research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three 1-[4-(4-bromo­but­­oxy)­phen­yl] chalcone derivatives: (E)-1-[4-(4-bromo­but­­oxy)­phen­yl]-3-phenyl­prop-2-en-1-one, (E)-1-[4-(4-bromo­but­­oxy)­phen­yl]-3-(4-meth­­oxy­phen­yl)prop-2-en-1-one and (E)-1-[4-(4-bromo­but­­oxy)­phen­yl]-3-(3,4-di­meth­­oxy­phen­yl)prop-2-en-1-one

aDepartment of Physics, S.D.N.B. Vaishnav College for Women, Chromepet, Chennai 600 044, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: lakssdnbvc@gmail.com

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 1 June 2017; accepted 6 July 2017; online 21 July 2017)

The crystal structures of three chalcones with a bromo-substituted but­oxy side chain, viz. (E)-1-[4-(4-bromo­but­oxy)­phen­yl]-3-phenyl­prop-2-en-1-one, C19H19BrO2, (I), (E)-1-[4-(4-bromo­but­oxy)­phen­yl]-3-(4-meth­oxy­phen­yl)prop-2-en-1-one, C20H21BrO3, (II), and (E)-1-[4-(4-bromo­but­oxy)­phen­yl]-3-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one, C21H23BrO4, (III), are reported. In all mol­ecules, the conformation of the keto group with respect to the olefinic bond is s-cis. Mol­ecules of (I) and (II) are nearly planar, while mol­ecule (III) is not planar. In the crystal of compounds (I) and (II), mol­ecules are linked into chains parallel to the c axis by C—H⋯π inter­actions. In the crystal of compound (III), mol­ecules are linked by a pairs of C—H⋯O hydrogen bonds, forming inversion dimers. Weak C—Br⋯π inter­actions are also observed in (III).

1. Chemical context

Chalcones are 1,3-diphenyl-2-propene-1-one derivatives, in which two aromatic rings are linked by a three carbon α,β-unsaturated carbonyl system. In these materials, the C=O bond acts as an electron-withdrawing group, and electron-rich substituents in the aromatic rings serve as electron-donating groups, forming a so-called DπA type mol­ecule. When the electron-rich groups are located on the 4 and/or 4′ positions, the electron flow follows a Λ-shaped path, and therefore the mol­ecule is called a Λ-shaped mol­ecule (Devia et al., 1999[Devia, A. C., Ferretti, F. H., Ponce, C. A. & Tomás, F. (1999). J. Mol. Struct. Theochem, 493, 187-197.]).

Chalcones are abundant in edible plants and are considered to be precursors of flavonoids and isoflavonoids (Patil et al., 2009[Patil, C. B., Mahajan, S. K. & Katti, S. A. (2009). J. Pharm. Sci. Res, 1, 11-22.]). Alk­oxy­lated chalcones have been synthesized by the Claisen–Schmidt condensation reaction (Ghosh & Das, 2014[Ghosh, R. & Das, A. (2014). World J. Pharm. Pharm. Sci, 3, 578-595.]) using substituted aceto­phenones and aryl­aldehydes in the presence of ethanol and NaOH (Syam et al., 2012[Syam, S., Abdelwahab, S. I., Al-Mamary, M. A. & Mohan, S. (2012). Molecules, 17, 6179-6195.]) , methanol and NaOH (Kumar et al., 2010[Kumar, R., Mohanakrishnan, D., Sharma, A., Kaushik, N. K., Kalia, K., Sinha, A. K. & Sahal, D. (2010). Eur. J. Med. Chem. 45, 5292-5301.]), methanol and KOH (Bello et al., 2011[Bello, M. L., Chiaradia, L. M., Dias, L. R. S., Pacheco, L. K., Stumpf, T. R., Mascarello, A., Steindel, M., Yunes, R. A., Castro, H. C., Nunes, R. J. & Rodrigues, C. R. (2011). Bioorg. Med. Chem. 19, 5046-5052.]), ethanol and KOH (Shenvi et al., 2013[Shenvi, S., Kumar, K., Hatti, K. S., Rijesh, K., Diwakar, L. & Reddy, G. C. (2013). Eur. J. Med. Chem. 62, 435-442.]) and Mg(HSO4)2 (Maleraju et al., 2013[Maleraju, J. & Sreedhar, N. Y. (2013). Heterocycl. Lett. 3, 37-40.]) under appropriate conditions. Chalcones possess anti­bacterial (Vibhute et al., 2003[Vibhute, Y. B. & Baseer, M. A. (2003). Indian J. Chem. 42, 202-205.]), anti­leishmanial (Nielsen et al., 1998[Nielsen, S. F., Christensen, S. B., Cruciani, G., Kharazmi, A. & Liljefors, T. (1998). J. Med. Chem. 41, 4819-4832.]), anti­microbial (Prasad et al., 2006[Prasad, Y. R., Kumar, P. R., Deepti, C. A. & Ramana, M. V. (2006). E-J. Chem. 3, 236-241.]), anti­tuberculosis (Sivakumar et al., 2007[Sivakumar, P. M., Geetha Babu, S. K. & Mukesh, D. (2007). Chem. Pharm. Bull. 55, 44-49.]), anti­tumor (Kumar et al., 2003[Kumar, S. K., Hager, E., Pettit, C., Gurulingappa, H., Davidson, N. E. & Khan, S. R. (2003). J. Med. Chem. 46, 2813-2815.]), anti­hyperglycemic (Satyanarayana et al., 2004[Satyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. 12, 883-889.]) and anti­cancer activities (Sweety et al., 2010[Sweety, Kumar, S., Nepali, K., Sapra, S., Suri, O. P., Dhar, K. L., Sarma, G. S. & Saxena, A. K. (2010). Indian J. Pharm. Sci. 72, 801-806.]). Meth­oxy chalcones exhibit anti-mitotic activity (Go et al., 2005[Go, M. L., Wu, X. & Liu, X. L. (2005). Curr. Med. Chem. 12, 483-499.]) and radical scavenging activity (Yayli et al., 2004[Yayli, N., Ucuncu, O., Yasar, A., Gok, Y., Kucuk, M. & Kolayli, S. (2004). Turk. J. Chem. 28, 515-521.]). They play a critical role of meth­oxy­lation in both inhibition of breast cancer resistance protein ABCG2 and cytotoxicity (Valdameri et al., 2012[Valdameri, G., Gauthier, C., Terreux, R., Kachadourian, R., Day, B. J., Winnischofer, S. M. B., Rocha, M. E. M., Frachet, V., Ronot, X., Di Pietro, A. & Boumendjel, A. (2012). J. Med. Chem. 55, 3193-3200.]). 2,4-Dihy­droxy-6-meth­oxy-3,5-dimethyl chalcone has (in vitro) anti-tumor activity (Ye et al., 2004[Ye, C. L., Liu, J. W., Wei, D. Z., Lu, Y. H. & Qian, F. (2004). Pharmacol. Res. 50, 505-510.]), and 2,4-diall­yloxy-6-meth­oxy chalcone has anti-trypanosoma cruzi activity (Aponte et al., 2008[Aponte, J. C., Verástegui, M., Málaga, E., Zimic, M., Quiliano, M., Vaisberg, A. J., Gilman, R. H. & Hammond, G. B. (2008). J. Med. Chem. 51, 6230-6234.]). In 1-(4-benzimidazol-1-yl-phen­yl)-3-(2,4-dimeth­oxy-phen­yl)-propen-1-one chalcone, the presence of meth­oxy groups at positions 2 and 4 appears to be favourable for anti­malarial activity (Yadav et al., 2012[Yadav, N., Dixit, S. K., Bhattacharya, A., Mishra, L. C., Sharma, M., Awasthi, S. K. & Bhasin, V. K. (2012). Chem. Biol. Drug Des. 80, 340-347.]). Chalcones with meth­oxy, dimeth­oxy or trimeth­oxy substituents on one of the phenyl rings exhibit anti­malarial property (Liu et al., 2001[Liu, M., Wilairat, P. & Go, M. L. (2001). J. Med. Chem. 44, 4443-4452.]). Of the chalcones possessing meth­oxy and but­oxy side chains, 2,4-dimeth­oxy-4-but­oxy­chalcone exhibits potent activity against the human malaria parasite (Chen et al., 1997[Chen, M., Christensen, S. B., Zhai, L., Rasmussen, M. H., Theander, T. G., Frøkjaer, S., Steffansen, B., Davidsen, J. & Kharazmi, A. (1997). J. Infect Dis. 176, 1327-1333.]). 1-(4-But­oxy-2-hy­droxy­phen­yl)-3-(2,5-di­meth­oxy­phen­yl) prop-2-en-1-one chalcone has anti­microbial activity (Barot et al., 2013[Barot, V. M., Sahaj, A. G., Mahato, A. & Mehta, N. B. (2013). IJSRP, 3, 737-740.]).

[Scheme 1]
[Scheme 2]
[Scheme 3]

Chalcone compounds are widely used in organic solid photochemistry (Goud et al., 1995[Goud, B. S., Panneerselvam, K., Zacharias, D. E. & Desirajua, G. R. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 325-330.]). Chalcone derivatives show non-linear optical (NLO) properties with excellent blue light transmittance and good crystallizability (Shettigar et al., 2006[Shettigar, S., Chandrasekharan, K., Umesh, G., Sarojini, B. K. & Narayana, B. (2006). Polymer, 47, 3565-3567.]). The substitution of bromine to o-nitro aniline increases its SHG conversion efficiency substanti­ally and is matter of inter­est in research (Bappaliage et al., 2010[Bappaliage, N. N., Narayana, Y., Poojary, B. & Poojary, K. N. (2010). IJPAP, 6, 151-156.]). In chalcones, the presence of a bromo substituent is useful to obtain good quality single crystals (Prabhu et al., 2013[Prabhu, A. N., Jayarama, A., Bhat, K. S. & Upadhyaya, V. (2013). J. Mol. Struct. 1031, 79-84.]). The transparency and the thermal stability of the materials can be improved when the compounds are substituted with a bromo group (Zhao et al., 2000[Zhao, B., Lu, W.-Q., Zhou, Z.-H. & Wu, Y. (2000). J. Mater. Chem. 10, 1513-1517.]). Chalcone derivatives with p-meth­oxy­phenyl groups possess first order hyperpolarizability and good optical transparency for non-linear optical applications (Muhammad et al., 2016[Muhammad, S., Al-Sehemi, A. G., Irfan, A., Chaudhry, A. R., Gharni, H., AlFaify, S., Shkir, M. & Asiri, A. M. (2016). J. Mol. Model. 22, 73.]). In view of the importance of meth­oxy- and bromo-substituted but­oxy side chains in chalcones, the crystal structures of the three title chalcones were determined and analysed.

2. Structural commentary

The mol­ecular structures of the title compounds (I)[link], (II)[link] and (III)[link] are shown in Figs. 1[link], 2[link] and 3[link], respectively. All three mol­ecules contain a chalcone unit consisting of two phenyl rings (ring A: C5–C10; ring B: C14–C19) connected by an enone moiety with a bromo­but­oxy side chain attached at the 4-position of one of the phenyl rings. In mol­ecule (I)[link], no other substitution is present, in mol­ecule (II)[link] a meth­oxy side chain is attached to ring B at the 4-position and in mol­ecule (III)[link], two meth­oxy side chains are attached at the 3- and 4-positions of ring B. All of them crystallize in the monoclinic space group P21/c with Z = 4. All three mol­ecules adopt an s-cis conformation about the central olefinic C12=C13 bond with O2—C11—C12—C13 torsion angles of −3.2 (4), −1.6 (5) and −21.5 (4)°, respectively, and the hydrogen atoms of the central enone groups are trans-arranged with respect to the C12=C13 double bond. Mol­ecules (I)[link] and (II)[link] are nearly planar with dihedral angles of 2.32 (13) and 2.33 (15)°, respectively, between the phenyl rings, while mol­ecule (III)[link] is non-planar with a dihedral angle of 50.96 (14)°. The dihedral angles between the atoms of the mean plane of the enone group O2/C11/C12/C13 with rings A and B are 3.10 (13), 5.34 (11)° in compound (I)[link], 4.45 (13), 5.62 (13)° in compound (II)[link] and 26.70 (11), 24.24 (10)° in compound (III)[link]. The increase in these values from compound (I)[link] to compound (III)[link] may be attributed to the presence of meth­oxy substitutents (Chopra et al., 2007[Chopra, D., Mohan, T. P., Vishalakshi, B. & Guru Row, T. N. (2007). Acta Cryst. C63, o746-o750.]). The meth­oxy groups are twisted slightly from the mean plane of ring B with torsion angles of −3.3 (4)° (C20—O3—C17—C16) in mol­ecule (II)[link], 7.3 (4)° (C19—C18—O4—C21) and −9.3 (5)° (C16—C17—O3—C20) in mol­ecule (III)[link].

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small sphere of arbitrary radius.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small sphere of arbitrary radius.
[Figure 3]
Figure 3
The mol­ecular structure of the compound (III)[link], with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small sphere of arbitrary radius.

In compounds (I)[link] and (III)[link], the bromo­alkoxyl tail is roughly co-planar with the attached benzene ring with C6—C5—O1—C4 torsion angles of −0.9 (4) and 2.5 (4)°, respectively. The deviation of the bromo­alkoxyl tail starts from the beginning of the aliphatic chain, as shown by the C5—O1—C4—C3 torsion angles of −179.0 (2) and 177.9 (2)° in (I)[link] and (III)[link], respectively. In compound (II)[link], the bromo­alkoxyl tail is twisted from the attached ring A with a C6—C5—O1—C4 torsion angle of 179.7 (3)°.

In compounds (I)[link] and (II)[link], the shortest distances between parallel C=C double bonds are 4.2059 (16) and 4.2881 (18) Å, which are close to the reference value of 4.2 Å for a photo-reactive crystal (Turowska-Tyrk et al., 2003[Turowska-Tyrk, I., Grześniak, K., Trzop, E. & Zych, T. (2003). J. Solid State Chem. 174, 459-465.]). In compound (III)[link], the shortest distance between neighbouring ethyl­enic double bonds is 4.6818 (16) Å, indicating that these crystals might be photo inert.

3. Supra­molecular features

The packing for mol­ecules (I)[link], (II)[link] and (III)[link] is shown in Figs. 4[link], 5[link] and 6[link], respectively. In the absence of strong hydrogen-bond donors in compounds (I)[link] and (II)[link], the crystal packing is stabilized by weak inter­molecular inter­actions (Nishio et al., 1995[Nishio, M., Umezawa, Y., Hirota, M. & Takeuchi, Y. (1995). Tetrahedron, 51, 8665-8701.]). The involvement of the benzene rings, which are a reservoir of charges in the C—H⋯π inter­action, leads to inter­molecular conjugation (Patil et al., 2013[Patil, P. S., Bhumannavar, V. M., Bannur, M. S., Kulkarni, H. N. & Bhagavannarayana, G. (2013). J. Cryst. Proc. Tech, 3, 108-117.]) and plays an important role in controlling the stereoselectivity of the organic reactions (Nishio et al., 2005[Nishio, M. (2005). Tetrahedron, 61, 6923-6950.]). The C—H⋯π inter­action in compound (I)[link] involves the C2 carbon atom via atom H2A of ring A and the centroid of ring B of a symmetry-related mol­ecule (Table 1[link]), forming chains parallel to the c axis. In compound (II)[link], mol­ecules are linked into chains parallel to the c axis by two C—H⋯π inter­actions involving the C2 and C3 carbon atoms via atoms H2B and H3A of ring A and the centroid of ring B of two symmetry-related mol­ecules (Table 2[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg is the centroid of the C14–C19 ring

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2BCgi 0.97 2.84 3.664 (3) 144
Symmetry code: (i) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2BCgi 0.97 2.87 3.703 (3) 144
C3—H3ACgii 0.97 2.94 3.743 (3) 140
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].
[Figure 4]
Figure 4
Crystal packing of the compound (I)[link], viewed down the a axis.
[Figure 5]
Figure 5
Crystal packing of the compound (II)[link], viewed down the a axis.
[Figure 6]
Figure 6
Crystal packing of the compound (III)[link], viewed down the c axis. Hydrogen atoms not involved in hydrogen bonding (dashed lines) are omitted.

In compound (III)[link], inversion-related mol­ecules are linked into dimers through pairs of inter­molecular hydrogen bonds involving the C10 carbon atom of ring A via atom H10 and the O3 oxygen atom (Table 3[link]). In addition, a non-covalent C—Br⋯Cg inter­action involving a lone-electron pair of the Br atom with the anti­bonding orbitals of ring B is observed [Br1⋯Cgii = 3.6577 (12) Å; Cg is the centroid of ring B; symmetry code: (ii) 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z] having a `face-on' geometry (Imai et al., 2008[Imai, Y. N., Inoue, Y., Nakanishi, I. & Kitaura, K. (2008). Protein Sci. 17, 1129-1137.]). This inter­action plays an important role in generating packing motifs (Prasanna & Guru Row, 2000[Prasanna, M. D. & Guru Row, T. N. (2000). Cryst. Eng. 3, 135-154.]; Saraogi et al., 2003[Saraogi, I., Vijay, V. G., Das, S., Sekar, K. & Guru Row, T. N. (2003). Cryst. Eng. 6, 69-77.]), and it may influence the SHG response of the compound (Harrison et al., 2005[Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Anilkumar, H. G. (2005). Acta Cryst. C61, o728-o730.]).

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O3i 0.93 2.59 3.505 (3) 169
Symmetry code: (i) -x+1, -y+2, -z+1.

4. Database survey

A search of the Cambridge Structural Database (Version 5.36, last update May 2015; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that the number of compounds based on the chemical unit of chalcone yielded 2168 hits. This involved some compounds with ring closure at the C=C bridge. Avoiding these, the search for the basic unit with two phenyl rings joined by an enone moiety of the title compounds yielded 604 hits. The search for a meth­oxy substitution on one of the phenyl rings of the basic unit gave 124 hits. Extending the search to bromo­meth­oxy, bromo­eth­oxy, bromo­propil­oxy and bromo­but­oxy side chains on the other phenyl ring at the 4- position yielded no hits.

5. Synthesis and crystallization

Chalcone bromides were prepared through condensation of 4-hy­droxy­aceto­phenone (1 equiv.) with benzaldehyde (1 equiv.) for compound (I)[link], 4-meth­oxy­benzaldehyde (1 equiv.) for compound (II)[link] and 4,5-meth­oxy­benzaldehyde (1 equiv.) for compound (III)[link] in 10% NaOH solution (10 ml). After stirring at room temperature for 12 h, the reaction mixtures were poured into ice–water (100 ml), filtered, and the products purified by column chromatography.

Mixtures of chalcone (1 equiv.), 1,4-di­bromo­butane (1.2 equiv.) and anhydrous potassium carbonate (2 equiv.) in dry acetone (40 mL) were then stirred at 333 K for 12 h. After completion of reactions, the solvents were evaporated under reduced pressure and the residues extracted with CH2Cl2 (3 × 100 ml). The organic layers were separated, washed with brine (1 × 150 ml), dried over anhydrous Na2SO4 and evaporated to give the crude bromo compounds, which were purified by column chromatography (SiO2) using a mixture of hexa­ne/CHCl3 (9:2 v/v) as eluent to afford yellow solids. The compounds were recrystallized by slow evaporation of chloro­form solutions.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. For all compounds, H atoms were localized in difference-Fourier maps and were constrained geometrically with C—H = 0.93, 0.96 and 0.97 Å for aryl, methyl and methyl­ene H atoms, respectively. The Uiso(H) values were set to 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C19H19BrO2 C20H21BrO3 C21H23BrO4
Mr 359.25 389.28 419.30
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 296 296 296
a, b, c (Å) 5.8266 (6), 38.743 (4), 7.5613 (7) 5.7331 (3), 41.732 (2), 7.6476 (4) 9.4765 (4), 26.0984 (12), 7.8666 (4)
β (°) 103.257 (3) 101.767 (2) 91.427 (2)
V3) 1661.4 (3) 1791.28 (16) 1944.98 (16)
Z 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 2.48 2.31 2.14
Crystal size (mm) 0.35 × 0.30 × 0.25 0.35 × 0.30 × 0.25 0.35 × 0.30 × 0.25
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.485, 0.746 0.639, 0.746 0.667, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 23972, 2900, 2144 21484, 3122, 2467 28826, 3434, 2416
Rint 0.039 0.028 0.043
(sin θ/λ)max−1) 0.595 0.595 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.125, 1.00 0.041, 0.105, 1.07 0.035, 0.111, 1.02
No. of reflections 2900 3122 3434
No. of parameters 199 217 235
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.46 0.29, −0.32 0.25, −0.60
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

(E)-1-[4-(4-Bromobutoxy)phenyl]-3-phenylprop-2-en-1-one (I) top
Crystal data top
C19H19BrO2F(000) = 736
Mr = 359.25Dx = 1.436 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.8266 (6) ÅCell parameters from 6044 reflections
b = 38.743 (4) Åθ = 2.8–21.7°
c = 7.5613 (7) ŵ = 2.48 mm1
β = 103.257 (3)°T = 296 K
V = 1661.4 (3) Å3Needle, gold
Z = 40.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2144 reflections with I > 2σ(I)
Bruker axs kappa axes2 CCD scansRint = 0.039
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 25.0°, θmin = 2.1°
Tmin = 0.485, Tmax = 0.746h = 66
23972 measured reflectionsk = 4646
2900 independent reflectionsl = 88
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0813P)2 + 0.1673P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2900 reflectionsΔρmax = 0.30 e Å3
199 parametersΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.63319 (7)0.02039 (2)0.28807 (6)0.0939 (2)
O11.3193 (3)0.15598 (5)0.4937 (2)0.0578 (5)
O21.6704 (3)0.30949 (6)0.5960 (3)0.0744 (6)
C131.3051 (4)0.35758 (7)0.5004 (3)0.0493 (6)
H131.4575740.3649110.5527390.059*
C141.1307 (4)0.38479 (6)0.4445 (3)0.0444 (6)
C91.5977 (4)0.23866 (7)0.5833 (4)0.0539 (7)
H91.7491540.2469020.6312140.065*
C121.2744 (5)0.32437 (7)0.4863 (4)0.0546 (7)
H121.1230620.3160270.4392860.066*
C111.4674 (4)0.29937 (7)0.5411 (3)0.0496 (6)
C31.1193 (5)0.10260 (7)0.4330 (3)0.0520 (7)
H3A1.1754610.0958940.5591410.062*
H3B1.2372290.0956790.3679460.062*
C101.5605 (5)0.20382 (7)0.5711 (4)0.0578 (7)
H101.6860480.1887480.6104670.069*
C81.4155 (4)0.26206 (7)0.5261 (3)0.0439 (6)
C61.1532 (4)0.21352 (7)0.4416 (4)0.0548 (7)
H61.0023100.2052350.3920780.066*
C41.0918 (5)0.14099 (7)0.4224 (3)0.0507 (6)
H4A1.0322830.1480970.2972300.061*
H4B0.9813200.1484920.4928600.061*
C51.3371 (4)0.19087 (7)0.5003 (3)0.0464 (6)
C10.9244 (5)0.04563 (7)0.3742 (4)0.0587 (7)
H1A0.9875090.0401620.5012870.070*
H1B1.0385520.0382030.3067800.070*
C20.8918 (5)0.08388 (6)0.3542 (3)0.0502 (6)
H2A0.7716520.0912920.4160000.060*
H2B0.8386300.0896560.2265420.060*
C191.1987 (5)0.41926 (7)0.4658 (4)0.0573 (7)
H191.3547840.4246830.5189080.069*
C71.1941 (5)0.24836 (7)0.4565 (4)0.0536 (6)
H71.0678770.2633710.4183900.064*
C150.8943 (4)0.37777 (8)0.3649 (3)0.0535 (7)
H150.8429600.3549940.3509010.064*
C181.0390 (7)0.44548 (8)0.4097 (4)0.0720 (9)
H181.0875510.4683620.4258860.086*
C160.7374 (6)0.40399 (9)0.3074 (4)0.0693 (8)
H160.5812800.3989040.2525410.083*
C170.8100 (7)0.43798 (9)0.3303 (4)0.0759 (10)
H170.7026420.4557170.2917480.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0793 (3)0.0526 (3)0.1425 (4)0.01202 (17)0.0105 (3)0.00946 (19)
O10.0514 (11)0.0425 (11)0.0732 (12)0.0031 (9)0.0014 (9)0.0009 (9)
O20.0448 (11)0.0562 (13)0.1106 (16)0.0067 (10)0.0061 (11)0.0055 (11)
C130.0426 (14)0.0507 (17)0.0530 (15)0.0049 (12)0.0077 (11)0.0015 (12)
C140.0486 (14)0.0432 (14)0.0439 (13)0.0015 (11)0.0159 (11)0.0026 (11)
C90.0357 (14)0.0565 (17)0.0631 (16)0.0006 (12)0.0019 (12)0.0013 (13)
C120.0427 (15)0.0470 (17)0.0689 (17)0.0027 (12)0.0017 (12)0.0008 (13)
C110.0403 (14)0.0525 (16)0.0526 (14)0.0029 (12)0.0036 (12)0.0026 (12)
C30.0592 (17)0.0469 (15)0.0478 (14)0.0034 (12)0.0078 (12)0.0001 (12)
C100.0417 (15)0.0525 (17)0.0742 (18)0.0114 (13)0.0032 (13)0.0065 (14)
C80.0378 (13)0.0489 (15)0.0436 (13)0.0012 (11)0.0065 (10)0.0029 (11)
C60.0377 (14)0.0500 (16)0.0700 (17)0.0036 (12)0.0012 (12)0.0013 (13)
C40.0505 (15)0.0475 (15)0.0529 (14)0.0008 (12)0.0095 (12)0.0012 (12)
C50.0476 (15)0.0430 (15)0.0472 (14)0.0017 (11)0.0079 (11)0.0023 (11)
C10.0672 (18)0.0437 (15)0.0617 (16)0.0014 (13)0.0077 (13)0.0006 (13)
C20.0577 (16)0.0429 (15)0.0488 (14)0.0028 (12)0.0095 (12)0.0015 (11)
C190.0635 (17)0.0482 (16)0.0639 (16)0.0033 (14)0.0223 (14)0.0028 (13)
C70.0388 (14)0.0465 (15)0.0699 (16)0.0049 (12)0.0009 (12)0.0057 (13)
C150.0492 (16)0.0563 (17)0.0542 (15)0.0000 (13)0.0101 (12)0.0039 (12)
C180.096 (3)0.0493 (18)0.081 (2)0.0084 (17)0.0413 (19)0.0064 (15)
C160.0599 (18)0.086 (3)0.0608 (17)0.0186 (18)0.0116 (14)0.0076 (16)
C170.090 (3)0.075 (2)0.069 (2)0.036 (2)0.0307 (19)0.0242 (17)
Geometric parameters (Å, º) top
Br1—C11.937 (3)C8—C71.383 (3)
O1—C51.356 (3)C6—C71.371 (4)
O1—C41.434 (3)C6—C51.377 (4)
O2—C111.225 (3)C6—H60.9300
C13—C121.300 (4)C4—H4A0.9700
C13—C141.458 (4)C4—H4B0.9700
C13—H130.9300C1—C21.497 (4)
C14—C191.392 (4)C1—H1A0.9700
C14—C151.397 (3)C1—H1B0.9700
C9—C101.367 (4)C2—H2A0.9700
C9—C81.388 (3)C2—H2B0.9700
C9—H90.9300C19—C181.377 (4)
C12—C111.470 (4)C19—H190.9300
C12—H120.9300C7—H70.9300
C11—C81.475 (4)C15—C161.370 (4)
C3—C41.496 (4)C15—H150.9300
C3—C21.509 (4)C18—C171.363 (5)
C3—H3A0.9700C18—H180.9300
C3—H3B0.9700C16—C171.382 (5)
C10—C51.383 (4)C16—H160.9300
C10—H100.9300C17—H170.9300
C5—O1—C4118.3 (2)C3—C4—H4B110.2
C12—C13—C14128.2 (2)H4A—C4—H4B108.5
C12—C13—H13115.9O1—C5—C6125.2 (2)
C14—C13—H13115.9O1—C5—C10115.7 (2)
C19—C14—C15117.6 (3)C6—C5—C10119.2 (2)
C19—C14—C13119.9 (2)C2—C1—Br1112.62 (19)
C15—C14—C13122.5 (2)C2—C1—H1A109.1
C10—C9—C8121.7 (2)Br1—C1—H1A109.1
C10—C9—H9119.1C2—C1—H1B109.1
C8—C9—H9119.1Br1—C1—H1B109.1
C13—C12—C11123.2 (2)H1A—C1—H1B107.8
C13—C12—H12118.4C1—C2—C3110.9 (2)
C11—C12—H12118.4C1—C2—H2A109.5
O2—C11—C12120.1 (2)C3—C2—H2A109.5
O2—C11—C8120.3 (2)C1—C2—H2B109.5
C12—C11—C8119.6 (2)C3—C2—H2B109.5
C4—C3—C2112.5 (2)H2A—C2—H2B108.1
C4—C3—H3A109.1C18—C19—C14121.2 (3)
C2—C3—H3A109.1C18—C19—H19119.4
C4—C3—H3B109.1C14—C19—H19119.4
C2—C3—H3B109.1C6—C7—C8122.6 (2)
H3A—C3—H3B107.8C6—C7—H7118.7
C9—C10—C5120.3 (2)C8—C7—H7118.7
C9—C10—H10119.8C16—C15—C14120.9 (3)
C5—C10—H10119.8C16—C15—H15119.6
C7—C8—C9116.6 (2)C14—C15—H15119.6
C7—C8—C11124.2 (2)C17—C18—C19120.2 (3)
C9—C8—C11119.2 (2)C17—C18—H18119.9
C7—C6—C5119.5 (2)C19—C18—H18119.9
C7—C6—H6120.2C15—C16—C17120.3 (3)
C5—C6—H6120.2C15—C16—H16119.9
O1—C4—C3107.7 (2)C17—C16—H16119.9
O1—C4—H4A110.2C18—C17—C16119.9 (3)
C3—C4—H4A110.2C18—C17—H17120.0
O1—C4—H4B110.2C16—C17—H17120.0
C12—C13—C14—C19178.0 (3)C7—C6—C5—C100.9 (4)
C12—C13—C14—C150.4 (4)C9—C10—C5—O1179.8 (2)
C14—C13—C12—C11177.4 (2)C9—C10—C5—C60.4 (4)
C13—C12—C11—O23.2 (4)Br1—C1—C2—C3176.61 (18)
C13—C12—C11—C8178.0 (3)C4—C3—C2—C1177.7 (2)
C8—C9—C10—C50.0 (4)C15—C14—C19—C180.3 (4)
C10—C9—C8—C70.2 (4)C13—C14—C19—C18178.2 (2)
C10—C9—C8—C11179.4 (2)C5—C6—C7—C81.1 (4)
O2—C11—C8—C7176.4 (3)C9—C8—C7—C60.8 (4)
C12—C11—C8—C72.4 (4)C11—C8—C7—C6178.7 (2)
O2—C11—C8—C93.1 (4)C19—C14—C15—C161.2 (4)
C12—C11—C8—C9178.1 (2)C13—C14—C15—C16177.3 (2)
C5—O1—C4—C3179.0 (2)C14—C19—C18—C170.5 (4)
C2—C3—C4—O1177.7 (2)C14—C15—C16—C171.2 (4)
C4—O1—C5—C60.9 (4)C19—C18—C17—C160.5 (5)
C4—O1—C5—C10179.7 (2)C15—C16—C17—C180.4 (5)
C7—C6—C5—O1179.7 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C14–C19 ring
D—H···AD—HH···AD···AD—H···A
C2—H2B···Cgi0.972.843.664 (3)144
Symmetry code: (i) x, y1/2, z3/2.
(E)-1-[4-(4-Bromobutoxy)phenyl]-3-(4-methoxyphenyl)prop-2-en-1-one (II) top
Crystal data top
C20H21BrO3F(000) = 800
Mr = 389.28Dx = 1.443 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.7331 (3) ÅCell parameters from 7354 reflections
b = 41.732 (2) Åθ = 2.8–22.9°
c = 7.6476 (4) ŵ = 2.31 mm1
β = 101.767 (2)°T = 296 K
V = 1791.28 (16) Å3Block, yellow
Z = 40.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2467 reflections with I > 2σ(I)
Bruker axs kappa axes2 CCD scansRint = 0.028
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 25.0°, θmin = 2.8°
Tmin = 0.639, Tmax = 0.746h = 66
21484 measured reflectionsk = 4948
3122 independent reflectionsl = 99
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0437P)2 + 1.2667P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3122 reflectionsΔρmax = 0.29 e Å3
217 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.80559 (7)0.03512 (2)0.33626 (5)0.07602 (19)
O10.1223 (4)0.16146 (5)0.1086 (3)0.0566 (6)
O20.2411 (4)0.30384 (5)0.0038 (4)0.0701 (7)
C190.5345 (5)0.36791 (7)0.2387 (4)0.0463 (7)
H190.5868750.3467780.2496450.056*
C140.2970 (5)0.37443 (7)0.1604 (4)0.0402 (6)
C120.1574 (5)0.31803 (7)0.1132 (4)0.0509 (8)
H120.3105530.3104050.1571920.061*
C80.0189 (5)0.25991 (6)0.0735 (4)0.0413 (7)
C170.6188 (6)0.42374 (7)0.2804 (4)0.0502 (8)
O30.7918 (4)0.44592 (6)0.3447 (3)0.0728 (7)
C150.2296 (5)0.40641 (7)0.1432 (4)0.0488 (7)
H150.0730850.4114350.0903310.059*
C50.1019 (5)0.19408 (7)0.1012 (4)0.0450 (7)
C130.1236 (5)0.34903 (7)0.1027 (4)0.0447 (7)
H130.0301480.3557090.0520360.054*
C100.2842 (5)0.21506 (7)0.1628 (4)0.0531 (8)
H100.4349220.2074900.2150040.064*
C180.6913 (5)0.39211 (8)0.2995 (4)0.0517 (8)
H180.8474850.3872470.3539490.062*
C40.3497 (5)0.14792 (7)0.1833 (4)0.0518 (8)
H4A0.4017640.1548050.3062200.062*
H4B0.4670110.1547700.1159520.062*
C10.5163 (6)0.05930 (7)0.2405 (5)0.0580 (8)
H1A0.4617000.0537880.1156490.070*
H1B0.3928210.0530860.3036850.070*
C110.0366 (5)0.29464 (7)0.0585 (4)0.0478 (7)
C160.3876 (6)0.43108 (7)0.2019 (4)0.0533 (8)
H160.3379470.4523170.1884100.064*
C20.5516 (5)0.09482 (7)0.2563 (4)0.0499 (7)
H2A0.6771140.1012160.1955110.060*
H2B0.6001380.1006710.3811780.060*
C70.1621 (5)0.23800 (7)0.0135 (4)0.0529 (8)
H70.3139530.2454220.0367940.063*
C60.1214 (5)0.20577 (7)0.0269 (4)0.0554 (8)
H60.2454110.1915630.0144600.066*
C90.2409 (5)0.24765 (7)0.1464 (5)0.0534 (8)
H90.3659560.2617940.1858200.064*
C30.3229 (6)0.11218 (7)0.1747 (4)0.0509 (7)
H3A0.2730500.1057180.0508700.061*
H3B0.1989730.1058840.2372000.061*
C200.7321 (8)0.47862 (9)0.3209 (6)0.0839 (12)
H20A0.8679670.4914780.3715710.126*
H20B0.6846710.4831970.1956220.126*
H20C0.6030810.4834620.3791910.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0824 (3)0.0585 (3)0.0824 (3)0.01893 (19)0.0055 (2)0.00496 (19)
O10.0525 (12)0.0385 (12)0.0737 (15)0.0032 (10)0.0011 (11)0.0014 (10)
O20.0411 (13)0.0529 (14)0.107 (2)0.0063 (11)0.0062 (12)0.0058 (13)
C190.0432 (17)0.0411 (17)0.0541 (18)0.0060 (13)0.0093 (14)0.0019 (14)
C140.0422 (16)0.0396 (16)0.0406 (16)0.0012 (13)0.0126 (13)0.0028 (12)
C120.0398 (16)0.0430 (18)0.066 (2)0.0016 (13)0.0009 (15)0.0016 (14)
C80.0361 (15)0.0417 (16)0.0448 (16)0.0009 (12)0.0053 (13)0.0031 (13)
C170.057 (2)0.0503 (19)0.0467 (17)0.0120 (15)0.0172 (15)0.0077 (14)
O30.0712 (16)0.0618 (16)0.0834 (17)0.0202 (12)0.0109 (13)0.0152 (13)
C150.0441 (17)0.0441 (17)0.0583 (19)0.0049 (14)0.0109 (14)0.0065 (14)
C50.0471 (17)0.0377 (16)0.0490 (17)0.0012 (13)0.0074 (14)0.0025 (13)
C130.0388 (15)0.0430 (17)0.0512 (18)0.0067 (13)0.0067 (13)0.0019 (13)
C100.0372 (16)0.0435 (18)0.073 (2)0.0032 (14)0.0013 (15)0.0033 (15)
C180.0434 (17)0.060 (2)0.0498 (18)0.0000 (15)0.0051 (14)0.0019 (15)
C40.0533 (19)0.0438 (17)0.0581 (19)0.0022 (14)0.0110 (15)0.0009 (15)
C10.068 (2)0.0471 (18)0.058 (2)0.0068 (16)0.0088 (16)0.0042 (15)
C110.0407 (17)0.0447 (17)0.0559 (18)0.0025 (13)0.0048 (14)0.0024 (14)
C160.062 (2)0.0389 (17)0.062 (2)0.0008 (15)0.0195 (17)0.0012 (14)
C20.0577 (19)0.0441 (18)0.0477 (18)0.0000 (14)0.0103 (15)0.0031 (14)
C70.0349 (16)0.0516 (19)0.066 (2)0.0001 (14)0.0037 (15)0.0001 (15)
C60.0423 (17)0.0443 (18)0.074 (2)0.0101 (14)0.0015 (16)0.0054 (16)
C90.0394 (17)0.0438 (17)0.072 (2)0.0061 (13)0.0001 (15)0.0069 (15)
C30.0592 (19)0.0428 (17)0.0511 (18)0.0018 (14)0.0119 (15)0.0028 (14)
C200.110 (3)0.060 (2)0.085 (3)0.035 (2)0.028 (2)0.015 (2)
Geometric parameters (Å, º) top
Br1—C11.952 (3)C13—H130.9300
O1—C51.367 (3)C10—C91.384 (4)
O1—C41.429 (4)C10—H100.9300
O2—C111.223 (3)C18—H180.9300
C19—C181.369 (4)C4—C31.499 (4)
C19—C141.398 (4)C4—H4A0.9700
C19—H190.9300C4—H4B0.9700
C14—C151.388 (4)C1—C21.498 (4)
C14—C131.459 (4)C1—H1A0.9700
C12—C131.308 (4)C1—H1B0.9700
C12—C111.475 (4)C16—H160.9300
C12—H120.9300C2—C31.517 (4)
C8—C91.380 (4)C2—H2A0.9700
C8—C71.389 (4)C2—H2B0.9700
C8—C111.483 (4)C7—C61.365 (4)
C17—O31.372 (4)C7—H70.9300
C17—C161.373 (4)C6—H60.9300
C17—C181.383 (4)C9—H90.9300
O3—C201.410 (5)C3—H3A0.9700
C15—C161.384 (4)C3—H3B0.9700
C15—H150.9300C20—H20A0.9600
C5—C101.372 (4)C20—H20B0.9600
C5—C61.380 (4)C20—H20C0.9600
C5—O1—C4118.3 (2)C2—C1—H1A109.0
C18—C19—C14121.1 (3)Br1—C1—H1A109.0
C18—C19—H19119.4C2—C1—H1B109.0
C14—C19—H19119.4Br1—C1—H1B109.0
C15—C14—C19117.1 (3)H1A—C1—H1B107.8
C15—C14—C13120.7 (3)O2—C11—C12120.3 (3)
C19—C14—C13122.2 (3)O2—C11—C8120.6 (3)
C13—C12—C11122.9 (3)C12—C11—C8119.2 (3)
C13—C12—H12118.5C17—C16—C15119.0 (3)
C11—C12—H12118.5C17—C16—H16120.5
C9—C8—C7117.1 (3)C15—C16—H16120.5
C9—C8—C11124.0 (3)C1—C2—C3110.4 (3)
C7—C8—C11118.9 (3)C1—C2—H2A109.6
O3—C17—C16124.7 (3)C3—C2—H2A109.6
O3—C17—C18115.2 (3)C1—C2—H2B109.6
C16—C17—C18120.1 (3)C3—C2—H2B109.6
C17—O3—C20117.9 (3)H2A—C2—H2B108.1
C16—C15—C14122.2 (3)C6—C7—C8121.3 (3)
C16—C15—H15118.9C6—C7—H7119.4
C14—C15—H15118.9C8—C7—H7119.4
O1—C5—C10124.7 (3)C7—C6—C5120.6 (3)
O1—C5—C6115.7 (3)C7—C6—H6119.7
C10—C5—C6119.6 (3)C5—C6—H6119.7
C12—C13—C14128.1 (3)C8—C9—C10122.3 (3)
C12—C13—H13116.0C8—C9—H9118.8
C14—C13—H13116.0C10—C9—H9118.8
C5—C10—C9119.1 (3)C4—C3—C2112.6 (3)
C5—C10—H10120.4C4—C3—H3A109.1
C9—C10—H10120.4C2—C3—H3A109.1
C19—C18—C17120.4 (3)C4—C3—H3B109.1
C19—C18—H18119.8C2—C3—H3B109.1
C17—C18—H18119.8H3A—C3—H3B107.8
O1—C4—C3107.4 (2)O3—C20—H20A109.5
O1—C4—H4A110.2O3—C20—H20B109.5
C3—C4—H4A110.2H20A—C20—H20B109.5
O1—C4—H4B110.2O3—C20—H20C109.5
C3—C4—H4B110.2H20A—C20—H20C109.5
H4A—C4—H4B108.5H20B—C20—H20C109.5
C2—C1—Br1113.0 (2)
C18—C19—C14—C151.6 (4)C9—C8—C11—O2174.9 (3)
C18—C19—C14—C13176.9 (3)C7—C8—C11—O24.1 (5)
C16—C17—O3—C203.3 (4)C9—C8—C11—C124.1 (5)
C18—C17—O3—C20176.8 (3)C7—C8—C11—C12176.8 (3)
C19—C14—C15—C160.7 (4)O3—C17—C16—C15179.7 (3)
C13—C14—C15—C16177.8 (3)C18—C17—C16—C150.2 (4)
C4—O1—C5—C100.9 (4)C14—C15—C16—C170.2 (5)
C4—O1—C5—C6179.7 (3)Br1—C1—C2—C3178.3 (2)
C11—C12—C13—C14176.6 (3)C9—C8—C7—C60.2 (5)
C15—C14—C13—C12178.5 (3)C11—C8—C7—C6178.9 (3)
C19—C14—C13—C120.0 (5)C8—C7—C6—C50.1 (5)
O1—C5—C10—C9179.5 (3)O1—C5—C6—C7179.8 (3)
C6—C5—C10—C91.1 (5)C10—C5—C6—C70.3 (5)
C14—C19—C18—C171.7 (4)C7—C8—C9—C101.0 (5)
O3—C17—C18—C19179.4 (3)C11—C8—C9—C10178.0 (3)
C16—C17—C18—C190.8 (4)C5—C10—C9—C81.5 (5)
C5—O1—C4—C3179.8 (2)O1—C4—C3—C2178.1 (2)
C13—C12—C11—O21.6 (5)C1—C2—C3—C4178.8 (3)
C13—C12—C11—C8179.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2B···Cgi0.972.873.703 (3)144
C3—H3A···Cgii0.972.943.743 (3)140
Symmetry codes: (i) x, y1/2, z1/2; (ii) x, y1/2, z3/2.
(E)-1-[4-(4-Bromobutoxy)phenyl]-3-(3,4-dimethoxyphenyl)prop-2-en-1-one (III) top
Crystal data top
C21H23BrO4F(000) = 864
Mr = 419.30Dx = 1.432 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.4765 (4) ÅCell parameters from 6542 reflections
b = 26.0984 (12) Åθ = 2.3–22.8°
c = 7.8666 (4) ŵ = 2.14 mm1
β = 91.427 (2)°T = 296 K
V = 1944.98 (16) Å3Block, yellow
Z = 40.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2416 reflections with I > 2σ(I)
Bruker axs kappa axes2 CCD scansRint = 0.043
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 25.0°, θmin = 2.2°
Tmin = 0.667, Tmax = 0.746h = 1011
28826 measured reflectionsk = 3131
3434 independent reflectionsl = 79
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0612P)2 + 0.5481P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
3434 reflectionsΔρmax = 0.25 e Å3
235 parametersΔρmin = 0.60 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.45552 (4)0.54423 (2)0.24312 (5)0.07597 (19)
O20.0404 (2)0.94255 (7)0.1625 (3)0.0511 (5)
O10.2713 (2)0.73775 (7)0.3764 (3)0.0588 (6)
C120.1316 (3)0.98125 (11)0.3389 (3)0.0437 (7)
H120.1840580.9773720.4396180.052*
O30.3615 (2)1.21305 (7)0.4837 (3)0.0574 (6)
O40.3614 (2)1.13839 (7)0.6921 (2)0.0502 (5)
C180.3015 (3)1.12792 (10)0.5363 (3)0.0373 (6)
C170.3004 (3)1.16949 (10)0.4216 (3)0.0403 (7)
C190.2448 (3)1.08188 (10)0.4870 (3)0.0363 (6)
H190.2467281.0544090.5623760.044*
C110.0599 (3)0.93675 (11)0.2626 (3)0.0390 (6)
C80.1125 (3)0.88440 (10)0.3020 (3)0.0381 (6)
C130.1224 (3)1.02697 (10)0.2659 (3)0.0397 (6)
H130.0700531.0282830.1644150.048*
C70.0262 (3)0.84234 (11)0.2685 (4)0.0462 (7)
H70.0657850.8476430.2284550.055*
C50.2117 (3)0.78456 (11)0.3500 (4)0.0454 (7)
C140.1837 (3)1.07568 (10)0.3236 (3)0.0381 (6)
C40.1895 (3)0.69302 (10)0.3374 (4)0.0482 (7)
H4A0.1585240.6933770.2189590.058*
H4B0.1069190.6916790.4076880.058*
C20.2054 (3)0.59737 (11)0.3392 (4)0.0510 (7)
H2A0.1200780.5972640.4047690.061*
H2B0.1772610.5960720.2199010.061*
C10.2885 (4)0.54993 (11)0.3820 (4)0.0580 (8)
H1A0.2291460.5200540.3636720.070*
H1B0.3171670.5507540.5011590.070*
C150.1820 (3)1.11719 (11)0.2142 (3)0.0450 (7)
H150.1407481.1137600.1063320.054*
C90.2493 (3)0.87505 (11)0.3629 (4)0.0463 (7)
H90.3083670.9025730.3888300.056*
C60.0741 (3)0.79281 (11)0.2934 (4)0.0495 (7)
H60.0142400.7651890.2721270.059*
C30.2834 (3)0.64750 (10)0.3727 (4)0.0490 (7)
H3A0.3165650.6484510.4902860.059*
H3B0.3650600.6492740.3010010.059*
C160.2404 (3)1.16361 (11)0.2622 (4)0.0459 (7)
H160.2390271.1909460.1862970.055*
C210.3812 (3)1.09715 (11)0.8078 (3)0.0524 (8)
H21A0.4238841.1096890.9116550.079*
H21B0.2915231.0819470.8312990.079*
H21C0.4415991.0719090.7587320.079*
C100.2989 (3)0.82590 (11)0.3855 (4)0.0491 (7)
H100.3910470.8204700.4246690.059*
C200.3838 (5)1.25427 (12)0.3693 (5)0.0744 (11)
H20A0.4273531.2823380.4295400.112*
H20B0.4443731.2431500.2804160.112*
H20C0.2949231.2651570.3205430.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0631 (3)0.0526 (2)0.1133 (4)0.00316 (16)0.0227 (2)0.00490 (19)
O20.0505 (13)0.0438 (11)0.0583 (12)0.0026 (10)0.0138 (11)0.0025 (10)
O10.0550 (13)0.0367 (11)0.0842 (16)0.0023 (10)0.0073 (12)0.0014 (10)
C120.0472 (17)0.0408 (17)0.0427 (16)0.0005 (14)0.0062 (13)0.0056 (13)
O30.0856 (16)0.0348 (11)0.0510 (12)0.0151 (11)0.0122 (11)0.0071 (9)
O40.0747 (14)0.0341 (10)0.0409 (11)0.0102 (10)0.0140 (10)0.0021 (9)
C180.0406 (15)0.0343 (15)0.0371 (15)0.0008 (12)0.0009 (12)0.0011 (12)
C170.0479 (16)0.0282 (14)0.0446 (17)0.0021 (12)0.0006 (13)0.0002 (12)
C190.0408 (15)0.0293 (13)0.0389 (15)0.0009 (11)0.0007 (12)0.0014 (11)
C110.0403 (16)0.0406 (15)0.0362 (15)0.0012 (13)0.0038 (13)0.0057 (12)
C80.0400 (16)0.0379 (15)0.0364 (14)0.0017 (12)0.0023 (12)0.0062 (12)
C130.0393 (15)0.0411 (15)0.0387 (15)0.0001 (13)0.0018 (12)0.0055 (13)
C70.0391 (16)0.0436 (17)0.0558 (18)0.0001 (13)0.0007 (14)0.0053 (14)
C50.0507 (18)0.0370 (16)0.0487 (17)0.0008 (14)0.0047 (14)0.0007 (13)
C140.0367 (15)0.0353 (15)0.0423 (16)0.0017 (12)0.0016 (12)0.0043 (12)
C40.0553 (18)0.0391 (16)0.0502 (17)0.0030 (14)0.0029 (14)0.0028 (14)
C20.0493 (18)0.0449 (17)0.0591 (19)0.0034 (14)0.0081 (15)0.0005 (15)
C10.0569 (19)0.0420 (18)0.075 (2)0.0077 (15)0.0098 (17)0.0010 (15)
C150.0504 (17)0.0468 (17)0.0374 (15)0.0001 (14)0.0079 (13)0.0017 (13)
C90.0459 (18)0.0415 (17)0.0514 (18)0.0071 (13)0.0000 (14)0.0036 (14)
C60.0472 (18)0.0391 (17)0.0619 (19)0.0046 (13)0.0032 (15)0.0037 (14)
C30.0525 (18)0.0374 (16)0.0572 (19)0.0002 (14)0.0002 (15)0.0013 (14)
C160.0570 (18)0.0381 (16)0.0425 (17)0.0026 (14)0.0034 (14)0.0099 (13)
C210.065 (2)0.0448 (17)0.0468 (17)0.0041 (15)0.0155 (15)0.0087 (14)
C100.0411 (16)0.0454 (17)0.0604 (19)0.0021 (14)0.0046 (14)0.0001 (14)
C200.112 (3)0.0412 (18)0.069 (2)0.024 (2)0.013 (2)0.0165 (17)
Geometric parameters (Å, º) top
Br1—C11.951 (3)C14—C151.383 (4)
O2—C111.228 (3)C4—C31.506 (4)
O1—C51.360 (3)C4—H4A0.9700
O1—C41.430 (3)C4—H4B0.9700
C12—C131.326 (4)C2—C11.501 (4)
C12—C111.467 (4)C2—C31.522 (4)
C12—H120.9300C2—H2A0.9700
O3—C171.361 (3)C2—H2B0.9700
O3—C201.422 (3)C1—H1A0.9700
O4—C181.366 (3)C1—H1B0.9700
O4—C211.419 (3)C15—C161.380 (4)
C18—C191.368 (4)C15—H150.9300
C18—C171.411 (4)C9—C101.376 (4)
C17—C161.373 (4)C9—H90.9300
C19—C141.406 (4)C6—H60.9300
C19—H190.9300C3—H3A0.9700
C11—C81.484 (4)C3—H3B0.9700
C8—C71.390 (4)C16—H160.9300
C8—C91.393 (4)C21—H21A0.9600
C13—C141.465 (4)C21—H21B0.9600
C13—H130.9300C21—H21C0.9600
C7—C61.382 (4)C10—H100.9300
C7—H70.9300C20—H20A0.9600
C5—C101.383 (4)C20—H20B0.9600
C5—C61.384 (4)C20—H20C0.9600
C5—O1—C4118.7 (2)C1—C2—H2B108.5
C13—C12—C11120.7 (3)C3—C2—H2B108.5
C13—C12—H12119.7H2A—C2—H2B107.5
C11—C12—H12119.7C2—C1—Br1111.5 (2)
C17—O3—C20118.3 (2)C2—C1—H1A109.3
C18—O4—C21118.0 (2)Br1—C1—H1A109.3
O4—C18—C19125.5 (2)C2—C1—H1B109.3
O4—C18—C17114.6 (2)Br1—C1—H1B109.3
C19—C18—C17119.8 (2)H1A—C1—H1B108.0
O3—C17—C16125.7 (2)C16—C15—C14121.3 (2)
O3—C17—C18114.6 (2)C16—C15—H15119.4
C16—C17—C18119.6 (2)C14—C15—H15119.4
C18—C19—C14120.6 (2)C10—C9—C8121.3 (3)
C18—C19—H19119.7C10—C9—H9119.4
C14—C19—H19119.7C8—C9—H9119.4
O2—C11—C12120.5 (3)C7—C6—C5119.6 (3)
O2—C11—C8119.8 (2)C7—C6—H6120.2
C12—C11—C8119.6 (2)C5—C6—H6120.2
C7—C8—C9117.7 (3)C4—C3—C2111.4 (2)
C7—C8—C11119.6 (2)C4—C3—H3A109.4
C9—C8—C11122.5 (2)C2—C3—H3A109.4
C12—C13—C14128.7 (3)C4—C3—H3B109.4
C12—C13—H13115.7C2—C3—H3B109.4
C14—C13—H13115.7H3A—C3—H3B108.0
C6—C7—C8121.5 (3)C17—C16—C15120.1 (2)
C6—C7—H7119.3C17—C16—H16119.9
C8—C7—H7119.3C15—C16—H16119.9
O1—C5—C10115.2 (3)O4—C21—H21A109.5
O1—C5—C6125.0 (3)O4—C21—H21B109.5
C10—C5—C6119.8 (3)H21A—C21—H21B109.5
C15—C14—C19118.5 (2)O4—C21—H21C109.5
C15—C14—C13119.2 (2)H21A—C21—H21C109.5
C19—C14—C13122.3 (2)H21B—C21—H21C109.5
O1—C4—C3106.9 (2)C9—C10—C5120.1 (3)
O1—C4—H4A110.4C9—C10—H10120.0
C3—C4—H4A110.4C5—C10—H10120.0
O1—C4—H4B110.4O3—C20—H20A109.5
C3—C4—H4B110.4O3—C20—H20B109.5
H4A—C4—H4B108.6H20A—C20—H20B109.5
C1—C2—C3114.9 (3)O3—C20—H20C109.5
C1—C2—H2A108.5H20A—C20—H20C109.5
C3—C2—H2A108.5H20B—C20—H20C109.5
C21—O4—C18—C197.3 (4)C18—C19—C14—C150.1 (4)
C21—O4—C18—C17172.9 (3)C18—C19—C14—C13179.7 (2)
C20—O3—C17—C169.3 (5)C12—C13—C14—C15168.9 (3)
C20—O3—C17—C18170.8 (3)C12—C13—C14—C1911.0 (4)
O4—C18—C17—O31.2 (4)C5—O1—C4—C3177.9 (2)
C19—C18—C17—O3179.1 (2)C3—C2—C1—Br162.6 (3)
O4—C18—C17—C16178.8 (3)C19—C14—C15—C160.9 (4)
C19—C18—C17—C161.0 (4)C13—C14—C15—C16179.0 (3)
O4—C18—C19—C14178.9 (2)C7—C8—C9—C101.5 (4)
C17—C18—C19—C140.8 (4)C11—C8—C9—C10174.7 (3)
C13—C12—C11—O221.5 (4)C8—C7—C6—C51.1 (4)
C13—C12—C11—C8156.3 (3)O1—C5—C6—C7178.9 (3)
O2—C11—C8—C719.1 (4)C10—C5—C6—C71.7 (4)
C12—C11—C8—C7163.1 (2)O1—C4—C3—C2178.7 (2)
O2—C11—C8—C9157.1 (3)C1—C2—C3—C4176.2 (3)
C12—C11—C8—C920.8 (4)O3—C17—C16—C15179.8 (3)
C11—C12—C13—C14178.8 (3)C18—C17—C16—C150.3 (4)
C9—C8—C7—C60.4 (4)C14—C15—C16—C170.7 (5)
C11—C8—C7—C6175.9 (3)C8—C9—C10—C51.0 (4)
C4—O1—C5—C10178.0 (2)O1—C5—C10—C9179.9 (3)
C4—O1—C5—C62.5 (4)C6—C5—C10—C90.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O3i0.932.593.505 (3)169
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

The authors thank the single-crystal XRD facility, SAIF IIT Madras, Chennai, for the data collection.

Funding information

SS thanks DST PURSE Phase II for providing fellowship in the form of JRF.

References

First citationAponte, J. C., Verástegui, M., Málaga, E., Zimic, M., Quiliano, M., Vaisberg, A. J., Gilman, R. H. & Hammond, G. B. (2008). J. Med. Chem. 51, 6230–6234.  CrossRef PubMed CAS Google Scholar
First citationBappaliage, N. N., Narayana, Y., Poojary, B. & Poojary, K. N. (2010). IJPAP, 6, 151–156.  Google Scholar
First citationBarot, V. M., Sahaj, A. G., Mahato, A. & Mehta, N. B. (2013). IJSRP, 3, 737–740.  Google Scholar
First citationBello, M. L., Chiaradia, L. M., Dias, L. R. S., Pacheco, L. K., Stumpf, T. R., Mascarello, A., Steindel, M., Yunes, R. A., Castro, H. C., Nunes, R. J. & Rodrigues, C. R. (2011). Bioorg. Med. Chem. 19, 5046–5052.  CrossRef CAS PubMed Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, M., Christensen, S. B., Zhai, L., Rasmussen, M. H., Theander, T. G., Frøkjaer, S., Steffansen, B., Davidsen, J. & Kharazmi, A. (1997). J. Infect Dis. 176, 1327–1333.  CrossRef CAS PubMed Google Scholar
First citationChopra, D., Mohan, T. P., Vishalakshi, B. & Guru Row, T. N. (2007). Acta Cryst. C63, o746–o750.  CSD CrossRef IUCr Journals Google Scholar
First citationDevia, A. C., Ferretti, F. H., Ponce, C. A. & Tomás, F. (1999). J. Mol. Struct. Theochem, 493, 187–197.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhosh, R. & Das, A. (2014). World J. Pharm. Pharm. Sci, 3, 578–595.  Google Scholar
First citationGo, M. L., Wu, X. & Liu, X. L. (2005). Curr. Med. Chem. 12, 483–499.  CrossRef CAS Google Scholar
First citationGoud, B. S., Panneerselvam, K., Zacharias, D. E. & Desirajua, G. R. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 325–330.  CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Anilkumar, H. G. (2005). Acta Cryst. C61, o728–o730.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationImai, Y. N., Inoue, Y., Nakanishi, I. & Kitaura, K. (2008). Protein Sci. 17, 1129–1137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKumar, S. K., Hager, E., Pettit, C., Gurulingappa, H., Davidson, N. E. & Khan, S. R. (2003). J. Med. Chem. 46, 2813–2815.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKumar, R., Mohanakrishnan, D., Sharma, A., Kaushik, N. K., Kalia, K., Sinha, A. K. & Sahal, D. (2010). Eur. J. Med. Chem. 45, 5292–5301.  CrossRef CAS PubMed Google Scholar
First citationLiu, M., Wilairat, P. & Go, M. L. (2001). J. Med. Chem. 44, 4443–4452.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMaleraju, J. & Sreedhar, N. Y. (2013). Heterocycl. Lett. 3, 37–40.  CAS Google Scholar
First citationMuhammad, S., Al-Sehemi, A. G., Irfan, A., Chaudhry, A. R., Gharni, H., AlFaify, S., Shkir, M. & Asiri, A. M. (2016). J. Mol. Model. 22, 73.  CrossRef PubMed Google Scholar
First citationNielsen, S. F., Christensen, S. B., Cruciani, G., Kharazmi, A. & Liljefors, T. (1998). J. Med. Chem. 41, 4819–4832.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNishio, M. (2005). Tetrahedron, 61, 6923–6950.  Web of Science CrossRef CAS Google Scholar
First citationNishio, M., Umezawa, Y., Hirota, M. & Takeuchi, Y. (1995). Tetrahedron, 51, 8665–8701.  CrossRef CAS Web of Science Google Scholar
First citationPatil, P. S., Bhumannavar, V. M., Bannur, M. S., Kulkarni, H. N. & Bhagavannarayana, G. (2013). J. Cryst. Proc. Tech, 3, 108–117.  Google Scholar
First citationPatil, C. B., Mahajan, S. K. & Katti, S. A. (2009). J. Pharm. Sci. Res, 1, 11–22.  CAS Google Scholar
First citationPrabhu, A. N., Jayarama, A., Bhat, K. S. & Upadhyaya, V. (2013). J. Mol. Struct. 1031, 79–84.  CSD CrossRef CAS Google Scholar
First citationPrasad, Y. R., Kumar, P. R., Deepti, C. A. & Ramana, M. V. (2006). E-J. Chem. 3, 236–241.  CrossRef CAS Google Scholar
First citationPrasanna, M. D. & Guru Row, T. N. (2000). Cryst. Eng. 3, 135–154.  CrossRef CAS Google Scholar
First citationSaraogi, I., Vijay, V. G., Das, S., Sekar, K. & Guru Row, T. N. (2003). Cryst. Eng. 6, 69–77.  Web of Science CrossRef CAS Google Scholar
First citationSatyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. 12, 883–889.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShenvi, S., Kumar, K., Hatti, K. S., Rijesh, K., Diwakar, L. & Reddy, G. C. (2013). Eur. J. Med. Chem. 62, 435–442.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShettigar, S., Chandrasekharan, K., Umesh, G., Sarojini, B. K. & Narayana, B. (2006). Polymer, 47, 3565–3567.  Web of Science CrossRef CAS Google Scholar
First citationSivakumar, P. M., Geetha Babu, S. K. & Mukesh, D. (2007). Chem. Pharm. Bull. 55, 44–49.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSweety, Kumar, S., Nepali, K., Sapra, S., Suri, O. P., Dhar, K. L., Sarma, G. S. & Saxena, A. K. (2010). Indian J. Pharm. Sci. 72, 801–806.  CAS PubMed Google Scholar
First citationSyam, S., Abdelwahab, S. I., Al-Mamary, M. A. & Mohan, S. (2012). Molecules, 17, 6179–6195.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurowska-Tyrk, I., Grześniak, K., Trzop, E. & Zych, T. (2003). J. Solid State Chem. 174, 459–465.  CAS Google Scholar
First citationValdameri, G., Gauthier, C., Terreux, R., Kachadourian, R., Day, B. J., Winnischofer, S. M. B., Rocha, M. E. M., Frachet, V., Ronot, X., Di Pietro, A. & Boumendjel, A. (2012). J. Med. Chem. 55, 3193–3200.  CrossRef CAS PubMed Google Scholar
First citationVibhute, Y. B. & Baseer, M. A. (2003). Indian J. Chem. 42, 202–205.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYadav, N., Dixit, S. K., Bhattacharya, A., Mishra, L. C., Sharma, M., Awasthi, S. K. & Bhasin, V. K. (2012). Chem. Biol. Drug Des. 80, 340–347.  CrossRef CAS PubMed Google Scholar
First citationYayli, N., Ucuncu, O., Yasar, A., Gok, Y., Kucuk, M. & Kolayli, S. (2004). Turk. J. Chem. 28, 515–521.  CAS Google Scholar
First citationYe, C. L., Liu, J. W., Wei, D. Z., Lu, Y. H. & Qian, F. (2004). Pharmacol. Res. 50, 505–510.  CrossRef PubMed CAS Google Scholar
First citationZhao, B., Lu, W.-Q., Zhou, Z.-H. & Wu, Y. (2000). J. Mater. Chem. 10, 1513–1517.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds