14)
C5—C4—C11—C12176.28 (10)C26—O6—C23—C22179.47 (9)
C3—C4—C11—C123.63 (14)C21—C22—C23—O6179.22 (9)
C5—C4—C11—C103.20 (14)C21—C22—C23—C240.47 (15)
C3—C4—C11—C10176.89 (9)O6—C23—C24—C25179.92 (9)
C10—C11—C12—C130.58 (15)C22—C23—C24—C250.42 (14)
C4—C11—C12—C13178.92 (9)C21—N2—C25—C240.82 (15)
C11—C12—C13—C80.87 (16)C23—C24—C25—N21.12 (15)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the C8–C13 and N2/C21–C25 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.87 (2)1.73 (2)2.5882 (15)173 (2)
O3—H3A···N20.87 (2)1.74 (2)2.6078 (15)175 (2)
N1—H1B···O10.88 (2)1.73 (5)2.5882 (16)167 (5)
N2—H3B···O30.88 (2)1.74 (6)2.6077 (15)169 (5)
C10—H10···O2i0.952.573.4146 (17)148
C19—H19···O20.952.523.1901 (17)128
C20—H20A···O6ii0.982.603.3210 (18)131
C25—H25···O40.952.543.2035 (17)127
C26—H26B···O4iii0.982.433.3874 (17)167
C12—H12···Cg4iv0.952.903.6968 (16)142
C21—H21···Cg2iv0.952.643.5284 (16)155
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y, z+1; (iii) x+2, y, z; (iv) x+2, y+1/2, z+1/2.
 

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCruz, C., Delgado, R., Drew, M. G. B. & Felix, V. (2004). Org. Biomol. Chem. 2, 2911–2918.  CSD CrossRef PubMed CAS Google Scholar
First citationDu, M., You, Y.-P. & Zhang, Z.-H. (2006). Acta Cryst. C62, o33–o35.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGong, H.-Y., Rambo, B. M., Karnas, E., Lynch, V. M., Keller, K. M. & Sessler, J. L. (2011). J. Am. Chem. Soc. 133, 1526–1533.  CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGrunert, M., Howie, A., Kaeding, A. & Imrie, C. T. (1997). J. Mater. Chem. 7, 211–214.  CSD CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKato, T., Fréchet, J. M. J., Wilson, P. G., Saito, T., Uryu, T., Fujishima, A., Jin, C. & Kaneuchi, F. (1993). Chem. Mater. 5, 1094–1100.  CrossRef CAS Web of Science Google Scholar
First citationKato, T., Wilson, P. G., Fujishima, A. & Fréchet, J. M. J. (1990). Chem. Lett. pp. 2003–2006.  CrossRef Web of Science Google Scholar
First citationMukherjee, A. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 1375–1385.  Web of Science CSD CrossRef CAS Google Scholar
First citationRamon, G., Davies, K. & Nassimbeni, L. R. (2014). CrstEngComm, 16, 5802–5810.  CSD CrossRef CAS Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTabuchi, Y., Gotoh, K. & Ishida, H. (2015a). Acta Cryst. E71, 1290–1295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTabuchi, Y., Gotoh, K. & Ishida, H. (2015b). Acta Cryst. E71, 1340–1344.  CSD CrossRef IUCr Journals Google Scholar
First citationTabuchi, Y., Gotoh, K. & Ishida, H. (2016a). Acta Cryst. E72, 1666–1671.  CSD CrossRef IUCr Journals Google Scholar
First citationTabuchi, Y., Gotoh, K. & Ishida, H. (2016b). Acta Cryst. E72, 1771–1775.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds