research communications
Crystal structures of three 1-[4-(4-bromobutoxy)phenyl] chalcone derivatives: (E)-1-[4-(4-bromobutoxy)phenyl]-3-phenylprop-2-en-1-one, (E)-1-[4-(4-bromobutoxy)phenyl]-3-(4-methoxyphenyl)prop-2-en-1-one and (E)-1-[4-(4-bromobutoxy)phenyl]-3-(3,4-dimethoxyphenyl)prop-2-en-1-one
aDepartment of Physics, S.D.N.B. Vaishnav College for Women, Chromepet, Chennai 600 044, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: lakssdnbvc@gmail.com
The crystal structures of three viz. (E)-1-[4-(4-bromobutoxy)phenyl]-3-phenylprop-2-en-1-one, C19H19BrO2, (I), (E)-1-[4-(4-bromobutoxy)phenyl]-3-(4-methoxyphenyl)prop-2-en-1-one, C20H21BrO3, (II), and (E)-1-[4-(4-bromobutoxy)phenyl]-3-(3,4-dimethoxyphenyl)prop-2-en-1-one, C21H23BrO4, (III), are reported. In all molecules, the conformation of the keto group with respect to the olefinic bond is s-cis. Molecules of (I) and (II) are nearly planar, while molecule (III) is not planar. In the crystal of compounds (I) and (II), molecules are linked into chains parallel to the c axis by C—H⋯π interactions. In the crystal of compound (III), molecules are linked by a pairs of C—H⋯O hydrogen bonds, forming inversion dimers. Weak C—Br⋯π interactions are also observed in (III).
with a bromo-substituted butoxy side chain,1. Chemical context
α,β-unsaturated carbonyl system. In these materials, the C=O bond acts as an electron-withdrawing group, and electron-rich substituents in the aromatic rings serve as electron-donating groups, forming a so-called D—π⋯A type molecule. When the electron-rich groups are located on the 4 and/or 4′ positions, the electron flow follows a Λ-shaped path, and therefore the molecule is called a Λ-shaped molecule (Devia et al., 1999).
are 1,3-diphenyl-2-propene-1-one derivatives, in which two aromatic rings are linked by a three carbonChalcones are abundant in edible plants and are considered to be precursors of et al., 2009). Alkoxylated have been synthesized by the Claisen–Schmidt condensation reaction (Ghosh & Das, 2014) using substituted acetophenones and arylaldehydes in the presence of ethanol and NaOH (Syam et al., 2012) , methanol and NaOH (Kumar et al., 2010), methanol and KOH (Bello et al., 2011), ethanol and KOH (Shenvi et al., 2013) and Mg(HSO4)2 (Maleraju et al., 2013) under appropriate conditions. possess antibacterial (Vibhute et al., 2003), antileishmanial (Nielsen et al., 1998), antimicrobial (Prasad et al., 2006), antituberculosis (Sivakumar et al., 2007), antitumor (Kumar et al., 2003), antihyperglycemic (Satyanarayana et al., 2004) and anticancer activities (Sweety et al., 2010). Methoxy exhibit anti-mitotic activity (Go et al., 2005) and radical scavenging activity (Yayli et al., 2004). They play a critical role of methoxylation in both inhibition of breast cancer resistance protein ABCG2 and cytotoxicity (Valdameri et al., 2012). 2,4-Dihydroxy-6-methoxy-3,5-dimethyl chalcone has (in vitro) anti-tumor activity (Ye et al., 2004), and 2,4-diallyloxy-6-methoxy chalcone has anti-trypanosoma cruzi activity (Aponte et al., 2008). In 1-(4-benzimidazol-1-yl-phenyl)-3-(2,4-dimethoxy-phenyl)-propen-1-one chalcone, the presence of methoxy groups at positions 2 and 4 appears to be favourable for antimalarial activity (Yadav et al., 2012). with methoxy, dimethoxy or trimethoxy substituents on one of the phenyl rings exhibit antimalarial property (Liu et al., 2001). Of the possessing methoxy and butoxy side chains, 2,4-dimethoxy-4-butoxychalcone exhibits potent activity against the human malaria parasite (Chen et al., 1997). 1-(4-Butoxy-2-hydroxyphenyl)-3-(2,5-dimethoxyphenyl) prop-2-en-1-one chalcone has antimicrobial activity (Barot et al., 2013).
and (PatilChalcone compounds are widely used in organic solid et al., 1995). Chalcone derivatives show non-linear optical (NLO) properties with excellent blue light transmittance and good crystallizability (Shettigar et al., 2006). The substitution of bromine to o-nitro aniline increases its SHG conversion efficiency substantially and is matter of interest in research (Bappaliage et al., 2010). In the presence of a bromo substituent is useful to obtain good quality single crystals (Prabhu et al., 2013). The transparency and the thermal stability of the materials can be improved when the compounds are substituted with a bromo group (Zhao et al., 2000). Chalcone derivatives with p-methoxyphenyl groups possess first order hyperpolarizability and good optical transparency for non-linear optical applications (Muhammad et al., 2016). In view of the importance of methoxy- and bromo-substituted butoxy side chains in the crystal structures of the three title were determined and analysed.
(Goud2. Structural commentary
The molecular structures of the title compounds (I), (II) and (III) are shown in Figs. 1, 2 and 3, respectively. All three molecules contain a chalcone unit consisting of two phenyl rings (ring A: C5–C10; ring B: C14–C19) connected by an enone moiety with a bromobutoxy side chain attached at the 4-position of one of the phenyl rings. In molecule (I), no other substitution is present, in molecule (II) a methoxy side chain is attached to ring B at the 4-position and in molecule (III), two methoxy side chains are attached at the 3- and 4-positions of ring B. All of them crystallize in the monoclinic P21/c with Z = 4. All three molecules adopt an s-cis conformation about the central olefinic C12=C13 bond with O2—C11—C12—C13 torsion angles of −3.2 (4), −1.6 (5) and −21.5 (4)°, respectively, and the hydrogen atoms of the central enone groups are trans-arranged with respect to the C12=C13 double bond. Molecules (I) and (II) are nearly planar with dihedral angles of 2.32 (13) and 2.33 (15)°, respectively, between the phenyl rings, while molecule (III) is non-planar with a dihedral angle of 50.96 (14)°. The dihedral angles between the atoms of the mean plane of the enone group O2/C11/C12/C13 with rings A and B are 3.10 (13), 5.34 (11)° in compound (I), 4.45 (13), 5.62 (13)° in compound (II) and 26.70 (11), 24.24 (10)° in compound (III). The increase in these values from compound (I) to compound (III) may be attributed to the presence of methoxy substitutents (Chopra et al., 2007). The methoxy groups are twisted slightly from the mean plane of ring B with torsion angles of −3.3 (4)° (C20—O3—C17—C16) in molecule (II), 7.3 (4)° (C19—C18—O4—C21) and −9.3 (5)° (C16—C17—O3—C20) in molecule (III).
In compounds (I) and (III), the bromoalkoxyl tail is roughly co-planar with the attached benzene ring with C6—C5—O1—C4 torsion angles of −0.9 (4) and 2.5 (4)°, respectively. The deviation of the bromoalkoxyl tail starts from the beginning of the aliphatic chain, as shown by the C5—O1—C4—C3 torsion angles of −179.0 (2) and 177.9 (2)° in (I) and (III), respectively. In compound (II), the bromoalkoxyl tail is twisted from the attached ring A with a C6—C5—O1—C4 torsion angle of 179.7 (3)°.
In compounds (I) and (II), the shortest distances between parallel C=C double bonds are 4.2059 (16) and 4.2881 (18) Å, which are close to the reference value of 4.2 Å for a photo-reactive crystal (Turowska-Tyrk et al., 2003). In compound (III), the shortest distance between neighbouring ethylenic double bonds is 4.6818 (16) Å, indicating that these crystals might be photo inert.
3. Supramolecular features
The packing for molecules (I), (II) and (III) is shown in Figs. 4, 5 and 6, respectively. In the absence of strong hydrogen-bond donors in compounds (I) and (II), the crystal packing is stabilized by weak intermolecular interactions (Nishio et al., 1995). The involvement of the benzene rings, which are a reservoir of charges in the C—H⋯π interaction, leads to intermolecular conjugation (Patil et al., 2013) and plays an important role in controlling the stereoselectivity of the organic reactions (Nishio et al., 2005). The C—H⋯π interaction in compound (I) involves the C2 carbon atom via atom H2A of ring A and the centroid of ring B of a symmetry-related molecule (Table 1), forming chains parallel to the c axis. In compound (II), molecules are linked into chains parallel to the c axis by two C—H⋯π interactions involving the C2 and C3 carbon atoms via atoms H2B and H3A of ring A and the centroid of ring B of two symmetry-related molecules (Table 2).
|
|
In compound (III), inversion-related molecules are linked into dimers through pairs of intermolecular hydrogen bonds involving the C10 carbon atom of ring A via atom H10 and the O3 oxygen atom (Table 3). In addition, a non-covalent C—Br⋯Cg interaction involving a lone-electron pair of the Br atom with the antibonding orbitals of ring B is observed [Br1⋯Cgii = 3.6577 (12) Å; Cg is the centroid of ring B; symmetry code: (ii) 1 − x, − + y, − z] having a `face-on' geometry (Imai et al., 2008). This interaction plays an important role in generating packing motifs (Prasanna & Guru Row, 2000; Saraogi et al., 2003), and it may influence the SHG response of the compound (Harrison et al., 2005).
4. Database survey
A search of the Cambridge Structural Database (Version 5.36, last update May 2015; Groom et al., 2016) revealed that the number of compounds based on the chemical unit of chalcone yielded 2168 hits. This involved some compounds with ring closure at the C=C bridge. Avoiding these, the search for the basic unit with two phenyl rings joined by an enone moiety of the title compounds yielded 604 hits. The search for a methoxy substitution on one of the phenyl rings of the basic unit gave 124 hits. Extending the search to bromomethoxy, bromoethoxy, bromopropiloxy and bromobutoxy side chains on the other phenyl ring at the 4- position yielded no hits.
5. Synthesis and crystallization
Chalcone bromides were prepared through condensation of 4-hydroxyacetophenone (1 equiv.) with benzaldehyde (1 equiv.) for compound (I), 4-methoxybenzaldehyde (1 equiv.) for compound (II) and 4,5-methoxybenzaldehyde (1 equiv.) for compound (III) in 10% NaOH solution (10 ml). After stirring at room temperature for 12 h, the reaction mixtures were poured into ice–water (100 ml), filtered, and the products purified by column chromatography.
Mixtures of chalcone (1 equiv.), 1,4-dibromobutane (1.2 equiv.) and anhydrous potassium carbonate (2 equiv.) in dry acetone (40 mL) were then stirred at 333 K for 12 h. After completion of reactions, the solvents were evaporated under reduced pressure and the residues extracted with CH2Cl2 (3 × 100 ml). The organic layers were separated, washed with brine (1 × 150 ml), dried over anhydrous Na2SO4 and evaporated to give the crude bromo compounds, which were purified by (SiO2) using a mixture of hexane/CHCl3 (9:2 v/v) as to afford yellow solids. The compounds were recrystallized by slow evaporation of chloroform solutions.
6. Refinement
Crystal data, data collection and structure . For all compounds, H atoms were localized in difference-Fourier maps and were constrained geometrically with C—H = 0.93, 0.96 and 0.97 Å for aryl, methyl and methylene H atoms, respectively. The Uiso(H) values were set to 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.
details are summarized in Table 4Supporting information
https://doi.org/10.1107/S2056989017010052/rz5217sup1.cif
contains datablocks I, II, III, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017010052/rz5217Isup5.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989017010052/rz5217IIsup6.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989017010052/rz5217IIIsup7.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017010052/rz5217Isup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989017010052/rz5217IIsup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989017010052/rz5217IIIsup7.cml
For all structures, data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C19H19BrO2 | F(000) = 736 |
Mr = 359.25 | Dx = 1.436 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 5.8266 (6) Å | Cell parameters from 6044 reflections |
b = 38.743 (4) Å | θ = 2.8–21.7° |
c = 7.5613 (7) Å | µ = 2.48 mm−1 |
β = 103.257 (3)° | T = 296 K |
V = 1661.4 (3) Å3 | Needle, gold |
Z = 4 | 0.35 × 0.30 × 0.25 mm |
Bruker Kappa APEXII CCD diffractometer | 2144 reflections with I > 2σ(I) |
Bruker axs kappa axes2 CCD scans | Rint = 0.039 |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | θmax = 25.0°, θmin = 2.1° |
Tmin = 0.485, Tmax = 0.746 | h = −6→6 |
23972 measured reflections | k = −46→46 |
2900 independent reflections | l = −8→8 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.125 | w = 1/[σ2(Fo2) + (0.0813P)2 + 0.1673P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
2900 reflections | Δρmax = 0.30 e Å−3 |
199 parameters | Δρmin = −0.46 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.63319 (7) | 0.02039 (2) | 0.28807 (6) | 0.0939 (2) | |
O1 | 1.3193 (3) | 0.15598 (5) | 0.4937 (2) | 0.0578 (5) | |
O2 | 1.6704 (3) | 0.30949 (6) | 0.5960 (3) | 0.0744 (6) | |
C13 | 1.3051 (4) | 0.35758 (7) | 0.5004 (3) | 0.0493 (6) | |
H13 | 1.457574 | 0.364911 | 0.552739 | 0.059* | |
C14 | 1.1307 (4) | 0.38479 (6) | 0.4445 (3) | 0.0444 (6) | |
C9 | 1.5977 (4) | 0.23866 (7) | 0.5833 (4) | 0.0539 (7) | |
H9 | 1.749154 | 0.246902 | 0.631214 | 0.065* | |
C12 | 1.2744 (5) | 0.32437 (7) | 0.4863 (4) | 0.0546 (7) | |
H12 | 1.123062 | 0.316027 | 0.439286 | 0.066* | |
C11 | 1.4674 (4) | 0.29937 (7) | 0.5411 (3) | 0.0496 (6) | |
C3 | 1.1193 (5) | 0.10260 (7) | 0.4330 (3) | 0.0520 (7) | |
H3A | 1.175461 | 0.095894 | 0.559141 | 0.062* | |
H3B | 1.237229 | 0.095679 | 0.367946 | 0.062* | |
C10 | 1.5605 (5) | 0.20382 (7) | 0.5711 (4) | 0.0578 (7) | |
H10 | 1.686048 | 0.188748 | 0.610467 | 0.069* | |
C8 | 1.4155 (4) | 0.26206 (7) | 0.5261 (3) | 0.0439 (6) | |
C6 | 1.1532 (4) | 0.21352 (7) | 0.4416 (4) | 0.0548 (7) | |
H6 | 1.002310 | 0.205235 | 0.392078 | 0.066* | |
C4 | 1.0918 (5) | 0.14099 (7) | 0.4224 (3) | 0.0507 (6) | |
H4A | 1.032283 | 0.148097 | 0.297230 | 0.061* | |
H4B | 0.981320 | 0.148492 | 0.492860 | 0.061* | |
C5 | 1.3371 (4) | 0.19087 (7) | 0.5003 (3) | 0.0464 (6) | |
C1 | 0.9244 (5) | 0.04563 (7) | 0.3742 (4) | 0.0587 (7) | |
H1A | 0.987509 | 0.040162 | 0.501287 | 0.070* | |
H1B | 1.038552 | 0.038203 | 0.306780 | 0.070* | |
C2 | 0.8918 (5) | 0.08388 (6) | 0.3542 (3) | 0.0502 (6) | |
H2A | 0.771652 | 0.091292 | 0.416000 | 0.060* | |
H2B | 0.838630 | 0.089656 | 0.226542 | 0.060* | |
C19 | 1.1987 (5) | 0.41926 (7) | 0.4658 (4) | 0.0573 (7) | |
H19 | 1.354784 | 0.424683 | 0.518908 | 0.069* | |
C7 | 1.1941 (5) | 0.24836 (7) | 0.4565 (4) | 0.0536 (6) | |
H7 | 1.067877 | 0.263371 | 0.418390 | 0.064* | |
C15 | 0.8943 (4) | 0.37777 (8) | 0.3649 (3) | 0.0535 (7) | |
H15 | 0.842960 | 0.354994 | 0.350901 | 0.064* | |
C18 | 1.0390 (7) | 0.44548 (8) | 0.4097 (4) | 0.0720 (9) | |
H18 | 1.087551 | 0.468362 | 0.425886 | 0.086* | |
C16 | 0.7374 (6) | 0.40399 (9) | 0.3074 (4) | 0.0693 (8) | |
H16 | 0.581280 | 0.398904 | 0.252541 | 0.083* | |
C17 | 0.8100 (7) | 0.43798 (9) | 0.3303 (4) | 0.0759 (10) | |
H17 | 0.702642 | 0.455717 | 0.291748 | 0.091* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0793 (3) | 0.0526 (3) | 0.1425 (4) | −0.01202 (17) | 0.0105 (3) | 0.00946 (19) |
O1 | 0.0514 (11) | 0.0425 (11) | 0.0732 (12) | 0.0031 (9) | 0.0014 (9) | 0.0009 (9) |
O2 | 0.0448 (11) | 0.0562 (13) | 0.1106 (16) | −0.0067 (10) | −0.0061 (11) | 0.0055 (11) |
C13 | 0.0426 (14) | 0.0507 (17) | 0.0530 (15) | −0.0049 (12) | 0.0077 (11) | −0.0015 (12) |
C14 | 0.0486 (14) | 0.0432 (14) | 0.0439 (13) | −0.0015 (11) | 0.0159 (11) | −0.0026 (11) |
C9 | 0.0357 (14) | 0.0565 (17) | 0.0631 (16) | 0.0006 (12) | −0.0019 (12) | 0.0013 (13) |
C12 | 0.0427 (15) | 0.0470 (17) | 0.0689 (17) | −0.0027 (12) | 0.0017 (12) | −0.0008 (13) |
C11 | 0.0403 (14) | 0.0525 (16) | 0.0526 (14) | −0.0029 (12) | 0.0036 (12) | 0.0026 (12) |
C3 | 0.0592 (17) | 0.0469 (15) | 0.0478 (14) | 0.0034 (12) | 0.0078 (12) | −0.0001 (12) |
C10 | 0.0417 (15) | 0.0525 (17) | 0.0742 (18) | 0.0114 (13) | 0.0032 (13) | 0.0065 (14) |
C8 | 0.0378 (13) | 0.0489 (15) | 0.0436 (13) | 0.0012 (11) | 0.0065 (10) | 0.0029 (11) |
C6 | 0.0377 (14) | 0.0500 (16) | 0.0700 (17) | −0.0036 (12) | −0.0012 (12) | 0.0013 (13) |
C4 | 0.0505 (15) | 0.0475 (15) | 0.0529 (14) | 0.0008 (12) | 0.0095 (12) | −0.0012 (12) |
C5 | 0.0476 (15) | 0.0430 (15) | 0.0472 (14) | 0.0017 (11) | 0.0079 (11) | 0.0023 (11) |
C1 | 0.0672 (18) | 0.0437 (15) | 0.0617 (16) | 0.0014 (13) | 0.0077 (13) | 0.0006 (13) |
C2 | 0.0577 (16) | 0.0429 (15) | 0.0488 (14) | 0.0028 (12) | 0.0095 (12) | 0.0015 (11) |
C19 | 0.0635 (17) | 0.0482 (16) | 0.0639 (16) | −0.0033 (14) | 0.0223 (14) | −0.0028 (13) |
C7 | 0.0388 (14) | 0.0465 (15) | 0.0699 (16) | 0.0049 (12) | 0.0009 (12) | 0.0057 (13) |
C15 | 0.0492 (16) | 0.0563 (17) | 0.0542 (15) | 0.0000 (13) | 0.0101 (12) | −0.0039 (12) |
C18 | 0.096 (3) | 0.0493 (18) | 0.081 (2) | 0.0084 (17) | 0.0413 (19) | 0.0064 (15) |
C16 | 0.0599 (18) | 0.086 (3) | 0.0608 (17) | 0.0186 (18) | 0.0116 (14) | 0.0076 (16) |
C17 | 0.090 (3) | 0.075 (2) | 0.069 (2) | 0.036 (2) | 0.0307 (19) | 0.0242 (17) |
Br1—C1 | 1.937 (3) | C8—C7 | 1.383 (3) |
O1—C5 | 1.356 (3) | C6—C7 | 1.371 (4) |
O1—C4 | 1.434 (3) | C6—C5 | 1.377 (4) |
O2—C11 | 1.225 (3) | C6—H6 | 0.9300 |
C13—C12 | 1.300 (4) | C4—H4A | 0.9700 |
C13—C14 | 1.458 (4) | C4—H4B | 0.9700 |
C13—H13 | 0.9300 | C1—C2 | 1.497 (4) |
C14—C19 | 1.392 (4) | C1—H1A | 0.9700 |
C14—C15 | 1.397 (3) | C1—H1B | 0.9700 |
C9—C10 | 1.367 (4) | C2—H2A | 0.9700 |
C9—C8 | 1.388 (3) | C2—H2B | 0.9700 |
C9—H9 | 0.9300 | C19—C18 | 1.377 (4) |
C12—C11 | 1.470 (4) | C19—H19 | 0.9300 |
C12—H12 | 0.9300 | C7—H7 | 0.9300 |
C11—C8 | 1.475 (4) | C15—C16 | 1.370 (4) |
C3—C4 | 1.496 (4) | C15—H15 | 0.9300 |
C3—C2 | 1.509 (4) | C18—C17 | 1.363 (5) |
C3—H3A | 0.9700 | C18—H18 | 0.9300 |
C3—H3B | 0.9700 | C16—C17 | 1.382 (5) |
C10—C5 | 1.383 (4) | C16—H16 | 0.9300 |
C10—H10 | 0.9300 | C17—H17 | 0.9300 |
C5—O1—C4 | 118.3 (2) | C3—C4—H4B | 110.2 |
C12—C13—C14 | 128.2 (2) | H4A—C4—H4B | 108.5 |
C12—C13—H13 | 115.9 | O1—C5—C6 | 125.2 (2) |
C14—C13—H13 | 115.9 | O1—C5—C10 | 115.7 (2) |
C19—C14—C15 | 117.6 (3) | C6—C5—C10 | 119.2 (2) |
C19—C14—C13 | 119.9 (2) | C2—C1—Br1 | 112.62 (19) |
C15—C14—C13 | 122.5 (2) | C2—C1—H1A | 109.1 |
C10—C9—C8 | 121.7 (2) | Br1—C1—H1A | 109.1 |
C10—C9—H9 | 119.1 | C2—C1—H1B | 109.1 |
C8—C9—H9 | 119.1 | Br1—C1—H1B | 109.1 |
C13—C12—C11 | 123.2 (2) | H1A—C1—H1B | 107.8 |
C13—C12—H12 | 118.4 | C1—C2—C3 | 110.9 (2) |
C11—C12—H12 | 118.4 | C1—C2—H2A | 109.5 |
O2—C11—C12 | 120.1 (2) | C3—C2—H2A | 109.5 |
O2—C11—C8 | 120.3 (2) | C1—C2—H2B | 109.5 |
C12—C11—C8 | 119.6 (2) | C3—C2—H2B | 109.5 |
C4—C3—C2 | 112.5 (2) | H2A—C2—H2B | 108.1 |
C4—C3—H3A | 109.1 | C18—C19—C14 | 121.2 (3) |
C2—C3—H3A | 109.1 | C18—C19—H19 | 119.4 |
C4—C3—H3B | 109.1 | C14—C19—H19 | 119.4 |
C2—C3—H3B | 109.1 | C6—C7—C8 | 122.6 (2) |
H3A—C3—H3B | 107.8 | C6—C7—H7 | 118.7 |
C9—C10—C5 | 120.3 (2) | C8—C7—H7 | 118.7 |
C9—C10—H10 | 119.8 | C16—C15—C14 | 120.9 (3) |
C5—C10—H10 | 119.8 | C16—C15—H15 | 119.6 |
C7—C8—C9 | 116.6 (2) | C14—C15—H15 | 119.6 |
C7—C8—C11 | 124.2 (2) | C17—C18—C19 | 120.2 (3) |
C9—C8—C11 | 119.2 (2) | C17—C18—H18 | 119.9 |
C7—C6—C5 | 119.5 (2) | C19—C18—H18 | 119.9 |
C7—C6—H6 | 120.2 | C15—C16—C17 | 120.3 (3) |
C5—C6—H6 | 120.2 | C15—C16—H16 | 119.9 |
O1—C4—C3 | 107.7 (2) | C17—C16—H16 | 119.9 |
O1—C4—H4A | 110.2 | C18—C17—C16 | 119.9 (3) |
C3—C4—H4A | 110.2 | C18—C17—H17 | 120.0 |
O1—C4—H4B | 110.2 | C16—C17—H17 | 120.0 |
C12—C13—C14—C19 | −178.0 (3) | C7—C6—C5—C10 | −0.9 (4) |
C12—C13—C14—C15 | 0.4 (4) | C9—C10—C5—O1 | 179.8 (2) |
C14—C13—C12—C11 | 177.4 (2) | C9—C10—C5—C6 | 0.4 (4) |
C13—C12—C11—O2 | −3.2 (4) | Br1—C1—C2—C3 | 176.61 (18) |
C13—C12—C11—C8 | 178.0 (3) | C4—C3—C2—C1 | −177.7 (2) |
C8—C9—C10—C5 | 0.0 (4) | C15—C14—C19—C18 | −0.3 (4) |
C10—C9—C8—C7 | 0.2 (4) | C13—C14—C19—C18 | 178.2 (2) |
C10—C9—C8—C11 | −179.4 (2) | C5—C6—C7—C8 | 1.1 (4) |
O2—C11—C8—C7 | −176.4 (3) | C9—C8—C7—C6 | −0.8 (4) |
C12—C11—C8—C7 | 2.4 (4) | C11—C8—C7—C6 | 178.7 (2) |
O2—C11—C8—C9 | 3.1 (4) | C19—C14—C15—C16 | 1.2 (4) |
C12—C11—C8—C9 | −178.1 (2) | C13—C14—C15—C16 | −177.3 (2) |
C5—O1—C4—C3 | −179.0 (2) | C14—C19—C18—C17 | −0.5 (4) |
C2—C3—C4—O1 | −177.7 (2) | C14—C15—C16—C17 | −1.2 (4) |
C4—O1—C5—C6 | −0.9 (4) | C19—C18—C17—C16 | 0.5 (5) |
C4—O1—C5—C10 | 179.7 (2) | C15—C16—C17—C18 | 0.4 (5) |
C7—C6—C5—O1 | 179.7 (2) |
Cg is the centroid of the C14–C19 ring |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2B···Cgi | 0.97 | 2.84 | 3.664 (3) | 144 |
Symmetry code: (i) x, −y−1/2, z−3/2. |
C20H21BrO3 | F(000) = 800 |
Mr = 389.28 | Dx = 1.443 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 5.7331 (3) Å | Cell parameters from 7354 reflections |
b = 41.732 (2) Å | θ = 2.8–22.9° |
c = 7.6476 (4) Å | µ = 2.31 mm−1 |
β = 101.767 (2)° | T = 296 K |
V = 1791.28 (16) Å3 | Block, yellow |
Z = 4 | 0.35 × 0.30 × 0.25 mm |
Bruker Kappa APEXII CCD diffractometer | 2467 reflections with I > 2σ(I) |
Bruker axs kappa axes2 CCD scans | Rint = 0.028 |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | θmax = 25.0°, θmin = 2.8° |
Tmin = 0.639, Tmax = 0.746 | h = −6→6 |
21484 measured reflections | k = −49→48 |
3122 independent reflections | l = −9→9 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.105 | w = 1/[σ2(Fo2) + (0.0437P)2 + 1.2667P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
3122 reflections | Δρmax = 0.29 e Å−3 |
217 parameters | Δρmin = −0.32 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.80559 (7) | 0.03512 (2) | 0.33626 (5) | 0.07602 (19) | |
O1 | 0.1223 (4) | 0.16146 (5) | 0.1086 (3) | 0.0566 (6) | |
O2 | −0.2411 (4) | 0.30384 (5) | 0.0038 (4) | 0.0701 (7) | |
C19 | 0.5345 (5) | 0.36791 (7) | 0.2387 (4) | 0.0463 (7) | |
H19 | 0.586875 | 0.346778 | 0.249645 | 0.056* | |
C14 | 0.2970 (5) | 0.37443 (7) | 0.1604 (4) | 0.0402 (6) | |
C12 | 0.1574 (5) | 0.31803 (7) | 0.1132 (4) | 0.0509 (8) | |
H12 | 0.310553 | 0.310405 | 0.157192 | 0.061* | |
C8 | 0.0189 (5) | 0.25991 (6) | 0.0735 (4) | 0.0413 (7) | |
C17 | 0.6188 (6) | 0.42374 (7) | 0.2804 (4) | 0.0502 (8) | |
O3 | 0.7918 (4) | 0.44592 (6) | 0.3447 (3) | 0.0728 (7) | |
C15 | 0.2296 (5) | 0.40641 (7) | 0.1432 (4) | 0.0488 (7) | |
H15 | 0.073085 | 0.411435 | 0.090331 | 0.059* | |
C5 | 0.1019 (5) | 0.19408 (7) | 0.1012 (4) | 0.0450 (7) | |
C13 | 0.1236 (5) | 0.34903 (7) | 0.1027 (4) | 0.0447 (7) | |
H13 | −0.030148 | 0.355709 | 0.052036 | 0.054* | |
C10 | 0.2842 (5) | 0.21506 (7) | 0.1628 (4) | 0.0531 (8) | |
H10 | 0.434922 | 0.207490 | 0.215004 | 0.064* | |
C18 | 0.6913 (5) | 0.39211 (8) | 0.2995 (4) | 0.0517 (8) | |
H18 | 0.847485 | 0.387247 | 0.353949 | 0.062* | |
C4 | 0.3497 (5) | 0.14792 (7) | 0.1833 (4) | 0.0518 (8) | |
H4A | 0.401764 | 0.154805 | 0.306220 | 0.062* | |
H4B | 0.467011 | 0.154770 | 0.115952 | 0.062* | |
C1 | 0.5163 (6) | 0.05930 (7) | 0.2405 (5) | 0.0580 (8) | |
H1A | 0.461700 | 0.053788 | 0.115649 | 0.070* | |
H1B | 0.392821 | 0.053086 | 0.303685 | 0.070* | |
C11 | −0.0366 (5) | 0.29464 (7) | 0.0585 (4) | 0.0478 (7) | |
C16 | 0.3876 (6) | 0.43108 (7) | 0.2019 (4) | 0.0533 (8) | |
H16 | 0.337947 | 0.452317 | 0.188410 | 0.064* | |
C2 | 0.5516 (5) | 0.09482 (7) | 0.2563 (4) | 0.0499 (7) | |
H2A | 0.677114 | 0.101216 | 0.195511 | 0.060* | |
H2B | 0.600138 | 0.100671 | 0.381178 | 0.060* | |
C7 | −0.1621 (5) | 0.23800 (7) | 0.0135 (4) | 0.0529 (8) | |
H7 | −0.313953 | 0.245422 | −0.036794 | 0.063* | |
C6 | −0.1214 (5) | 0.20577 (7) | 0.0269 (4) | 0.0554 (8) | |
H6 | −0.245411 | 0.191563 | −0.014460 | 0.066* | |
C9 | 0.2409 (5) | 0.24765 (7) | 0.1464 (5) | 0.0534 (8) | |
H9 | 0.365956 | 0.261794 | 0.185820 | 0.064* | |
C3 | 0.3229 (6) | 0.11218 (7) | 0.1747 (4) | 0.0509 (7) | |
H3A | 0.273050 | 0.105718 | 0.050870 | 0.061* | |
H3B | 0.198973 | 0.105884 | 0.237200 | 0.061* | |
C20 | 0.7321 (8) | 0.47862 (9) | 0.3209 (6) | 0.0839 (12) | |
H20A | 0.867967 | 0.491478 | 0.371571 | 0.126* | |
H20B | 0.684671 | 0.483197 | 0.195622 | 0.126* | |
H20C | 0.603081 | 0.483462 | 0.379191 | 0.126* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0824 (3) | 0.0585 (3) | 0.0824 (3) | 0.01893 (19) | 0.0055 (2) | −0.00496 (19) |
O1 | 0.0525 (12) | 0.0385 (12) | 0.0737 (15) | −0.0032 (10) | 0.0011 (11) | −0.0014 (10) |
O2 | 0.0411 (13) | 0.0529 (14) | 0.107 (2) | 0.0063 (11) | −0.0062 (12) | −0.0058 (13) |
C19 | 0.0432 (17) | 0.0411 (17) | 0.0541 (18) | 0.0060 (13) | 0.0093 (14) | 0.0019 (14) |
C14 | 0.0422 (16) | 0.0396 (16) | 0.0406 (16) | 0.0012 (13) | 0.0126 (13) | 0.0028 (12) |
C12 | 0.0398 (16) | 0.0430 (18) | 0.066 (2) | 0.0016 (13) | 0.0009 (15) | 0.0016 (14) |
C8 | 0.0361 (15) | 0.0417 (16) | 0.0448 (16) | −0.0009 (12) | 0.0053 (13) | −0.0031 (13) |
C17 | 0.057 (2) | 0.0503 (19) | 0.0467 (17) | −0.0120 (15) | 0.0172 (15) | −0.0077 (14) |
O3 | 0.0712 (16) | 0.0618 (16) | 0.0834 (17) | −0.0202 (12) | 0.0109 (13) | −0.0152 (13) |
C15 | 0.0441 (17) | 0.0441 (17) | 0.0583 (19) | 0.0049 (14) | 0.0109 (14) | 0.0065 (14) |
C5 | 0.0471 (17) | 0.0377 (16) | 0.0490 (17) | −0.0012 (13) | 0.0074 (14) | −0.0025 (13) |
C13 | 0.0388 (15) | 0.0430 (17) | 0.0512 (18) | 0.0067 (13) | 0.0067 (13) | 0.0019 (13) |
C10 | 0.0372 (16) | 0.0435 (18) | 0.073 (2) | 0.0032 (14) | −0.0013 (15) | −0.0033 (15) |
C18 | 0.0434 (17) | 0.060 (2) | 0.0498 (18) | 0.0000 (15) | 0.0051 (14) | 0.0019 (15) |
C4 | 0.0533 (19) | 0.0438 (17) | 0.0581 (19) | 0.0022 (14) | 0.0110 (15) | −0.0009 (15) |
C1 | 0.068 (2) | 0.0471 (18) | 0.058 (2) | 0.0068 (16) | 0.0088 (16) | −0.0042 (15) |
C11 | 0.0407 (17) | 0.0447 (17) | 0.0559 (18) | 0.0025 (13) | 0.0048 (14) | −0.0024 (14) |
C16 | 0.062 (2) | 0.0389 (17) | 0.062 (2) | 0.0008 (15) | 0.0195 (17) | 0.0012 (14) |
C2 | 0.0577 (19) | 0.0441 (18) | 0.0477 (18) | 0.0000 (14) | 0.0103 (15) | −0.0031 (14) |
C7 | 0.0349 (16) | 0.0516 (19) | 0.066 (2) | −0.0001 (14) | −0.0037 (15) | −0.0001 (15) |
C6 | 0.0423 (17) | 0.0443 (18) | 0.074 (2) | −0.0101 (14) | −0.0015 (16) | −0.0054 (16) |
C9 | 0.0394 (17) | 0.0438 (17) | 0.072 (2) | −0.0061 (13) | 0.0001 (15) | −0.0069 (15) |
C3 | 0.0592 (19) | 0.0428 (17) | 0.0511 (18) | −0.0018 (14) | 0.0119 (15) | −0.0028 (14) |
C20 | 0.110 (3) | 0.060 (2) | 0.085 (3) | −0.035 (2) | 0.028 (2) | −0.015 (2) |
Br1—C1 | 1.952 (3) | C13—H13 | 0.9300 |
O1—C5 | 1.367 (3) | C10—C9 | 1.384 (4) |
O1—C4 | 1.429 (4) | C10—H10 | 0.9300 |
O2—C11 | 1.223 (3) | C18—H18 | 0.9300 |
C19—C18 | 1.369 (4) | C4—C3 | 1.499 (4) |
C19—C14 | 1.398 (4) | C4—H4A | 0.9700 |
C19—H19 | 0.9300 | C4—H4B | 0.9700 |
C14—C15 | 1.388 (4) | C1—C2 | 1.498 (4) |
C14—C13 | 1.459 (4) | C1—H1A | 0.9700 |
C12—C13 | 1.308 (4) | C1—H1B | 0.9700 |
C12—C11 | 1.475 (4) | C16—H16 | 0.9300 |
C12—H12 | 0.9300 | C2—C3 | 1.517 (4) |
C8—C9 | 1.380 (4) | C2—H2A | 0.9700 |
C8—C7 | 1.389 (4) | C2—H2B | 0.9700 |
C8—C11 | 1.483 (4) | C7—C6 | 1.365 (4) |
C17—O3 | 1.372 (4) | C7—H7 | 0.9300 |
C17—C16 | 1.373 (4) | C6—H6 | 0.9300 |
C17—C18 | 1.383 (4) | C9—H9 | 0.9300 |
O3—C20 | 1.410 (5) | C3—H3A | 0.9700 |
C15—C16 | 1.384 (4) | C3—H3B | 0.9700 |
C15—H15 | 0.9300 | C20—H20A | 0.9600 |
C5—C10 | 1.372 (4) | C20—H20B | 0.9600 |
C5—C6 | 1.380 (4) | C20—H20C | 0.9600 |
C5—O1—C4 | 118.3 (2) | C2—C1—H1A | 109.0 |
C18—C19—C14 | 121.1 (3) | Br1—C1—H1A | 109.0 |
C18—C19—H19 | 119.4 | C2—C1—H1B | 109.0 |
C14—C19—H19 | 119.4 | Br1—C1—H1B | 109.0 |
C15—C14—C19 | 117.1 (3) | H1A—C1—H1B | 107.8 |
C15—C14—C13 | 120.7 (3) | O2—C11—C12 | 120.3 (3) |
C19—C14—C13 | 122.2 (3) | O2—C11—C8 | 120.6 (3) |
C13—C12—C11 | 122.9 (3) | C12—C11—C8 | 119.2 (3) |
C13—C12—H12 | 118.5 | C17—C16—C15 | 119.0 (3) |
C11—C12—H12 | 118.5 | C17—C16—H16 | 120.5 |
C9—C8—C7 | 117.1 (3) | C15—C16—H16 | 120.5 |
C9—C8—C11 | 124.0 (3) | C1—C2—C3 | 110.4 (3) |
C7—C8—C11 | 118.9 (3) | C1—C2—H2A | 109.6 |
O3—C17—C16 | 124.7 (3) | C3—C2—H2A | 109.6 |
O3—C17—C18 | 115.2 (3) | C1—C2—H2B | 109.6 |
C16—C17—C18 | 120.1 (3) | C3—C2—H2B | 109.6 |
C17—O3—C20 | 117.9 (3) | H2A—C2—H2B | 108.1 |
C16—C15—C14 | 122.2 (3) | C6—C7—C8 | 121.3 (3) |
C16—C15—H15 | 118.9 | C6—C7—H7 | 119.4 |
C14—C15—H15 | 118.9 | C8—C7—H7 | 119.4 |
O1—C5—C10 | 124.7 (3) | C7—C6—C5 | 120.6 (3) |
O1—C5—C6 | 115.7 (3) | C7—C6—H6 | 119.7 |
C10—C5—C6 | 119.6 (3) | C5—C6—H6 | 119.7 |
C12—C13—C14 | 128.1 (3) | C8—C9—C10 | 122.3 (3) |
C12—C13—H13 | 116.0 | C8—C9—H9 | 118.8 |
C14—C13—H13 | 116.0 | C10—C9—H9 | 118.8 |
C5—C10—C9 | 119.1 (3) | C4—C3—C2 | 112.6 (3) |
C5—C10—H10 | 120.4 | C4—C3—H3A | 109.1 |
C9—C10—H10 | 120.4 | C2—C3—H3A | 109.1 |
C19—C18—C17 | 120.4 (3) | C4—C3—H3B | 109.1 |
C19—C18—H18 | 119.8 | C2—C3—H3B | 109.1 |
C17—C18—H18 | 119.8 | H3A—C3—H3B | 107.8 |
O1—C4—C3 | 107.4 (2) | O3—C20—H20A | 109.5 |
O1—C4—H4A | 110.2 | O3—C20—H20B | 109.5 |
C3—C4—H4A | 110.2 | H20A—C20—H20B | 109.5 |
O1—C4—H4B | 110.2 | O3—C20—H20C | 109.5 |
C3—C4—H4B | 110.2 | H20A—C20—H20C | 109.5 |
H4A—C4—H4B | 108.5 | H20B—C20—H20C | 109.5 |
C2—C1—Br1 | 113.0 (2) | ||
C18—C19—C14—C15 | 1.6 (4) | C9—C8—C11—O2 | −174.9 (3) |
C18—C19—C14—C13 | −176.9 (3) | C7—C8—C11—O2 | 4.1 (5) |
C16—C17—O3—C20 | −3.3 (4) | C9—C8—C11—C12 | 4.1 (5) |
C18—C17—O3—C20 | 176.8 (3) | C7—C8—C11—C12 | −176.8 (3) |
C19—C14—C15—C16 | −0.7 (4) | O3—C17—C16—C15 | −179.7 (3) |
C13—C14—C15—C16 | 177.8 (3) | C18—C17—C16—C15 | 0.2 (4) |
C4—O1—C5—C10 | −0.9 (4) | C14—C15—C16—C17 | −0.2 (5) |
C4—O1—C5—C6 | 179.7 (3) | Br1—C1—C2—C3 | 178.3 (2) |
C11—C12—C13—C14 | 176.6 (3) | C9—C8—C7—C6 | 0.2 (5) |
C15—C14—C13—C12 | −178.5 (3) | C11—C8—C7—C6 | −178.9 (3) |
C19—C14—C13—C12 | 0.0 (5) | C8—C7—C6—C5 | 0.1 (5) |
O1—C5—C10—C9 | 179.5 (3) | O1—C5—C6—C7 | 179.8 (3) |
C6—C5—C10—C9 | −1.1 (5) | C10—C5—C6—C7 | 0.3 (5) |
C14—C19—C18—C17 | −1.7 (4) | C7—C8—C9—C10 | −1.0 (5) |
O3—C17—C18—C19 | −179.4 (3) | C11—C8—C9—C10 | 178.0 (3) |
C16—C17—C18—C19 | 0.8 (4) | C5—C10—C9—C8 | 1.5 (5) |
C5—O1—C4—C3 | −179.8 (2) | O1—C4—C3—C2 | −178.1 (2) |
C13—C12—C11—O2 | −1.6 (5) | C1—C2—C3—C4 | −178.8 (3) |
C13—C12—C11—C8 | 179.4 (3) |
Cg is the centroid of the C14–C19 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2B···Cgi | 0.97 | 2.87 | 3.703 (3) | 144 |
C3—H3A···Cgii | 0.97 | 2.94 | 3.743 (3) | 140 |
Symmetry codes: (i) x, −y−1/2, z−1/2; (ii) x, −y−1/2, z−3/2. |
C21H23BrO4 | F(000) = 864 |
Mr = 419.30 | Dx = 1.432 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.4765 (4) Å | Cell parameters from 6542 reflections |
b = 26.0984 (12) Å | θ = 2.3–22.8° |
c = 7.8666 (4) Å | µ = 2.14 mm−1 |
β = 91.427 (2)° | T = 296 K |
V = 1944.98 (16) Å3 | Block, yellow |
Z = 4 | 0.35 × 0.30 × 0.25 mm |
Bruker Kappa APEXII CCD diffractometer | 2416 reflections with I > 2σ(I) |
Bruker axs kappa axes2 CCD scans | Rint = 0.043 |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | θmax = 25.0°, θmin = 2.2° |
Tmin = 0.667, Tmax = 0.746 | h = −10→11 |
28826 measured reflections | k = −31→31 |
3434 independent reflections | l = −7→9 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.111 | w = 1/[σ2(Fo2) + (0.0612P)2 + 0.5481P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.002 |
3434 reflections | Δρmax = 0.25 e Å−3 |
235 parameters | Δρmin = −0.60 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.45552 (4) | 0.54423 (2) | 0.24312 (5) | 0.07597 (19) | |
O2 | −0.0404 (2) | 0.94255 (7) | 0.1625 (3) | 0.0511 (5) | |
O1 | 0.2713 (2) | 0.73775 (7) | 0.3764 (3) | 0.0588 (6) | |
C12 | 0.1316 (3) | 0.98125 (11) | 0.3389 (3) | 0.0437 (7) | |
H12 | 0.184058 | 0.977372 | 0.439618 | 0.052* | |
O3 | 0.3615 (2) | 1.21305 (7) | 0.4837 (3) | 0.0574 (6) | |
O4 | 0.3614 (2) | 1.13839 (7) | 0.6921 (2) | 0.0502 (5) | |
C18 | 0.3015 (3) | 1.12792 (10) | 0.5363 (3) | 0.0373 (6) | |
C17 | 0.3004 (3) | 1.16949 (10) | 0.4216 (3) | 0.0403 (7) | |
C19 | 0.2448 (3) | 1.08188 (10) | 0.4870 (3) | 0.0363 (6) | |
H19 | 0.246728 | 1.054409 | 0.562376 | 0.044* | |
C11 | 0.0599 (3) | 0.93675 (11) | 0.2626 (3) | 0.0390 (6) | |
C8 | 0.1125 (3) | 0.88440 (10) | 0.3020 (3) | 0.0381 (6) | |
C13 | 0.1224 (3) | 1.02697 (10) | 0.2659 (3) | 0.0397 (6) | |
H13 | 0.070053 | 1.028283 | 0.164415 | 0.048* | |
C7 | 0.0262 (3) | 0.84234 (11) | 0.2685 (4) | 0.0462 (7) | |
H7 | −0.065785 | 0.847643 | 0.228455 | 0.055* | |
C5 | 0.2117 (3) | 0.78456 (11) | 0.3500 (4) | 0.0454 (7) | |
C14 | 0.1837 (3) | 1.07568 (10) | 0.3236 (3) | 0.0381 (6) | |
C4 | 0.1895 (3) | 0.69302 (10) | 0.3374 (4) | 0.0482 (7) | |
H4A | 0.158524 | 0.693377 | 0.218959 | 0.058* | |
H4B | 0.106919 | 0.691679 | 0.407688 | 0.058* | |
C2 | 0.2054 (3) | 0.59737 (11) | 0.3392 (4) | 0.0510 (7) | |
H2A | 0.120078 | 0.597264 | 0.404769 | 0.061* | |
H2B | 0.177261 | 0.596072 | 0.219901 | 0.061* | |
C1 | 0.2885 (4) | 0.54993 (11) | 0.3820 (4) | 0.0580 (8) | |
H1A | 0.229146 | 0.520054 | 0.363672 | 0.070* | |
H1B | 0.317167 | 0.550754 | 0.501159 | 0.070* | |
C15 | 0.1820 (3) | 1.11719 (11) | 0.2142 (3) | 0.0450 (7) | |
H15 | 0.140748 | 1.113760 | 0.106332 | 0.054* | |
C9 | 0.2493 (3) | 0.87505 (11) | 0.3629 (4) | 0.0463 (7) | |
H9 | 0.308367 | 0.902573 | 0.388830 | 0.056* | |
C6 | 0.0741 (3) | 0.79281 (11) | 0.2934 (4) | 0.0495 (7) | |
H6 | 0.014240 | 0.765189 | 0.272127 | 0.059* | |
C3 | 0.2834 (3) | 0.64750 (10) | 0.3727 (4) | 0.0490 (7) | |
H3A | 0.316565 | 0.648451 | 0.490286 | 0.059* | |
H3B | 0.365060 | 0.649274 | 0.301001 | 0.059* | |
C16 | 0.2404 (3) | 1.16361 (11) | 0.2622 (4) | 0.0459 (7) | |
H16 | 0.239027 | 1.190946 | 0.186297 | 0.055* | |
C21 | 0.3812 (3) | 1.09715 (11) | 0.8078 (3) | 0.0524 (8) | |
H21A | 0.423884 | 1.109689 | 0.911655 | 0.079* | |
H21B | 0.291523 | 1.081947 | 0.831299 | 0.079* | |
H21C | 0.441599 | 1.071909 | 0.758732 | 0.079* | |
C10 | 0.2989 (3) | 0.82590 (11) | 0.3855 (4) | 0.0491 (7) | |
H10 | 0.391047 | 0.820470 | 0.424669 | 0.059* | |
C20 | 0.3838 (5) | 1.25427 (12) | 0.3693 (5) | 0.0744 (11) | |
H20A | 0.427353 | 1.282338 | 0.429540 | 0.112* | |
H20B | 0.444373 | 1.243150 | 0.280416 | 0.112* | |
H20C | 0.294923 | 1.265157 | 0.320543 | 0.112* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0631 (3) | 0.0526 (2) | 0.1133 (4) | 0.00316 (16) | 0.0227 (2) | −0.00490 (19) |
O2 | 0.0505 (13) | 0.0438 (11) | 0.0583 (12) | −0.0026 (10) | −0.0138 (11) | −0.0025 (10) |
O1 | 0.0550 (13) | 0.0367 (11) | 0.0842 (16) | 0.0023 (10) | −0.0073 (12) | 0.0014 (10) |
C12 | 0.0472 (17) | 0.0408 (17) | 0.0427 (16) | −0.0005 (14) | −0.0062 (13) | −0.0056 (13) |
O3 | 0.0856 (16) | 0.0348 (11) | 0.0510 (12) | −0.0151 (11) | −0.0122 (11) | 0.0071 (9) |
O4 | 0.0747 (14) | 0.0341 (10) | 0.0409 (11) | −0.0102 (10) | −0.0140 (10) | 0.0021 (9) |
C18 | 0.0406 (15) | 0.0343 (15) | 0.0371 (15) | 0.0008 (12) | 0.0009 (12) | −0.0011 (12) |
C17 | 0.0479 (16) | 0.0282 (14) | 0.0446 (17) | −0.0021 (12) | 0.0006 (13) | 0.0002 (12) |
C19 | 0.0408 (15) | 0.0293 (13) | 0.0389 (15) | 0.0009 (11) | 0.0007 (12) | 0.0014 (11) |
C11 | 0.0403 (16) | 0.0406 (15) | 0.0362 (15) | −0.0012 (13) | 0.0038 (13) | −0.0057 (12) |
C8 | 0.0400 (16) | 0.0379 (15) | 0.0364 (14) | −0.0017 (12) | 0.0023 (12) | −0.0062 (12) |
C13 | 0.0393 (15) | 0.0411 (15) | 0.0387 (15) | 0.0001 (13) | −0.0018 (12) | −0.0055 (13) |
C7 | 0.0391 (16) | 0.0436 (17) | 0.0558 (18) | 0.0001 (13) | −0.0007 (14) | −0.0053 (14) |
C5 | 0.0507 (18) | 0.0370 (16) | 0.0487 (17) | −0.0008 (14) | 0.0047 (14) | −0.0007 (13) |
C14 | 0.0367 (15) | 0.0353 (15) | 0.0423 (16) | 0.0017 (12) | 0.0016 (12) | −0.0043 (12) |
C4 | 0.0553 (18) | 0.0391 (16) | 0.0502 (17) | −0.0030 (14) | 0.0029 (14) | −0.0028 (14) |
C2 | 0.0493 (18) | 0.0449 (17) | 0.0591 (19) | −0.0034 (14) | 0.0081 (15) | −0.0005 (15) |
C1 | 0.0569 (19) | 0.0420 (18) | 0.075 (2) | −0.0077 (15) | 0.0098 (17) | 0.0010 (15) |
C15 | 0.0504 (17) | 0.0468 (17) | 0.0374 (15) | 0.0001 (14) | −0.0079 (13) | 0.0017 (13) |
C9 | 0.0459 (18) | 0.0415 (17) | 0.0514 (18) | −0.0071 (13) | 0.0000 (14) | −0.0036 (14) |
C6 | 0.0472 (18) | 0.0391 (17) | 0.0619 (19) | −0.0046 (13) | −0.0032 (15) | −0.0037 (14) |
C3 | 0.0525 (18) | 0.0374 (16) | 0.0572 (19) | 0.0002 (14) | 0.0002 (15) | 0.0013 (14) |
C16 | 0.0570 (18) | 0.0381 (16) | 0.0425 (17) | −0.0026 (14) | −0.0034 (14) | 0.0099 (13) |
C21 | 0.065 (2) | 0.0448 (17) | 0.0468 (17) | −0.0041 (15) | −0.0155 (15) | 0.0087 (14) |
C10 | 0.0411 (16) | 0.0454 (17) | 0.0604 (19) | 0.0021 (14) | −0.0046 (14) | 0.0001 (14) |
C20 | 0.112 (3) | 0.0412 (18) | 0.069 (2) | −0.024 (2) | −0.013 (2) | 0.0165 (17) |
Br1—C1 | 1.951 (3) | C14—C15 | 1.383 (4) |
O2—C11 | 1.228 (3) | C4—C3 | 1.506 (4) |
O1—C5 | 1.360 (3) | C4—H4A | 0.9700 |
O1—C4 | 1.430 (3) | C4—H4B | 0.9700 |
C12—C13 | 1.326 (4) | C2—C1 | 1.501 (4) |
C12—C11 | 1.467 (4) | C2—C3 | 1.522 (4) |
C12—H12 | 0.9300 | C2—H2A | 0.9700 |
O3—C17 | 1.361 (3) | C2—H2B | 0.9700 |
O3—C20 | 1.422 (3) | C1—H1A | 0.9700 |
O4—C18 | 1.366 (3) | C1—H1B | 0.9700 |
O4—C21 | 1.419 (3) | C15—C16 | 1.380 (4) |
C18—C19 | 1.368 (4) | C15—H15 | 0.9300 |
C18—C17 | 1.411 (4) | C9—C10 | 1.376 (4) |
C17—C16 | 1.373 (4) | C9—H9 | 0.9300 |
C19—C14 | 1.406 (4) | C6—H6 | 0.9300 |
C19—H19 | 0.9300 | C3—H3A | 0.9700 |
C11—C8 | 1.484 (4) | C3—H3B | 0.9700 |
C8—C7 | 1.390 (4) | C16—H16 | 0.9300 |
C8—C9 | 1.393 (4) | C21—H21A | 0.9600 |
C13—C14 | 1.465 (4) | C21—H21B | 0.9600 |
C13—H13 | 0.9300 | C21—H21C | 0.9600 |
C7—C6 | 1.382 (4) | C10—H10 | 0.9300 |
C7—H7 | 0.9300 | C20—H20A | 0.9600 |
C5—C10 | 1.383 (4) | C20—H20B | 0.9600 |
C5—C6 | 1.384 (4) | C20—H20C | 0.9600 |
C5—O1—C4 | 118.7 (2) | C1—C2—H2B | 108.5 |
C13—C12—C11 | 120.7 (3) | C3—C2—H2B | 108.5 |
C13—C12—H12 | 119.7 | H2A—C2—H2B | 107.5 |
C11—C12—H12 | 119.7 | C2—C1—Br1 | 111.5 (2) |
C17—O3—C20 | 118.3 (2) | C2—C1—H1A | 109.3 |
C18—O4—C21 | 118.0 (2) | Br1—C1—H1A | 109.3 |
O4—C18—C19 | 125.5 (2) | C2—C1—H1B | 109.3 |
O4—C18—C17 | 114.6 (2) | Br1—C1—H1B | 109.3 |
C19—C18—C17 | 119.8 (2) | H1A—C1—H1B | 108.0 |
O3—C17—C16 | 125.7 (2) | C16—C15—C14 | 121.3 (2) |
O3—C17—C18 | 114.6 (2) | C16—C15—H15 | 119.4 |
C16—C17—C18 | 119.6 (2) | C14—C15—H15 | 119.4 |
C18—C19—C14 | 120.6 (2) | C10—C9—C8 | 121.3 (3) |
C18—C19—H19 | 119.7 | C10—C9—H9 | 119.4 |
C14—C19—H19 | 119.7 | C8—C9—H9 | 119.4 |
O2—C11—C12 | 120.5 (3) | C7—C6—C5 | 119.6 (3) |
O2—C11—C8 | 119.8 (2) | C7—C6—H6 | 120.2 |
C12—C11—C8 | 119.6 (2) | C5—C6—H6 | 120.2 |
C7—C8—C9 | 117.7 (3) | C4—C3—C2 | 111.4 (2) |
C7—C8—C11 | 119.6 (2) | C4—C3—H3A | 109.4 |
C9—C8—C11 | 122.5 (2) | C2—C3—H3A | 109.4 |
C12—C13—C14 | 128.7 (3) | C4—C3—H3B | 109.4 |
C12—C13—H13 | 115.7 | C2—C3—H3B | 109.4 |
C14—C13—H13 | 115.7 | H3A—C3—H3B | 108.0 |
C6—C7—C8 | 121.5 (3) | C17—C16—C15 | 120.1 (2) |
C6—C7—H7 | 119.3 | C17—C16—H16 | 119.9 |
C8—C7—H7 | 119.3 | C15—C16—H16 | 119.9 |
O1—C5—C10 | 115.2 (3) | O4—C21—H21A | 109.5 |
O1—C5—C6 | 125.0 (3) | O4—C21—H21B | 109.5 |
C10—C5—C6 | 119.8 (3) | H21A—C21—H21B | 109.5 |
C15—C14—C19 | 118.5 (2) | O4—C21—H21C | 109.5 |
C15—C14—C13 | 119.2 (2) | H21A—C21—H21C | 109.5 |
C19—C14—C13 | 122.3 (2) | H21B—C21—H21C | 109.5 |
O1—C4—C3 | 106.9 (2) | C9—C10—C5 | 120.1 (3) |
O1—C4—H4A | 110.4 | C9—C10—H10 | 120.0 |
C3—C4—H4A | 110.4 | C5—C10—H10 | 120.0 |
O1—C4—H4B | 110.4 | O3—C20—H20A | 109.5 |
C3—C4—H4B | 110.4 | O3—C20—H20B | 109.5 |
H4A—C4—H4B | 108.6 | H20A—C20—H20B | 109.5 |
C1—C2—C3 | 114.9 (3) | O3—C20—H20C | 109.5 |
C1—C2—H2A | 108.5 | H20A—C20—H20C | 109.5 |
C3—C2—H2A | 108.5 | H20B—C20—H20C | 109.5 |
C21—O4—C18—C19 | 7.3 (4) | C18—C19—C14—C15 | −0.1 (4) |
C21—O4—C18—C17 | −172.9 (3) | C18—C19—C14—C13 | 179.7 (2) |
C20—O3—C17—C16 | −9.3 (5) | C12—C13—C14—C15 | 168.9 (3) |
C20—O3—C17—C18 | 170.8 (3) | C12—C13—C14—C19 | −11.0 (4) |
O4—C18—C17—O3 | 1.2 (4) | C5—O1—C4—C3 | 177.9 (2) |
C19—C18—C17—O3 | −179.1 (2) | C3—C2—C1—Br1 | −62.6 (3) |
O4—C18—C17—C16 | −178.8 (3) | C19—C14—C15—C16 | 0.9 (4) |
C19—C18—C17—C16 | 1.0 (4) | C13—C14—C15—C16 | −179.0 (3) |
O4—C18—C19—C14 | 178.9 (2) | C7—C8—C9—C10 | 1.5 (4) |
C17—C18—C19—C14 | −0.8 (4) | C11—C8—C9—C10 | −174.7 (3) |
C13—C12—C11—O2 | −21.5 (4) | C8—C7—C6—C5 | −1.1 (4) |
C13—C12—C11—C8 | 156.3 (3) | O1—C5—C6—C7 | −178.9 (3) |
O2—C11—C8—C7 | −19.1 (4) | C10—C5—C6—C7 | 1.7 (4) |
C12—C11—C8—C7 | 163.1 (2) | O1—C4—C3—C2 | 178.7 (2) |
O2—C11—C8—C9 | 157.1 (3) | C1—C2—C3—C4 | −176.2 (3) |
C12—C11—C8—C9 | −20.8 (4) | O3—C17—C16—C15 | 179.8 (3) |
C11—C12—C13—C14 | 178.8 (3) | C18—C17—C16—C15 | −0.3 (4) |
C9—C8—C7—C6 | −0.4 (4) | C14—C15—C16—C17 | −0.7 (5) |
C11—C8—C7—C6 | 175.9 (3) | C8—C9—C10—C5 | −1.0 (4) |
C4—O1—C5—C10 | −178.0 (2) | O1—C5—C10—C9 | 179.9 (3) |
C4—O1—C5—C6 | 2.5 (4) | C6—C5—C10—C9 | −0.6 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···O3i | 0.93 | 2.59 | 3.505 (3) | 169 |
Symmetry code: (i) −x+1, −y+2, −z+1. |
Acknowledgements
The authors thank the single-crystal XRD facility, SAIF IIT Madras, Chennai, for the data collection.
Funding information
SS thanks DST PURSE Phase II for providing fellowship in the form of JRF.
References
Aponte, J. C., Verástegui, M., Málaga, E., Zimic, M., Quiliano, M., Vaisberg, A. J., Gilman, R. H. & Hammond, G. B. (2008). J. Med. Chem. 51, 6230–6234. CrossRef PubMed CAS Google Scholar
Bappaliage, N. N., Narayana, Y., Poojary, B. & Poojary, K. N. (2010). IJPAP, 6, 151–156. Google Scholar
Barot, V. M., Sahaj, A. G., Mahato, A. & Mehta, N. B. (2013). IJSRP, 3, 737–740. Google Scholar
Bello, M. L., Chiaradia, L. M., Dias, L. R. S., Pacheco, L. K., Stumpf, T. R., Mascarello, A., Steindel, M., Yunes, R. A., Castro, H. C., Nunes, R. J. & Rodrigues, C. R. (2011). Bioorg. Med. Chem. 19, 5046–5052. CrossRef CAS PubMed Google Scholar
Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, M., Christensen, S. B., Zhai, L., Rasmussen, M. H., Theander, T. G., Frøkjaer, S., Steffansen, B., Davidsen, J. & Kharazmi, A. (1997). J. Infect Dis. 176, 1327–1333. CrossRef CAS PubMed Google Scholar
Chopra, D., Mohan, T. P., Vishalakshi, B. & Guru Row, T. N. (2007). Acta Cryst. C63, o746–o750. CSD CrossRef IUCr Journals Google Scholar
Devia, A. C., Ferretti, F. H., Ponce, C. A. & Tomás, F. (1999). J. Mol. Struct. Theochem, 493, 187–197. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ghosh, R. & Das, A. (2014). World J. Pharm. Pharm. Sci, 3, 578–595. Google Scholar
Go, M. L., Wu, X. & Liu, X. L. (2005). Curr. Med. Chem. 12, 483–499. CrossRef CAS Google Scholar
Goud, B. S., Panneerselvam, K., Zacharias, D. E. & Desirajua, G. R. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 325–330. CSD CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Anilkumar, H. G. (2005). Acta Cryst. C61, o728–o730. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Imai, Y. N., Inoue, Y., Nakanishi, I. & Kitaura, K. (2008). Protein Sci. 17, 1129–1137. Web of Science CrossRef PubMed CAS Google Scholar
Kumar, S. K., Hager, E., Pettit, C., Gurulingappa, H., Davidson, N. E. & Khan, S. R. (2003). J. Med. Chem. 46, 2813–2815. Web of Science CrossRef PubMed CAS Google Scholar
Kumar, R., Mohanakrishnan, D., Sharma, A., Kaushik, N. K., Kalia, K., Sinha, A. K. & Sahal, D. (2010). Eur. J. Med. Chem. 45, 5292–5301. CrossRef CAS PubMed Google Scholar
Liu, M., Wilairat, P. & Go, M. L. (2001). J. Med. Chem. 44, 4443–4452. Web of Science CrossRef PubMed CAS Google Scholar
Maleraju, J. & Sreedhar, N. Y. (2013). Heterocycl. Lett. 3, 37–40. CAS Google Scholar
Muhammad, S., Al-Sehemi, A. G., Irfan, A., Chaudhry, A. R., Gharni, H., AlFaify, S., Shkir, M. & Asiri, A. M. (2016). J. Mol. Model. 22, 73. CrossRef PubMed Google Scholar
Nielsen, S. F., Christensen, S. B., Cruciani, G., Kharazmi, A. & Liljefors, T. (1998). J. Med. Chem. 41, 4819–4832. Web of Science CrossRef CAS PubMed Google Scholar
Nishio, M. (2005). Tetrahedron, 61, 6923–6950. Web of Science CrossRef CAS Google Scholar
Nishio, M., Umezawa, Y., Hirota, M. & Takeuchi, Y. (1995). Tetrahedron, 51, 8665–8701. CrossRef CAS Web of Science Google Scholar
Patil, P. S., Bhumannavar, V. M., Bannur, M. S., Kulkarni, H. N. & Bhagavannarayana, G. (2013). J. Cryst. Proc. Tech, 3, 108–117. Google Scholar
Patil, C. B., Mahajan, S. K. & Katti, S. A. (2009). J. Pharm. Sci. Res, 1, 11–22. CAS Google Scholar
Prabhu, A. N., Jayarama, A., Bhat, K. S. & Upadhyaya, V. (2013). J. Mol. Struct. 1031, 79–84. CSD CrossRef CAS Google Scholar
Prasad, Y. R., Kumar, P. R., Deepti, C. A. & Ramana, M. V. (2006). E-J. Chem. 3, 236–241. CrossRef CAS Google Scholar
Prasanna, M. D. & Guru Row, T. N. (2000). Cryst. Eng. 3, 135–154. CrossRef CAS Google Scholar
Saraogi, I., Vijay, V. G., Das, S., Sekar, K. & Guru Row, T. N. (2003). Cryst. Eng. 6, 69–77. Web of Science CrossRef CAS Google Scholar
Satyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. 12, 883–889. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shenvi, S., Kumar, K., Hatti, K. S., Rijesh, K., Diwakar, L. & Reddy, G. C. (2013). Eur. J. Med. Chem. 62, 435–442. Web of Science CrossRef CAS PubMed Google Scholar
Shettigar, S., Chandrasekharan, K., Umesh, G., Sarojini, B. K. & Narayana, B. (2006). Polymer, 47, 3565–3567. Web of Science CrossRef CAS Google Scholar
Sivakumar, P. M., Geetha Babu, S. K. & Mukesh, D. (2007). Chem. Pharm. Bull. 55, 44–49. Web of Science CrossRef PubMed CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sweety, Kumar, S., Nepali, K., Sapra, S., Suri, O. P., Dhar, K. L., Sarma, G. S. & Saxena, A. K. (2010). Indian J. Pharm. Sci. 72, 801–806. CAS PubMed Google Scholar
Syam, S., Abdelwahab, S. I., Al-Mamary, M. A. & Mohan, S. (2012). Molecules, 17, 6179–6195. Web of Science CrossRef CAS PubMed Google Scholar
Turowska-Tyrk, I., Grześniak, K., Trzop, E. & Zych, T. (2003). J. Solid State Chem. 174, 459–465. CAS Google Scholar
Valdameri, G., Gauthier, C., Terreux, R., Kachadourian, R., Day, B. J., Winnischofer, S. M. B., Rocha, M. E. M., Frachet, V., Ronot, X., Di Pietro, A. & Boumendjel, A. (2012). J. Med. Chem. 55, 3193–3200. CrossRef CAS PubMed Google Scholar
Vibhute, Y. B. & Baseer, M. A. (2003). Indian J. Chem. 42, 202–205. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yadav, N., Dixit, S. K., Bhattacharya, A., Mishra, L. C., Sharma, M., Awasthi, S. K. & Bhasin, V. K. (2012). Chem. Biol. Drug Des. 80, 340–347. CrossRef CAS PubMed Google Scholar
Yayli, N., Ucuncu, O., Yasar, A., Gok, Y., Kucuk, M. & Kolayli, S. (2004). Turk. J. Chem. 28, 515–521. CAS Google Scholar
Ye, C. L., Liu, J. W., Wei, D. Z., Lu, Y. H. & Qian, F. (2004). Pharmacol. Res. 50, 505–510. CrossRef PubMed CAS Google Scholar
Zhao, B., Lu, W.-Q., Zhou, Z.-H. & Wu, Y. (2000). J. Mater. Chem. 10, 1513–1517. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.