research communications
Isomorphous crystal structures of chlorodiacetylene and iododiacetylene derivatives: simultaneous hydrogen and halogen bonds on carbonyl
aDépartement de Chimie, Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Québec, J1E 4K1, Canada, bLaboratoire d'Analyses Structurales par Diffraction des Rayons-X, Département de Chimie, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada, and cLaboratoire de Synthèse Supramoléculaire, Département de Chimie, Institut de Pharmacologie, Université de Sherbrooke, 3001 12e avenue nord, Sherbrooke, QC, J1H 5N4, Canada
*Correspondence e-mail: pierre.baillargeon@usherbrooke.ca
The crystal structures of tert-butyl (5-chloropenta-2,4-diyn-1-yl)carbamate, C10H12ClNO2 (II), and tert-butyl (5-iodopenta-2,4-diyn-1-yl)carbamate, C10H12INO2 (IV), are isomorphous to previously reported structures and accordingly their molecular and supramolecular structures are similar. In the crystals of (II) and (IV), molecules are linked into very similar two-dimensional wall organizations with antiparallel carbamate groups involved in a combination of hydrogen and halogen bonds (bifurcated N—H⋯O=C and C≡C—X⋯O=C interactions on the same carbonyl group). There is no long-range parallel stacking of diynes, so the topochemical polymerization of diacetylene is prevented. A Cambridge Structural Database search revealed that C≡C—X⋯O=C contacts shorter than the sum of the van der Waals radii are scarce (only one structure for the C≡C—Cl⋯O=C interaction and 13 structures for the similar C≡C—I⋯O=C interaction).
1. Chemical context
Hydrogen bonds (HBs) and halogen bonds (XBs) are considered to be useful noncovalent synthetic tools in crystal engineering (Aakeröy et al., 2015; Grabowski, 2016; Resnati et al., 2015; Cinčić et al., 2008). Indeed, these directional intermolecular interactions facilitate the preparation of the desired solid-state motifs and architectures (Gilday et al., 2015; Cavallo et al., 2016; Priimagi et al., 2013; Mukherjee et al., 2014; Shirman et al., 2015; Mukherjee et al., 2017). For example, using HBs and XBs, the specific organization of terminal diacetylenes (Li et al., 2009; Ouyang et al., 2003), bromodiacetylenes (Jin et al., 2015) and iododiacetylenes (Jin et al., 2013; Sun et al., 2006) has been obtained to achieve the solid-state topochemical polymerization of diacetylenes. On the other hand, to the best of our knowledge, no chlorodiacetylene topochemical polymerizations have been reported. Our results show that chlorodiacetylene (II) is isostructural to iododiacetylene (IV) and the previously reported bromodiacetylene (III) and terminal diacetylene (I) (Baillargeon et al., 2016) (see Scheme). Although the arrangement of diynes in the present article stands no chance of undergoing topochemical polymerization, we suggest that in other systems prone to polymerization, replacing Br, I or H atoms by Cl atoms in their diyne groups might result in successful PolyChloroDiAcetylene (PCDA) formation as well. This work also contributes to an emerging research theme, namely the concept of orthogonal molecular interactions such as HBs and XBs (Kratzer et al., 2015; Takemura et al., 2014; Voth et al., 2009), which may find applications in medicinal chemistry and chemical biology (Wilcken et al., 2013).
2. Structural commentary
The molecular structures of compounds (II) and (IV) are shown in Fig. 1. All bond lengths and angles are within normal ranges. For example, the internal diyne C2—C3 bonds lengths [1.376 (3) Å for (II) and 1.385 (4) Å for (IV)] follow the useful rule of thumb describing a C—C single-bond distance (1.54 Å) decreasing by 0.04 Å each time one of the participating C atoms changes from sp3 to sp2 or from sp2 to sp (Bent, 1961). Moreover, the observed distances are almost identical to those found recently in the literature for similar halodiynes (Hoheisel et al., 2013; Baillargeon et al., 2016). The relative orientation between the diacetylenic moiety and the carbamate can be established by the absolute value of the torsion angles C4—C5—N1—C6 [111.07 (19)°] for (II) and [103.8 (3)°] for (IV).
3. Supramolecular features
In the crystals of compounds (II) and (IV), molecules are linked via an N—H⋯O=C hydrogen bond between their respective carbamate functionalities [N1—H1⋯O1i (Table 1) and N1—H1⋯O2i (Table 2)], generating an antiparallel stacking pattern which orients the diacetylene skeleton on each side of the one-dimensional carbamate tape (parts B and D in Fig. 2). For both crystals, the simultaneous presence of halogen and hydrogen bonds with the carbamate O atom have been found. Indeed, additional halogen-bond interactions occur with the carbamate O atom [Cl1⋯O1ii for (II) and I1⋯O2ii for (IV)], resulting in an infinite two-dimensional network that can be considered as polar supramolecular walls. This arrangement is similar to our previous work (Baillargeon et al., 2016) on the terminal diacetylene (I) (part A in Fig. 2) and the bromodiacetylene (III) (part C in Fig. 2). In fact, diynes (I)–(IV) (Fig. 2) constitute a complete set of truly that can be carefully examined to evaluate the differences and similarities that exist between halogen and hydrogen bonds. Thus, the X⋯O⋯H angle increases as the size of the halogen atom becomes larger. This angle, which is pretty open in the chlorine crystal (II) (Cl1⋯O1⋯H1; part B in Fig. 2; 69°) adopts a near orthogonal geometry with the iodine (I1⋯O2⋯H1; part D in Fig. 2; 83°). It is not a surprise that the bromine crystal (III) represents an intermediate case (part C in Fig. 2; 72°). The value for the terminal diacetylene (I) X = H (part A in Fig. 2; 76°) is closely related to the bromodiacetylene (Baillargeon et al., 2016).
|
4. Database survey
A survey of the Cambridge Structural Database (Conquest Version 1.19; CSD, Version 5.38, November 2016 plus 3 updates; Groom et al., 2016) furnished 404 hits of terminal CC—H having close contacts with carbonyl O=C (shorter than the sum of their van der Waals radii). On the other hand, similar contacts from halogenoalkyne analogs are scarce (1 hit for the chloroalkyne, 4 hits for the bromoalkyne and 13 hits for the iodoalkyne; Table 3). For the iodoalkyne, results are limited to monovalent iodine and for a structure in which the carbonyl group is not involved in an organometallic complex.
5. Synthesis and crystallization
5.1. Compound (II)
Tetra-n-butylammonium fluoride (TBAF, 0.437 ml, 1 M in THF, 0.437 mmol), AgNO3 (39 mg, 0.23 mmol) and NCS (190 mg, 1.42 mmol) were added to a solution of BocNHCH2—C≡C—C≡C—TMS (183 mg, 0.728 mmol) in acetonitrile (3 ml) at room temperature. The resulting mixture was stirred for 2.5 h under N2 in the absence of light. Purification of the crude product by flash on silica gel, eluting with mixtures of Hex/DCM/Et2O (gradient from 9:1:1 to 1:1:1), provided compound (II) as a beige solid (yield 72 mg, 46%). Single crystals suitable for X-ray diffraction were prepared by diffusion of pentane into a chloroform solution of (II) at 263 K. RF = 0.43 (2:1:1 Hex/DCM/Et2O); IR (UATR, ν, cm−1): 3326, 2977, 2920, 2255, 2168, 1673, 1531, 1421, 1368, 1278, 1248, 1222, 1158, 1143, 1042, 1028, 933, 849, 761, 718, 655; 1H NMR (400 MHz, CDCl3): δ 4.72 (br, 1H), 3.99 (d, 2H), 1.45 (s, 9H); HRMS (m/z): calculated for C10H12ClNNaO2 [MNa+]: 236.0449, found: 236.0448.
5.2. Compound (IV)
TBAF (0.437 ml, 1 M in THF, 0.437 mmol), AgNO3 (39 mg, 0.23 mmol) and NIS (328 mg, 1.46 mmol) were added to a solution of BocNHCH2—C≡C—C≡C—TMS (183 mg, 0.728 mmol) in acetonitrile (3 ml) at room temperature. The resulting mixture was stirred for 2.5 h under N2 in the absence of light. Purification of the crude product by flash on silica gel, eluting with mixtures of Hex/DCM/Et2O (gradient from 9:1:1 to 1:1:1) provided compound (IV) as a beige solid (yield 95 mg, 43%). Single crystals suitable for X-ray diffraction were prepared by slow evaporation from a chloroform solution of (IV) at room temperature. RF = 0.48 (2:1:1 Hex/DCM/Et2O); IR (UATR, ν, cm−1): 3328, 2980, 2933, 2230, 2159, 1661, 1532, 1451, 1420, 1367, 1284, 1250, 1154, 1142, 1042, 1026, 929, 851, 762, 714, 647; 1H NMR (400 MHz, CDCl3): δ 4.73 (br, 1H), 4.02 (d, 2H), 1.44 (s, 9H).
6. Refinement
Crystal data, data collection and structure .
details are summarized in Table 4
|
Supporting information
https://doi.org/10.1107/S2056989017010155/mw2133sup1.cif
contains datablocks global, II, IV. DOI:Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989017010155/mw2133IIsup2.hkl
Structure factors: contains datablock IV. DOI: https://doi.org/10.1107/S2056989017010155/mw2133IVsup3.hkl
For both structures, data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).C10H12ClNO2 | F(000) = 448 |
Mr = 213.66 | Dx = 1.283 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 8841 reflections |
a = 10.336 (3) Å | θ = 2.8–26.4° |
b = 9.171 (3) Å | µ = 0.32 mm−1 |
c = 11.870 (3) Å | T = 173 K |
β = 100.656 (5)° | Plate, orange |
V = 1105.8 (5) Å3 | 0.34 × 0.22 × 0.02 mm |
Z = 4 |
Bruker APEXII diffractometer | 2249 independent reflections |
Radiation source: sealed x-ray tube | 1755 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
φ or ω oscillation scans | θmax = 26.4°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −12→12 |
Tmin = 0.66, Tmax = 0.745 | k = −11→11 |
16132 measured reflections | l = −9→14 |
Refinement on F2 | 0 constraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.089 | w = 1/[σ2(Fo2) + (0.0397P)2 + 0.2863P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
2249 reflections | Δρmax = 0.22 e Å−3 |
130 parameters | Δρmin = −0.21 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.40035 (19) | 0.0211 (2) | 0.15762 (16) | 0.0343 (4) | |
C2 | 0.50716 (18) | −0.0266 (2) | 0.15615 (16) | 0.0336 (4) | |
C3 | 0.63096 (19) | −0.0798 (2) | 0.15309 (16) | 0.0336 (4) | |
C4 | 0.73990 (19) | −0.1223 (2) | 0.15037 (16) | 0.0334 (4) | |
C5 | 0.87519 (17) | −0.1687 (2) | 0.14761 (17) | 0.0339 (4) | |
H5A | 0.882935 | −0.274828 | 0.16243 | 0.041* | |
H5B | 0.894345 | −0.150569 | 0.070125 | 0.041* | |
C6 | 1.04144 (17) | −0.15939 (19) | 0.32333 (15) | 0.0271 (4) | |
C7 | 1.22986 (18) | −0.11065 (19) | 0.47967 (15) | 0.0304 (4) | |
C8 | 1.1748 (2) | −0.1841 (2) | 0.57483 (17) | 0.0439 (5) | |
H8A | 1.106364 | −0.122368 | 0.597047 | 0.066* | |
H8B | 1.245644 | −0.198955 | 0.641132 | 0.066* | |
H8C | 1.136913 | −0.278618 | 0.547923 | 0.066* | |
C9 | 1.32333 (19) | −0.2075 (2) | 0.42986 (18) | 0.0408 (5) | |
H9A | 1.278745 | −0.298815 | 0.40299 | 0.061* | |
H9B | 1.400577 | −0.228971 | 0.488902 | 0.061* | |
H9C | 1.351283 | −0.15766 | 0.365371 | 0.061* | |
C10 | 1.2953 (2) | 0.0332 (2) | 0.52078 (19) | 0.0449 (5) | |
H10A | 1.324136 | 0.082715 | 0.456527 | 0.067* | |
H10B | 1.371735 | 0.014414 | 0.581378 | 0.067* | |
H10C | 1.232365 | 0.095115 | 0.550916 | 0.067* | |
Cl1 | 0.24981 (4) | 0.08590 (5) | 0.15756 (4) | 0.03061 (14) | |
N1 | 0.97160 (14) | −0.09282 (16) | 0.23144 (13) | 0.0314 (4) | |
H1 | 0.984766 | 0.000739 | 0.221551 | 0.038* | |
O1 | 1.03225 (13) | −0.28874 (13) | 0.34594 (11) | 0.0361 (3) | |
O2 | 1.12149 (12) | −0.06256 (12) | 0.38708 (11) | 0.0311 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0342 (11) | 0.0349 (11) | 0.0334 (11) | −0.0009 (9) | 0.0055 (8) | 0.0009 (8) |
C2 | 0.0337 (11) | 0.0333 (10) | 0.0323 (11) | −0.0036 (8) | 0.0019 (8) | 0.0007 (8) |
C3 | 0.0333 (11) | 0.0300 (10) | 0.0346 (11) | −0.0005 (8) | −0.0011 (8) | 0.0016 (8) |
C4 | 0.0339 (11) | 0.0279 (10) | 0.0350 (11) | −0.0023 (8) | −0.0028 (8) | −0.0006 (8) |
C5 | 0.0309 (10) | 0.0311 (10) | 0.0368 (11) | 0.0013 (8) | −0.0014 (8) | −0.0030 (8) |
C6 | 0.0264 (9) | 0.0222 (9) | 0.0323 (10) | −0.0014 (7) | 0.0045 (7) | −0.0023 (7) |
C7 | 0.0311 (10) | 0.0269 (10) | 0.0299 (10) | 0.0017 (8) | −0.0026 (8) | 0.0021 (8) |
C8 | 0.0524 (13) | 0.0429 (12) | 0.0369 (12) | 0.0014 (10) | 0.0091 (10) | 0.0049 (9) |
C9 | 0.0344 (11) | 0.0415 (12) | 0.0451 (13) | 0.0056 (9) | 0.0037 (9) | 0.0019 (9) |
C10 | 0.0468 (13) | 0.0339 (11) | 0.0462 (13) | −0.0041 (10) | −0.0121 (10) | −0.0007 (9) |
Cl1 | 0.0268 (2) | 0.0320 (3) | 0.0337 (3) | 0.00451 (19) | 0.00733 (18) | 0.00090 (19) |
N1 | 0.0303 (8) | 0.0220 (8) | 0.0381 (9) | −0.0024 (7) | −0.0036 (7) | 0.0013 (7) |
O1 | 0.0409 (8) | 0.0217 (7) | 0.0427 (8) | −0.0034 (6) | 0.0003 (6) | 0.0014 (6) |
O2 | 0.0314 (7) | 0.0220 (7) | 0.0358 (8) | −0.0009 (5) | −0.0049 (6) | −0.0006 (5) |
C1—C2 | 1.191 (3) | C6—N1 | 1.339 (2) |
C1—Cl1 | 1.666 (2) | C6—O2 | 1.347 (2) |
C2—C3 | 1.376 (3) | C7—O2 | 1.484 (2) |
C3—C4 | 1.198 (3) | C7—C9 | 1.511 (3) |
C4—C5 | 1.468 (3) | C7—C8 | 1.513 (3) |
C5—N1 | 1.449 (2) | C7—C10 | 1.521 (3) |
C6—O1 | 1.224 (2) | ||
C2—C1—Cl1 | 178.9 (2) | O2—C7—C9 | 109.55 (15) |
C1—C2—C3 | 179.0 (2) | O2—C7—C8 | 110.41 (15) |
C4—C3—C2 | 178.2 (2) | C9—C7—C8 | 112.70 (16) |
C3—C4—C5 | 177.8 (2) | O2—C7—C10 | 102.12 (14) |
N1—C5—C4 | 112.49 (16) | C9—C7—C10 | 110.89 (17) |
O1—C6—N1 | 124.66 (17) | C8—C7—C10 | 110.67 (17) |
O1—C6—O2 | 125.48 (17) | C6—N1—C5 | 122.64 (16) |
N1—C6—O2 | 109.86 (15) | C6—O2—C7 | 121.42 (13) |
O1—C6—N1—C5 | 0.3 (3) | N1—C6—O2—C7 | −166.78 (14) |
O2—C6—N1—C5 | −178.98 (15) | C9—C7—O2—C6 | 59.3 (2) |
C4—C5—N1—C6 | 111.1 (2) | C8—C7—O2—C6 | −65.4 (2) |
O1—C6—O2—C7 | 13.9 (3) | C10—C7—O2—C6 | 176.85 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.88 | 2.09 | 2.935 | 162 |
C1—Cl1···O1ii | 1.67 | 3.13 | 4.793 | 179 |
Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2. |
C10H12INO2 | F(000) = 592 |
Mr = 305.11 | Dx = 1.635 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 9940 reflections |
a = 11.1587 (16) Å | θ = 2.3–26.4° |
b = 9.0288 (13) Å | µ = 2.56 mm−1 |
c = 12.9899 (18) Å | T = 173 K |
β = 108.731 (2)° | Prism, yellow |
V = 1239.4 (3) Å3 | 0.36 × 0.3 × 0.28 mm |
Z = 4 |
Bruker APEXII diffractometer | 2532 independent reflections |
Radiation source: sealed x-ray tube | 2342 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.02 |
φ or ω oscillation scans | θmax = 26.4°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −12→13 |
Tmin = 0.675, Tmax = 0.745 | k = −11→11 |
17970 measured reflections | l = −15→16 |
Refinement on F2 | 0 constraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.022 | H-atom parameters constrained |
wR(F2) = 0.054 | w = 1/[σ2(Fo2) + (0.0203P)2 + 1.7447P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
2532 reflections | Δρmax = 1.32 e Å−3 |
130 parameters | Δρmin = −0.69 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2157 (2) | 1.0340 (3) | 0.3437 (2) | 0.0328 (6) | |
C2 | 0.3210 (2) | 1.0012 (3) | 0.34873 (19) | 0.0304 (5) | |
C3 | 0.4425 (2) | 0.9623 (3) | 0.35280 (19) | 0.0279 (5) | |
C4 | 0.5465 (2) | 0.9286 (3) | 0.35525 (19) | 0.0275 (5) | |
C5 | 0.6760 (2) | 0.8938 (3) | 0.35692 (19) | 0.0282 (5) | |
H5A | 0.736704 | 0.927089 | 0.42691 | 0.034* | |
H5B | 0.684833 | 0.785076 | 0.352172 | 0.034* | |
C6 | 0.7111 (2) | 0.8882 (2) | 0.18051 (19) | 0.0219 (4) | |
C7 | 0.7579 (3) | 0.9226 (3) | 0.0094 (2) | 0.0344 (6) | |
C8 | 0.7976 (4) | 1.0622 (3) | −0.0367 (3) | 0.0511 (8) | |
H8A | 0.730469 | 1.136625 | −0.049832 | 0.077* | |
H8B | 0.812386 | 1.038609 | −0.105307 | 0.077* | |
H8C | 0.875616 | 1.101212 | 0.015278 | 0.077* | |
C9 | 0.6338 (4) | 0.8624 (4) | −0.0654 (3) | 0.0559 (9) | |
H9A | 0.611252 | 0.772368 | −0.033698 | 0.084* | |
H9B | 0.642508 | 0.839113 | −0.136337 | 0.084* | |
H9C | 0.567195 | 0.936832 | −0.074587 | 0.084* | |
C10 | 0.8637 (3) | 0.8100 (4) | 0.0377 (3) | 0.0506 (8) | |
H10A | 0.936443 | 0.849222 | 0.095807 | 0.076* | |
H10B | 0.888703 | 0.789497 | −0.02666 | 0.076* | |
H10C | 0.834626 | 0.718248 | 0.062297 | 0.076* | |
N1 | 0.7077 (2) | 0.9636 (2) | 0.26832 (16) | 0.0263 (4) | |
H1 | 0.725256 | 1.058913 | 0.272455 | 0.032* | |
O1 | 0.73962 (17) | 0.97953 (18) | 0.11063 (13) | 0.0272 (4) | |
O2 | 0.69111 (17) | 0.75519 (18) | 0.16743 (14) | 0.0289 (4) | |
I1 | 0.04221 (2) | 1.09875 (2) | 0.33737 (2) | 0.03907 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0294 (14) | 0.0398 (14) | 0.0301 (13) | 0.0020 (11) | 0.0106 (10) | 0.0027 (11) |
C2 | 0.0333 (14) | 0.0328 (13) | 0.0263 (12) | −0.0012 (11) | 0.0110 (10) | 0.0031 (10) |
C3 | 0.0312 (14) | 0.0309 (13) | 0.0250 (11) | −0.0015 (10) | 0.0139 (10) | 0.0011 (10) |
C4 | 0.0337 (14) | 0.0284 (12) | 0.0236 (11) | −0.0036 (10) | 0.0135 (10) | 0.0005 (9) |
C5 | 0.0298 (13) | 0.0321 (13) | 0.0259 (12) | 0.0007 (10) | 0.0132 (10) | 0.0032 (10) |
C6 | 0.0180 (11) | 0.0216 (11) | 0.0271 (11) | 0.0013 (8) | 0.0087 (9) | 0.0020 (9) |
C7 | 0.0490 (17) | 0.0323 (13) | 0.0293 (13) | −0.0017 (12) | 0.0229 (12) | −0.0034 (10) |
C8 | 0.085 (3) | 0.0407 (17) | 0.0437 (17) | −0.0055 (16) | 0.0430 (18) | 0.0016 (13) |
C9 | 0.067 (2) | 0.065 (2) | 0.0325 (15) | −0.0141 (18) | 0.0106 (15) | −0.0046 (15) |
C10 | 0.065 (2) | 0.0415 (17) | 0.063 (2) | 0.0074 (15) | 0.0446 (18) | −0.0051 (15) |
N1 | 0.0334 (11) | 0.0215 (10) | 0.0304 (10) | −0.0039 (8) | 0.0191 (9) | −0.0015 (8) |
O1 | 0.0396 (10) | 0.0196 (8) | 0.0293 (9) | 0.0004 (7) | 0.0209 (7) | 0.0004 (7) |
O2 | 0.0348 (10) | 0.0197 (8) | 0.0352 (9) | −0.0030 (7) | 0.0157 (8) | −0.0001 (7) |
I1 | 0.02499 (10) | 0.04928 (12) | 0.04157 (11) | 0.00657 (8) | 0.00878 (7) | 0.00614 (8) |
C1—C2 | 1.193 (4) | C7—C9 | 1.514 (4) |
C1—I1 | 1.999 (3) | C7—C8 | 1.521 (4) |
C2—C3 | 1.385 (4) | C8—H8A | 0.98 |
C3—C4 | 1.191 (4) | C8—H8B | 0.98 |
C4—C5 | 1.472 (3) | C8—H8C | 0.98 |
C5—N1 | 1.452 (3) | C9—H9A | 0.98 |
C5—H5A | 0.99 | C9—H9B | 0.98 |
C5—H5B | 0.99 | C9—H9C | 0.98 |
C6—O2 | 1.223 (3) | C10—H10A | 0.98 |
C6—O1 | 1.338 (3) | C10—H10B | 0.98 |
C6—N1 | 1.340 (3) | C10—H10C | 0.98 |
C7—O1 | 1.486 (3) | N1—H1 | 0.88 |
C7—C10 | 1.512 (4) | ||
C2—C1—I1 | 177.3 (3) | H8A—C8—H8B | 109.5 |
C1—C2—C3 | 179.1 (3) | C7—C8—H8C | 109.5 |
C4—C3—C2 | 179.4 (3) | H8A—C8—H8C | 109.5 |
C3—C4—C5 | 177.4 (3) | H8B—C8—H8C | 109.5 |
N1—C5—C4 | 112.5 (2) | C7—C9—H9A | 109.5 |
N1—C5—H5A | 109.1 | C7—C9—H9B | 109.5 |
C4—C5—H5A | 109.1 | H9A—C9—H9B | 109.5 |
N1—C5—H5B | 109.1 | C7—C9—H9C | 109.5 |
C4—C5—H5B | 109.1 | H9A—C9—H9C | 109.5 |
H5A—C5—H5B | 107.8 | H9B—C9—H9C | 109.5 |
O2—C6—O1 | 125.7 (2) | C7—C10—H10A | 109.5 |
O2—C6—N1 | 124.3 (2) | C7—C10—H10B | 109.5 |
O1—C6—N1 | 110.00 (19) | H10A—C10—H10B | 109.5 |
O1—C7—C10 | 109.6 (2) | C7—C10—H10C | 109.5 |
O1—C7—C9 | 109.6 (2) | H10A—C10—H10C | 109.5 |
C10—C7—C9 | 113.4 (3) | H10B—C10—H10C | 109.5 |
O1—C7—C8 | 101.7 (2) | C6—N1—C5 | 122.3 (2) |
C10—C7—C8 | 110.5 (3) | C6—N1—H1 | 118.8 |
C9—C7—C8 | 111.5 (3) | C5—N1—H1 | 118.8 |
C7—C8—H8A | 109.5 | C6—O1—C7 | 121.17 (18) |
C7—C8—H8B | 109.5 | ||
O2—C6—N1—C5 | −1.7 (4) | N1—C6—O1—C7 | 175.9 (2) |
O1—C6—N1—C5 | 178.5 (2) | C10—C7—O1—C6 | −58.9 (3) |
C4—C5—N1—C6 | −103.9 (3) | C9—C7—O1—C6 | 66.1 (3) |
O2—C6—O1—C7 | −3.9 (4) | C8—C7—O1—C6 | −175.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.88 | 2.04 | 2.881 | 160 |
C1—I1···O2ii | 2.00 | 2.95 | 4.919 | 168 |
Symmetry codes: (i) −x+3/2, y+3/2, −z+3/2; (ii) −x+1/2, y+3/2, −z+3/2. |
CC—X···O═C contacts | Crystal structure | Space group | X···O distance (Å) | C—X···O angle (°) | Reference |
CC—Cl···O═C | NIDWAA | P1 | 3.111; 3.241 | 152.59; 158.76 | Kawai et al. (2013) |
CC—Br···O═C | HEVWAI | C2 | 2.959 | 158.12 | Hoheisel et al. (2013) |
CC—Br···O═C | HEVWAI01 | P212121 | 2.966 | 166.70 | Hoheisel et al. (2013) |
CC—Br···O═C | NIDWII | P21/n | 2.867 | 171.11 | Kawai et al. (2013) |
CC—Br···O═C | KAMXII | P21/c | 3.060 | 178.26 | Baillargeon et al. (2016) |
CC—I···O═C | COHYUU | P1 | 3.096 | 164.55 | Luo et al. (2008) |
CC—I···O═C | IYAYUC | Pca21 | 2.861 | 170.36 | Hou et al. (2004) |
CC—I···O═C | MASVUZ | P21/n | 2.834; 2.887 | 170.72; 172.97 | Perkins et al. (2012) |
CC—I···O═C | TOYPUS | P21/c | 2.933 | 175.36 | Avtomonov et al. (1997) |
CC—I···O═C | HOWXIC | P21/c | 2.887 | 169.51 | Dumele et al. (2014) |
CC—I···O═C | LUNKOW | P2/c | 2.791 | 174.12 | Kratzer et al. (2015) |
CC—I···O═C | LUNKUC | P21/c | 2.754 | 172.63 | Kratzer et al. (2015) |
CC—I···O═C | LUNLAJ | P21/c | 2.773 | 173.70 | Kratzer et al. (2015) |
CC—I···O═C | LUNLIR | Pca21 | 2.858 | 170.94 | Kratzer et al. (2015) |
CC—I···O═C | LUNLOX | C2/c | 2.763 | 175.58 | Kratzer et al. (2015) |
CC—I···O═C | IBUYAI | P21/m | 2.856 | 177.96 | Dumele et al. (2017) |
CC—I···O═C | IBUYOW | P21/c | 2.830 | 176.52 | Dumele et al. (2017) |
CC—I···O═C | IBUYUC | P1 | 2.878 | 177.89 | Dumele et al. (2017) |
Funding information
Funding for this research was provided by: Fonds de Recherche du Québec – Nature et Technologies (grant No. 2016-CO-194882); Centre d'étude et de recherche transdisciplinaire étudiants-enseignants (CERTEE, Cégep de Sherbrooke); Fondation du Cégep de Sherbrooke.
References
Aakeröy, C. B., Spartz, C. L., Dembowski, S., Dwyre, S. & Desper, J. (2015). IUCrJ, 2, 498–510. Web of Science CSD CrossRef PubMed IUCr Journals Google Scholar
Avtomonov, E. V., Grüning, R. & Lorberth, J. (1997). Z. Naturforsch. Teil B, 52, 256–258. CAS Google Scholar
Baillargeon, P., Caron-Duval, É., Pellerin, É., Gagné, S. & Dory, Y. L. (2016). Crystals, 6, 37–49. CSD CrossRef Google Scholar
Bent, H. A. (1961). Chem. Rev. 61, 275–311. CrossRef CAS Web of Science Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601. Web of Science CrossRef CAS PubMed Google Scholar
Cinčić, D., Friščić, T. & Jones, W. (2008). Chem. Mater. 20, 6623–6626. Google Scholar
Dumele, O., Schreib, B., Warzok, U., Trapp, N., Schalley, C. A. & Diederich, F. (2017). Angew. Chem. Int. Ed. 56, 1152–1157. CSD CrossRef CAS Google Scholar
Dumele, O., Wu, D., Trapp, N., Goroff, N. & Diederich, F. (2014). Org. Lett. 16, 4722–4725. Web of Science CSD CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gilday, L. C., Robinson, S. W., Barendt, T. A., Langton, M. J., Mullaney, B. R. & Beer, P. D. (2015). Chem. Rev. 115, 7118–7195. Web of Science CrossRef CAS PubMed Google Scholar
Grabowski, S. J. (2016). Crystals, 6, 59–63. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hoheisel, T. N., Schrettl, S., Marty, R., Todorova, T. K., Corminboeuf, C. & Sienkiewicz, A. (2013). Nat. Chem. 5, 327–334. CSD CrossRef CAS PubMed Google Scholar
Hou, Z.-K., Ren, Y.-G., Huang, M.-Z., Song, J. & Chen, L.-G. (2004). Acta Cryst. E60, o1336–o1337. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jin, H., Plonka, A. M., Parise, J. B. & Goroff, N. S. (2013). CrystEngComm, 15, 3106–3110. Web of Science CSD CrossRef CAS Google Scholar
Jin, H., Young, C. N., Halada, G. P., Phillips, B. L. & Goroff, N. S. (2015). Angew. Chem. Int. Ed. 54, 14690–14695. CSD CrossRef CAS Google Scholar
Kawai, H., Utamura, T., Motoi, E., Takahashi, T., Sugino, H., Tamura, M., Ohkita, M., Fujiwara, K., Saito, T., Tsuji, T. & Suzuki, T. (2013). Chem. Eur. J. 19, 4513–4524. CSD CrossRef CAS PubMed Google Scholar
Kratzer, P., Ramming, B., Römisch, S. & Maas, G. (2015). CrystEngComm, 17, 4486–4494. CSD CrossRef CAS Google Scholar
Li, Z., Fowler, F. W. & Lauher, J. W. (2009). J. Am. Chem. Soc. 131, 634–643. Web of Science CSD CrossRef PubMed CAS Google Scholar
Luo, L., Wilhelm, C., Sun, A., Grey, C. P., Lauher, J. W. & Goroff, N. S. (2008). J. Am. Chem. Soc. 130, 7702–7709. CSD CrossRef PubMed CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mukherjee, A., Teyssandier, J., Hennrich, G., De Feyter, S. & Mali, K. S. (2017). Chem. Sci. 8, 3759–3769. CrossRef CAS PubMed Google Scholar
Mukherjee, A., Tothadi, S. & Desiraju, G. R. (2014). Acc. Chem. Res. 47, 2514–2524. Web of Science CrossRef CAS PubMed Google Scholar
Ouyang, X., Fowler, F. W. & Lauher, J. W. (2003). J. Am. Chem. Soc. 125, 12400–12401. CSD CrossRef PubMed CAS Google Scholar
Perkins, C., Libri, S., Adams, H. & Brammer, L. (2012). CrystEngComm, 14, 3033–3038. Web of Science CSD CrossRef CAS Google Scholar
Priimagi, A., Cavallo, G., Metrangolo, P. & Restani, R. (2013). Acc. Chem. Res. 46, 2686–2695. CrossRef CAS PubMed Google Scholar
Resnati, G., Boldyreva, E., Bombicz, P. & Kawano, M. (2015). IUCrJ, 2, 675–690. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shirman, T., Boterashvili, M., Orbach, M., Freeman, D., Shimon, L. J. W., Lahav, M. & van der Boom, M. E. (2015). Cryst. Growth Des. 15, 4756–4759. Web of Science CSD CrossRef CAS Google Scholar
Sun, A., Lauher, J. W. & Goroff, N. S. (2006). Science, 312, 1030–1034. Web of Science CSD CrossRef PubMed CAS Google Scholar
Takemura, A., McAllister, L. J., Hart, S., Pridmore, N. E., Karadakov, P. B., Whitwood, A. C. & Bruce, D. W. (2014). Chem. Eur. J. 20, 6721–6732. Web of Science CSD CrossRef CAS PubMed Google Scholar
Voth, A. R., Khuu, P., Oishi, K. & Ho, P. S. (2009). Nat. Chem. 1, 74–79. Web of Science CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.