research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of hexa­methyl 4,4′,4′′,4′′′,4′′′',4′′′''-[(1,3,5,2λ5,4λ5,6λ5-tri­aza­triphosphinine-2,2,4,4,6,6-hexa­yl)hexa­kis­(­­oxy)]hexa­benzoate

aSchool of Chemical Engineering and Environment, Henan University of Technology, Zhengzhou 450001, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
*Correspondence e-mail: zhujing1960@126.com

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 11 June 2017; accepted 12 July 2017; online 25 July 2017)

The title compound, C48H42N3O18P3, achieved in a two-step synthesis, comprises a cyclo­triphosphazene core and six 4-meth­oxy­carbonyl­phen­oxy groups. Each P atom is attached to two substituents located up and down with respect to the plane of the phosphazene ring, the central P3N3 ring having a twist-boat conformation. The three O/P/O planes and five of the six benzene rings are nearly perpendicular to the mean plane through the phosphazene ring [dihedral angles = 82.98 (8)–88.92 (8)°], while the remaining benzene ring forms a dihedral angle of 25.72 (7)°. The crystal packing is stabilized by van der Waals inter­actions only.

1. Chemical context

In the past few decades, a rich variety of cyclo­triphosphazenes with inter­esting properties and applications have been synthesized by replacing the Cl atoms of hexa­chloro­cyclo­triphosphazene with various nucleophiles. The properties of cyclo­triphosphazenes depend on the inorganic skeleton, as well as on the nature of the substituents attached to the P atoms (Patil et al., 2011[Patil, B. R., Machakanur, S. S., Badiger, D. S., Hunoor, R. S., Gudasi, K. B., Nethaji, M. & Annie Bligh, S. W. (2011). J. Mol. Struct. 1003, 52-61.]). Hexa­kis­(allyl 4-hy­droxy­ben­zoate)cyclo­triphosphazene (HABC) possessing six reactive peripheral allyl groups is used as a functional phosphazene-based oligomer for the synthesis of optical resin, through radical homopolymerization of itself and copolymerization with methyl methacrylate (Guo et al., 2009[Guo, Y. N., Zhao, C., Liu, S. Z., Li, D., Wang, S. J., Qiu, J. J. & Liu, C. M. (2009). Polym. Bull. 62, 421-431.]). The title com­pound, HMPC, was obtained accidentally from the recrystallization of the crude product of HABC. Subsequently, as a retardant additive, HMPC was blended with a polymer of methyl methacrylate to obtain the flame-retardant polymer MC–PMMA. In this context, we report here the synthesis and crystal structure of HMPC.

2. Structural commentary

The mol­ecule of HMPC (Fig. 1[link]) comprises a cyclo­triphosphazene core and six 4-meth­oxy­carbonyl phen­oxy groups, and each P atom is attached to two substituents. Three of the six 4-meth­oxy­carbonyl­phen­oxy substituents are on one side of the phosphazene ring, while the other three groups are located on the opposite side. The central phosphazene ring is slightly nonplanar, having a boat distortion, with atoms P1 and N2 lying 0.1223 (7) and 0.138 (2) Å, respectively, on the same side of the plane defined by atoms N1/N3/P2/P3, in agreement with the values reported in the literature for hexa­kis­(4-formyl­phen­oxy)cyclo­triphosphazene (Patil et al., 2011[Patil, B. R., Machakanur, S. S., Badiger, D. S., Hunoor, R. S., Gudasi, K. B., Nethaji, M. & Annie Bligh, S. W. (2011). J. Mol. Struct. 1003, 52-61.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing 50% probability displacement ellipsoids.

The P—O bond lengths are in the range 1.584 (2)–1.591 (19) Å, with a mean value of 1.584 (2) Å, which is 0.12 Å shorter than the normal single-bond distance (Cruickshank, 1961[Cruickshank, D. W. J. (1961). J. Chem. Soc. pp. 5486-5504.]), suggesting considerable exocyclic π-bonding. The P—N bond lengths are within a narrow range [1.576 (3)–1.581 (2) Å], indicating electron delocalization within the ring. The N—P—N angles [116.53 (13)–117.92 (12)°] are significantly smaller than the P—N—P angles [121.25 (15)–122.53 (14)°]. The O13—P3—O16 angle [94.40 (12)°] is smaller than the corresponding angles at P1 [99.65 (11)°] and P2 [98.77 (11)°].

[Scheme 1]

The 4-meth­oxy­carbonyl­phen­oxy groups of the HMPC mol­ecule show significant deviations from a threefold symmetrical arrangement. The three PO2 planes (O1/P1/O4, O7/P2/O10 and O13/P3/O16) are nearly perpendicular to the mean plane through the phosphazene ring [dihedral angles = 88.22 (6), 83.79 (9) and 84.84 (6)°, respectively]. Five of the six benzene rings lie approximately perpendicular to the phosphazene ring [dihedral angles = 82.92 (17)–88.16 (13)°; Table 1[link]], whereas the remaining benzene ring (C17–C22) forms a dihedral angle of 28.21 (14)°. Each benzene ring and its terminal carbonyl group are approximately coplanar, the largest deviation from coplanarity being for the C33–C38 and C36/C39/O14/O15 planes [dihedral angle = 9.96 (14)°].

Table 1
Dihedral angles between the phosphazene ring and attached benzene rings (°)

Atoms Angle Atoms Angle
C1–C6 84.95 (19) C25–C30 88.16 (13)
C9–C14 84.12 (16) C33–C38 83.22 (13)
C17–C22 28.21 (14) C41–C46 82.92 (17)

3. Supra­molecular features

In the title compound, there are no usual hydrogen-bonding or stacking inter­actions, the crystal structure being enforced by van der Waals forces only.

4. Database survey

In a search in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), 15 structures were found incorporating the same cyclo­phosphazene motif substituted by six phen­oxy groups. Of these, only one structure contained alk­oxycarbonyl­phen­oxy groups bonded to each P atom of a phosphazene skeleton (Zhu et al., 2015[Zhu, J., Li, Q., Zheng, F.-W., He, J. & Qu, L.-B. (2015). Acta Cryst. E71, o955-o956.]). In that structure, the atoms of two terminal propenyl groups are disordered over two sets of sites, with refined site-occupancy ratios of 0.249 (12):0.751 (12) and 0.476 (9):0.524 (9); no inter­molecular inter­actions were observed.

5. Synthesis and crystallization

All of the chemicals and solvents were of reagent grade. Hexa­chloro­cyclo­triphosphazine (HCCP) was purchased from Zhengzhou ALFA Chemical Co. Ltd, recrystallized from dry hexane and sublimated twice. Anhydrous K2CO3 was activated at 413 K for 2 h. Methyl 4-hy­droxy­benzoate was synthesized according to the literature method of Guo et al. (2009[Guo, Y. N., Zhao, C., Liu, S. Z., Li, D., Wang, S. J., Qiu, J. J. & Liu, C. M. (2009). Polym. Bull. 62, 421-431.]).

A three-necked round-bottomed flask was equipped with a nitro­gen inlet, an addition funnel and a condenser. To a mixture of hexa­chloro­cyclo­triphosphazene (1.04 g, 3 mmol) and anhydrous K2CO3 (3.5 g, 253 mmol) in tetra­hydro­furan (50 ml), a solution of methyl 4-hy­droxy­benzoate (3.20 g, 21 mmol in tetra­hydro­furan) was added dropwise at room temperature. The reaction mixture was heated at ca 338 K for 48 h under nitro­gen and thin-layer chromatography (TLC) was used to monitor the reaction. The resulting suspension was filtered and the filtrate concentrated, leading to the formation of a pale-yellow viscous liquid. This was dissolved in 20 ml ethyl acetate and the solution added dropwise to methanol. Colourless needle-shaped crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of the solvent.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were constrained, with C—H = 0.93–0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. A rotating model was used for the methyl groups. An ISOR restraint in SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) was applied to the methyl C16 atom. Ten low-angle reflections with Fo << Fc, whose intensities may have been significantly reduced by the beam stop, were omitted from the final cycles of refinement.

Table 2
Experimental details

Crystal data
Chemical formula C48H42N3O18P3
Mr 1041.75
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 291
a, b, c (Å) 11.4012 (4), 13.8443 (5), 17.0264 (8)
α, β, γ (°) 99.134 (3), 95.917 (3), 103.941 (3)
V3) 2547.07 (18)
Z 2
Radiation type Cu Kα
μ (mm−1) 1.73
Crystal size (mm) 0.2 × 0.18 × 0.16
 
Data collection
Diffractometer Agilent Xcalibur Eos Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.889, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18292, 9102, 6523
Rint 0.027
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.181, 1.03
No. of reflections 9102
No. of parameters 654
No. of restraints 6
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.52, −0.28
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2104 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2104 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Hexamethyl 4,4',4'',4''',4'''',4'''''-[(1,3,5,2λ5,4λ5,6λ5-triazatriphosphinine-2,2,4,4,6,6-hexayl)hexakis(oxy)]hexabenzoate top
Crystal data top
C48H42N3O18P3Z = 2
Mr = 1041.75F(000) = 1080
Triclinic, P1Dx = 1.358 Mg m3
a = 11.4012 (4) ÅCu Kα radiation, λ = 1.54184 Å
b = 13.8443 (5) ÅCell parameters from 5102 reflections
c = 17.0264 (8) Åθ = 3.9–70.0°
α = 99.134 (3)°µ = 1.73 mm1
β = 95.917 (3)°T = 291 K
γ = 103.941 (3)°, colourless
V = 2547.07 (18) Å30.2 × 0.18 × 0.16 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
9102 independent reflections
Radiation source: Enhance (Cu) X-ray Source6523 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 16.2312 pixels mm-1θmax = 67.1°, θmin = 3.4°
ω scansh = 1113
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1616
Tmin = 0.889, Tmax = 1.000l = 2020
18292 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.181 w = 1/[σ2(Fo2) + (0.1121P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
9102 reflectionsΔρmax = 0.52 e Å3
654 parametersΔρmin = 0.28 e Å3
6 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8359 (3)0.6168 (2)0.10677 (19)0.0668 (7)
C20.8017 (5)0.6546 (3)0.1773 (3)0.1040 (14)
H20.79860.72180.18860.125*
C30.7718 (5)0.5920 (4)0.2314 (3)0.1157 (17)
H30.74840.61740.27950.139*
C40.7758 (4)0.4932 (3)0.2158 (3)0.0933 (11)
C50.8101 (6)0.4568 (3)0.1449 (3)0.1198 (17)
H50.81400.38980.13370.144*
C60.8392 (5)0.5189 (3)0.0895 (3)0.1104 (16)
H60.86070.49320.04080.132*
C70.7458 (6)0.4277 (5)0.2764 (4)0.1261 (18)
C80.7271 (8)0.2647 (5)0.3072 (5)0.194 (4)
H8A0.72120.19700.28020.291*
H8B0.65150.26720.32660.291*
H8C0.79230.28430.35170.291*
C90.8940 (3)0.7251 (2)0.12018 (17)0.0631 (6)
C100.8708 (4)0.6214 (3)0.1324 (2)0.0832 (9)
H100.84850.58640.09160.100*
C110.8814 (5)0.5699 (3)0.2073 (2)0.0973 (12)
H110.86520.49960.21700.117*
C120.9155 (4)0.6220 (3)0.2668 (2)0.0944 (11)
C130.9382 (4)0.7255 (3)0.2527 (2)0.0983 (12)
H130.96070.76070.29330.118*
C140.9282 (4)0.7780 (3)0.1791 (2)0.0837 (10)
H140.94450.84840.16950.100*
C150.9305 (7)0.5705 (4)0.3476 (3)0.134 (2)
C160.9187 (9)0.4122 (6)0.4322 (4)0.214 (4)
H16A0.91990.45900.46460.321*
H16B0.84920.35570.44500.321*
H16C0.99200.38360.43810.321*
C170.8042 (3)0.9714 (2)0.26749 (17)0.0637 (7)
C180.9268 (3)0.9832 (3)0.2737 (2)0.0805 (9)
H180.95990.95250.23200.097*
C191.0025 (4)1.0417 (3)0.3428 (2)0.0868 (10)
H191.08671.05140.34730.104*
C200.9508 (4)1.0853 (3)0.4051 (2)0.0821 (9)
C210.8279 (4)1.0716 (3)0.3971 (2)0.0915 (11)
H210.79401.10170.43870.110*
C220.7527 (4)1.0146 (3)0.3292 (2)0.0828 (9)
H220.66851.00520.32480.099*
C231.0275 (5)1.1485 (4)0.4813 (3)0.1073 (14)
C241.2295 (7)1.2371 (7)0.5482 (4)0.222 (4)
H24A1.31261.23780.54260.333*
H24B1.20901.21130.59560.333*
H24C1.22021.30480.55290.333*
C250.7969 (3)1.0760 (2)0.04436 (18)0.0621 (6)
C260.7774 (3)1.1707 (2)0.0538 (2)0.0733 (8)
H260.75371.19830.10110.088*
C270.7933 (3)1.2244 (2)0.0070 (2)0.0814 (9)
H270.78011.28880.00060.098*
C280.8281 (3)1.1854 (3)0.0771 (2)0.0756 (8)
C290.8469 (3)1.0887 (3)0.0863 (2)0.0796 (9)
H290.86951.06090.13400.096*
C300.8322 (3)1.0334 (2)0.0248 (2)0.0725 (8)
H300.84600.96930.03050.087*
C310.8456 (4)1.2499 (3)0.1411 (3)0.0929 (11)
C320.8839 (7)1.2588 (5)0.2720 (3)0.161 (3)
H32A0.91261.22340.31610.242*
H32B0.94091.32360.25180.242*
H32C0.80561.26830.29020.242*
C330.5371 (3)0.8246 (2)0.12920 (19)0.0662 (7)
C340.6005 (4)0.7933 (3)0.1888 (2)0.0815 (9)
H340.62080.73180.19200.098*
C350.6331 (4)0.8545 (3)0.2430 (2)0.0853 (10)
H350.67740.83500.28270.102*
C360.6008 (3)0.9452 (2)0.2394 (2)0.0738 (8)
C370.5407 (3)0.9764 (2)0.1778 (2)0.0746 (8)
H370.52071.03800.17420.089*
C380.5102 (3)0.9169 (2)0.1216 (2)0.0709 (7)
H380.47180.93890.07920.085*
C390.6214 (4)1.0076 (3)0.3021 (3)0.0902 (10)
C400.6989 (7)1.0189 (6)0.4250 (4)0.170 (3)
H40A0.64920.97240.47100.254*
H40B0.78271.03500.43380.254*
H40C0.67191.07980.41680.254*
C410.4629 (3)0.6495 (2)0.1052 (2)0.0692 (7)
C420.4727 (4)0.7170 (2)0.1749 (2)0.0861 (10)
H420.48120.78540.17430.103*
C430.4698 (4)0.6821 (3)0.2460 (3)0.0963 (12)
H430.47780.72770.29390.116*
C440.4553 (4)0.5804 (3)0.2475 (3)0.0927 (11)
C450.4436 (5)0.5145 (3)0.1758 (3)0.1006 (13)
H450.43270.44580.17590.121*
C460.4477 (4)0.5485 (2)0.1038 (2)0.0882 (10)
H460.44020.50360.05560.106*
C470.4519 (6)0.5466 (4)0.3263 (3)0.1229 (17)
C480.4132 (10)0.4064 (5)0.3942 (4)0.212 (4)
H48A0.38500.33380.38120.317*
H48B0.35740.43300.42420.317*
H48C0.49280.42590.42580.317*
N10.8413 (2)0.85679 (17)0.08693 (14)0.0609 (5)
N20.6062 (2)0.86386 (17)0.05940 (15)0.0623 (5)
N30.6736 (2)0.70238 (16)0.01228 (15)0.0640 (6)
O10.87654 (19)0.67662 (15)0.05182 (13)0.0678 (5)
O20.7203 (6)0.4592 (4)0.3418 (3)0.200 (3)
O30.7516 (4)0.3338 (3)0.2515 (3)0.1446 (15)
O40.89006 (19)0.78510 (14)0.04713 (12)0.0672 (5)
O50.9558 (5)0.6131 (3)0.4018 (2)0.175 (2)
O60.9121 (7)0.4724 (3)0.3521 (2)0.212 (3)
O70.72241 (19)0.91374 (15)0.20060 (12)0.0689 (5)
O80.9856 (4)1.1792 (3)0.53921 (19)0.1426 (14)
O91.1461 (4)1.1706 (3)0.4758 (2)0.1500 (16)
O100.78245 (19)1.02854 (13)0.11051 (12)0.0656 (5)
O110.8401 (3)1.3358 (2)0.1305 (2)0.1172 (11)
O120.8724 (3)1.1990 (3)0.20758 (19)0.1173 (10)
O130.49148 (19)0.75886 (16)0.07913 (14)0.0731 (5)
O140.5805 (3)1.0779 (3)0.3076 (2)0.1237 (12)
O150.6883 (3)0.9731 (3)0.35497 (19)0.1156 (10)
O160.45734 (19)0.68050 (16)0.03086 (14)0.0735 (5)
O170.4720 (6)0.6033 (3)0.3903 (2)0.197 (3)
O180.4200 (4)0.4473 (3)0.3187 (2)0.1383 (14)
P10.81205 (6)0.75616 (5)0.02155 (4)0.05769 (19)
P20.73803 (6)0.90996 (5)0.10884 (4)0.05735 (19)
P30.56765 (6)0.75527 (5)0.00331 (5)0.0604 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0705 (17)0.0575 (15)0.0731 (18)0.0171 (13)0.0139 (13)0.0119 (13)
C20.163 (4)0.075 (2)0.098 (3)0.051 (2)0.058 (3)0.030 (2)
C30.176 (5)0.101 (3)0.096 (3)0.058 (3)0.062 (3)0.034 (2)
C40.101 (3)0.079 (2)0.099 (3)0.0106 (19)0.016 (2)0.033 (2)
C50.197 (5)0.0553 (19)0.106 (3)0.025 (3)0.028 (3)0.020 (2)
C60.193 (5)0.0594 (19)0.084 (2)0.037 (2)0.040 (3)0.0129 (17)
C70.136 (4)0.126 (4)0.127 (4)0.024 (3)0.030 (3)0.066 (4)
C80.225 (8)0.137 (5)0.209 (7)0.011 (5)0.007 (6)0.117 (5)
C90.0649 (16)0.0627 (15)0.0627 (15)0.0167 (12)0.0199 (12)0.0080 (12)
C100.117 (3)0.0666 (18)0.0684 (19)0.0225 (18)0.0316 (18)0.0120 (15)
C110.152 (4)0.0656 (19)0.081 (2)0.032 (2)0.045 (2)0.0087 (17)
C120.131 (3)0.089 (2)0.072 (2)0.038 (2)0.038 (2)0.0095 (18)
C130.139 (4)0.092 (3)0.074 (2)0.034 (2)0.045 (2)0.0244 (19)
C140.107 (3)0.0666 (18)0.084 (2)0.0230 (17)0.040 (2)0.0178 (16)
C150.227 (7)0.106 (3)0.088 (3)0.061 (4)0.074 (4)0.016 (3)
C160.328 (8)0.169 (5)0.155 (5)0.083 (5)0.110 (5)0.014 (4)
C170.0808 (18)0.0504 (13)0.0599 (15)0.0099 (12)0.0247 (13)0.0119 (11)
C180.088 (2)0.081 (2)0.0686 (18)0.0204 (17)0.0250 (16)0.0036 (16)
C190.091 (2)0.088 (2)0.075 (2)0.0173 (18)0.0147 (17)0.0037 (18)
C200.113 (3)0.0716 (19)0.0609 (17)0.0218 (18)0.0194 (17)0.0089 (14)
C210.120 (3)0.097 (3)0.0629 (19)0.037 (2)0.0337 (19)0.0036 (17)
C220.093 (2)0.090 (2)0.0704 (19)0.0284 (18)0.0293 (17)0.0135 (17)
C230.142 (4)0.092 (3)0.076 (2)0.018 (3)0.016 (3)0.001 (2)
C240.183 (7)0.250 (10)0.144 (6)0.014 (7)0.034 (5)0.079 (6)
C250.0599 (15)0.0486 (13)0.0720 (17)0.0011 (11)0.0186 (12)0.0094 (12)
C260.0802 (19)0.0521 (15)0.090 (2)0.0130 (13)0.0311 (16)0.0136 (14)
C270.083 (2)0.0612 (17)0.106 (3)0.0174 (15)0.0278 (19)0.0248 (17)
C280.0622 (17)0.0729 (19)0.091 (2)0.0077 (14)0.0139 (15)0.0277 (17)
C290.079 (2)0.079 (2)0.075 (2)0.0061 (16)0.0244 (16)0.0116 (16)
C300.084 (2)0.0537 (15)0.0767 (19)0.0086 (13)0.0284 (16)0.0075 (13)
C310.073 (2)0.094 (3)0.112 (3)0.0093 (18)0.022 (2)0.038 (2)
C320.192 (7)0.183 (6)0.112 (4)0.018 (5)0.030 (4)0.081 (4)
C330.0641 (16)0.0580 (15)0.0710 (17)0.0091 (12)0.0065 (13)0.0092 (13)
C340.099 (2)0.0618 (17)0.093 (2)0.0309 (16)0.0268 (19)0.0159 (16)
C350.100 (3)0.081 (2)0.086 (2)0.0351 (19)0.038 (2)0.0176 (18)
C360.0721 (18)0.0702 (18)0.082 (2)0.0176 (14)0.0183 (15)0.0195 (15)
C370.0750 (19)0.0611 (16)0.093 (2)0.0214 (14)0.0203 (16)0.0191 (15)
C380.0690 (17)0.0643 (17)0.0809 (19)0.0183 (13)0.0215 (15)0.0104 (14)
C390.090 (2)0.094 (3)0.096 (3)0.025 (2)0.026 (2)0.031 (2)
C400.214 (7)0.221 (7)0.137 (5)0.102 (6)0.097 (5)0.104 (5)
C410.0680 (17)0.0570 (15)0.0798 (19)0.0053 (12)0.0246 (14)0.0132 (14)
C420.109 (3)0.0528 (16)0.100 (3)0.0181 (16)0.044 (2)0.0126 (16)
C430.127 (3)0.071 (2)0.089 (2)0.017 (2)0.044 (2)0.0059 (18)
C440.114 (3)0.070 (2)0.090 (2)0.0083 (19)0.033 (2)0.0135 (18)
C450.144 (4)0.0541 (17)0.098 (3)0.0048 (19)0.033 (3)0.0176 (18)
C460.119 (3)0.0511 (16)0.085 (2)0.0026 (16)0.030 (2)0.0061 (15)
C470.175 (5)0.096 (3)0.095 (3)0.017 (3)0.041 (3)0.023 (3)
C480.386 (14)0.140 (6)0.104 (4)0.041 (7)0.035 (6)0.053 (4)
N10.0613 (13)0.0505 (11)0.0661 (13)0.0092 (9)0.0160 (10)0.0008 (10)
N20.0612 (13)0.0499 (11)0.0745 (14)0.0119 (9)0.0187 (11)0.0063 (10)
N30.0686 (14)0.0436 (10)0.0733 (14)0.0076 (9)0.0146 (11)0.0002 (10)
O10.0766 (12)0.0607 (11)0.0730 (12)0.0249 (9)0.0250 (10)0.0135 (9)
O20.296 (7)0.189 (5)0.171 (4)0.082 (5)0.116 (5)0.114 (4)
O30.188 (4)0.090 (2)0.150 (3)0.006 (2)0.009 (3)0.062 (2)
O40.0779 (12)0.0522 (10)0.0688 (12)0.0100 (9)0.0254 (10)0.0053 (9)
O50.322 (7)0.128 (3)0.095 (2)0.068 (4)0.103 (3)0.022 (2)
O60.443 (9)0.108 (3)0.113 (3)0.089 (4)0.143 (4)0.014 (2)
O70.0771 (12)0.0576 (10)0.0671 (12)0.0039 (9)0.0276 (10)0.0077 (9)
O80.185 (4)0.153 (3)0.0691 (18)0.024 (3)0.029 (2)0.0143 (19)
O90.129 (3)0.162 (4)0.111 (3)0.004 (3)0.010 (2)0.044 (2)
O100.0823 (13)0.0441 (9)0.0663 (11)0.0078 (8)0.0231 (9)0.0036 (8)
O110.123 (2)0.101 (2)0.149 (3)0.0353 (18)0.037 (2)0.064 (2)
O120.136 (3)0.126 (3)0.093 (2)0.018 (2)0.0320 (19)0.0453 (19)
O130.0694 (12)0.0624 (11)0.0809 (14)0.0041 (9)0.0096 (10)0.0150 (10)
O140.145 (3)0.117 (2)0.149 (3)0.063 (2)0.061 (2)0.073 (2)
O150.139 (3)0.130 (2)0.106 (2)0.052 (2)0.057 (2)0.0526 (19)
O160.0669 (12)0.0598 (11)0.0865 (14)0.0005 (9)0.0163 (10)0.0150 (10)
O170.366 (8)0.116 (3)0.096 (3)0.025 (4)0.074 (4)0.014 (2)
O180.222 (4)0.090 (2)0.093 (2)0.011 (2)0.031 (2)0.0313 (17)
P10.0640 (4)0.0458 (3)0.0621 (4)0.0113 (3)0.0187 (3)0.0054 (3)
P20.0641 (4)0.0429 (3)0.0623 (4)0.0068 (3)0.0215 (3)0.0051 (3)
P30.0596 (4)0.0465 (3)0.0706 (4)0.0050 (3)0.0146 (3)0.0083 (3)
Geometric parameters (Å, º) top
C1—C21.366 (5)C27—C281.367 (5)
C1—C61.351 (5)C28—C291.392 (5)
C1—O11.388 (4)C28—C311.514 (5)
C2—H20.9300C29—H290.9300
C2—C31.375 (5)C29—C301.393 (5)
C3—H30.9300C30—H300.9300
C3—C41.364 (6)C31—O111.193 (5)
C4—C51.364 (6)C31—O121.339 (5)
C4—C71.492 (6)C32—H32A0.9600
C5—H50.9300C32—H32B0.9600
C5—C61.387 (6)C32—H32C0.9600
C6—H60.9300C32—O121.474 (5)
C7—O21.220 (7)C33—C341.379 (5)
C7—O31.322 (7)C33—C381.374 (4)
C8—H8A0.9600C33—O131.391 (4)
C8—H8B0.9600C34—H340.9300
C8—H8C0.9600C34—C351.370 (5)
C8—O31.451 (6)C35—H350.9300
C9—C101.373 (4)C35—C361.384 (5)
C9—C141.368 (4)C36—C371.379 (5)
C9—O41.393 (3)C36—C391.479 (5)
C10—H100.9300C37—H370.9300
C10—C111.390 (5)C37—C381.376 (5)
C11—H110.9300C38—H380.9300
C11—C121.370 (5)C39—O141.189 (5)
C12—C131.371 (5)C39—O151.342 (5)
C12—C151.493 (5)C40—H40A0.9600
C13—H130.9300C40—H40B0.9600
C13—C141.376 (5)C40—H40C0.9600
C14—H140.9300C40—O151.439 (5)
C15—O51.194 (6)C41—C421.366 (5)
C15—O61.312 (6)C41—C461.363 (4)
C16—H16A0.9140C41—O161.400 (4)
C16—H16B0.9484C42—H420.9300
C16—H16C1.0149C42—C431.372 (5)
C16—O61.500 (6)C43—H430.9300
C17—C181.359 (5)C43—C441.383 (5)
C17—C221.379 (4)C44—C451.375 (5)
C17—O71.392 (4)C44—C471.491 (6)
C18—H180.9300C45—H450.9300
C18—C191.392 (5)C45—C461.383 (5)
C19—H190.9300C46—H460.9300
C19—C201.391 (5)C47—O171.203 (6)
C20—C211.357 (6)C47—O181.316 (6)
C20—C231.499 (6)C48—H48A0.9600
C21—H210.9300C48—H48B0.9600
C21—C221.369 (5)C48—H48C0.9600
C22—H220.9300C48—O181.485 (6)
C23—O81.202 (5)N1—P11.581 (2)
C23—O91.330 (6)N1—P21.578 (2)
C24—H24A0.9600N2—P21.576 (3)
C24—H24B0.9600N2—P31.583 (2)
C24—H24C0.9600N3—P11.578 (2)
C24—O91.500 (6)N3—P31.580 (2)
C25—C261.369 (4)O1—P11.585 (2)
C25—C301.375 (4)O4—P11.584 (2)
C25—O101.396 (3)O7—P21.585 (2)
C26—H260.9300O10—P21.5919 (19)
C26—C271.371 (5)O13—P31.587 (2)
C27—H270.9300O16—P31.588 (2)
C2—C1—O1122.8 (3)C29—C30—H30120.9
C6—C1—C2120.8 (3)O11—C31—C28122.8 (4)
C6—C1—O1116.3 (3)O11—C31—O12126.0 (4)
C1—C2—H2120.4O12—C31—C28111.1 (4)
C1—C2—C3119.1 (4)H32A—C32—H32B109.5
C3—C2—H2120.4H32A—C32—H32C109.5
C2—C3—H3119.4H32B—C32—H32C109.5
C4—C3—C2121.2 (4)O12—C32—H32A109.5
C4—C3—H3119.4O12—C32—H32B109.5
C3—C4—C5118.7 (4)O12—C32—H32C109.5
C3—C4—C7120.0 (5)C34—C33—O13119.6 (3)
C5—C4—C7121.2 (4)C38—C33—C34121.4 (3)
C4—C5—H5119.7C38—C33—O13118.8 (3)
C4—C5—C6120.6 (4)C33—C34—H34120.6
C6—C5—H5119.7C35—C34—C33118.7 (3)
C1—C6—C5119.5 (4)C35—C34—H34120.6
C1—C6—H6120.2C34—C35—H35119.6
C5—C6—H6120.2C34—C35—C36120.8 (3)
O2—C7—C4122.8 (6)C36—C35—H35119.6
O2—C7—O3124.6 (5)C35—C36—C39122.5 (3)
O3—C7—C4112.5 (5)C37—C36—C35119.3 (3)
H8A—C8—H8B109.5C37—C36—C39118.1 (3)
H8A—C8—H8C109.5C36—C37—H37119.8
H8B—C8—H8C109.5C38—C37—C36120.5 (3)
O3—C8—H8A109.5C38—C37—H37119.8
O3—C8—H8B109.5C33—C38—C37119.1 (3)
O3—C8—H8C109.5C33—C38—H38120.5
C10—C9—O4123.6 (3)C37—C38—H38120.5
C14—C9—C10121.7 (3)O14—C39—C36124.8 (4)
C14—C9—O4114.5 (3)O14—C39—O15123.2 (4)
C9—C10—H10120.8O15—C39—C36112.0 (3)
C9—C10—C11118.4 (3)H40A—C40—H40B109.5
C11—C10—H10120.8H40A—C40—H40C109.5
C10—C11—H11119.8H40B—C40—H40C109.5
C12—C11—C10120.5 (3)O15—C40—H40A109.5
C12—C11—H11119.8O15—C40—H40B109.5
C11—C12—C13119.8 (3)O15—C40—H40C109.5
C11—C12—C15122.6 (4)C42—C41—O16120.7 (3)
C13—C12—C15117.6 (4)C46—C41—C42122.1 (3)
C12—C13—H13119.6C46—C41—O16116.9 (3)
C12—C13—C14120.7 (3)C41—C42—H42120.6
C14—C13—H13119.6C41—C42—C43118.8 (3)
C9—C14—C13118.9 (3)C43—C42—H42120.6
C9—C14—H14120.6C42—C43—H43119.5
C13—C14—H14120.6C42—C43—C44121.1 (4)
O5—C15—C12124.3 (5)C44—C43—H43119.5
O5—C15—O6124.0 (4)C43—C44—C47118.8 (4)
O6—C15—C12111.6 (4)C45—C44—C43118.4 (4)
H16A—C16—H16B114.6C45—C44—C47122.8 (4)
H16A—C16—H16C108.6C44—C45—H45119.3
H16B—C16—H16C105.9C44—C45—C46121.3 (3)
O6—C16—H16A101.8C46—C45—H45119.3
O6—C16—H16B107.9C41—C46—C45118.3 (3)
O6—C16—H16C118.4C41—C46—H46120.9
C18—C17—C22121.2 (3)C45—C46—H46120.9
C18—C17—O7123.0 (3)O17—C47—C44124.1 (5)
C22—C17—O7115.7 (3)O17—C47—O18122.9 (5)
C17—C18—H18120.2O18—C47—C44112.9 (4)
C17—C18—C19119.6 (3)H48A—C48—H48B109.5
C19—C18—H18120.2H48A—C48—H48C109.5
C18—C19—H19120.4H48B—C48—H48C109.5
C20—C19—C18119.2 (4)O18—C48—H48A109.5
C20—C19—H19120.4O18—C48—H48B109.5
C19—C20—C23121.7 (4)O18—C48—H48C109.5
C21—C20—C19119.6 (4)P2—N1—P1121.25 (15)
C21—C20—C23118.7 (4)P2—N2—P3122.18 (15)
C20—C21—H21119.2P1—N3—P3122.53 (14)
C20—C21—C22121.6 (3)C1—O1—P1125.06 (18)
C22—C21—H21119.2C7—O3—C8116.7 (5)
C17—C22—H22120.6C9—O4—P1128.66 (18)
C21—C22—C17118.7 (4)C15—O6—C16116.2 (5)
C21—C22—H22120.6C17—O7—P2127.46 (17)
O8—C23—C20123.5 (5)C23—O9—C24116.0 (5)
O8—C23—O9124.1 (5)C25—O10—P2126.87 (17)
O9—C23—C20112.3 (4)C31—O12—C32111.9 (4)
H24A—C24—H24B109.5C33—O13—P3122.39 (19)
H24A—C24—H24C109.5C39—O15—C40116.6 (4)
H24B—C24—H24C109.5C41—O16—P3124.1 (2)
O9—C24—H24A109.5C47—O18—C48116.8 (4)
O9—C24—H24B109.5N1—P1—O1110.93 (13)
O9—C24—H24C109.5N1—P1—O4105.08 (11)
C26—C25—C30121.5 (3)N3—P1—N1117.61 (12)
C26—C25—O10115.3 (3)N3—P1—O1109.56 (12)
C30—C25—O10123.2 (3)N3—P1—O4112.49 (13)
C25—C26—H26120.3O4—P1—O199.65 (11)
C25—C26—C27119.4 (3)N1—P2—O7110.81 (13)
C27—C26—H26120.3N1—P2—O10110.56 (12)
C26—C27—H27119.3N2—P2—N1117.92 (12)
C28—C27—C26121.3 (3)N2—P2—O7106.22 (12)
C28—C27—H27119.3N2—P2—O10110.78 (12)
C27—C28—C29118.8 (3)O7—P2—O1098.77 (11)
C27—C28—C31118.3 (3)N2—P3—O13110.06 (13)
C29—C28—C31122.9 (4)N2—P3—O16112.16 (12)
C28—C29—H29119.7N3—P3—N2116.53 (13)
C28—C29—C30120.7 (3)N3—P3—O13110.80 (13)
C30—C29—H29119.7N3—P3—O16110.73 (12)
C25—C30—C29118.3 (3)O13—P3—O1694.40 (12)
C25—C30—H30120.9
C1—C2—C3—C40.0 (8)C33—C34—C35—C361.4 (6)
C1—O1—P1—N177.4 (3)C33—O13—P3—N256.8 (3)
C1—O1—P1—N354.1 (3)C33—O13—P3—N373.5 (3)
C1—O1—P1—O4172.2 (2)C33—O13—P3—O16172.4 (2)
C2—C1—C6—C51.5 (8)C34—C33—C38—C374.0 (5)
C2—C1—O1—P146.9 (5)C34—C33—O13—P390.7 (3)
C2—C3—C4—C50.1 (9)C34—C35—C36—C373.4 (6)
C2—C3—C4—C7178.5 (5)C34—C35—C36—C39172.7 (4)
C3—C4—C5—C60.6 (8)C35—C36—C37—C381.7 (6)
C3—C4—C7—O22.1 (10)C35—C36—C39—O14169.1 (5)
C3—C4—C7—O3178.8 (5)C35—C36—C39—O158.4 (6)
C4—C5—C6—C11.4 (9)C36—C37—C38—C332.0 (5)
C4—C7—O3—C8178.4 (5)C36—C39—O15—C40171.3 (5)
C5—C4—C7—O2176.5 (7)C37—C36—C39—O147.1 (7)
C5—C4—C7—O32.6 (8)C37—C36—C39—O15175.5 (4)
C6—C1—C2—C30.8 (7)C38—C33—C34—C352.4 (6)
C6—C1—O1—P1137.2 (3)C38—C33—O13—P393.9 (3)
C7—C4—C5—C6179.2 (5)C39—C36—C37—C38174.6 (3)
C9—C10—C11—C120.7 (7)C41—C42—C43—C441.0 (7)
C9—O4—P1—N1177.2 (2)C41—O16—P3—N262.6 (3)
C9—O4—P1—N348.1 (3)C41—O16—P3—N369.4 (3)
C9—O4—P1—O167.9 (3)C41—O16—P3—O13176.4 (2)
C10—C9—C14—C130.7 (6)C42—C41—C46—C450.7 (6)
C10—C9—O4—P127.7 (4)C42—C41—O16—P367.6 (4)
C10—C11—C12—C130.6 (8)C42—C43—C44—C450.1 (7)
C10—C11—C12—C15178.8 (5)C42—C43—C44—C47179.6 (5)
C11—C12—C13—C140.6 (8)C43—C44—C45—C460.8 (7)
C11—C12—C15—O5177.2 (7)C43—C44—C47—O177.0 (10)
C11—C12—C15—O62.7 (9)C43—C44—C47—O18170.6 (5)
C12—C13—C14—C90.6 (7)C44—C45—C46—C410.4 (7)
C12—C15—O6—C16177.1 (6)C44—C47—O18—C48179.6 (6)
C13—C12—C15—O53.3 (10)C45—C44—C47—O17173.6 (7)
C13—C12—C15—O6176.8 (6)C45—C44—C47—O188.8 (8)
C14—C9—C10—C110.8 (6)C46—C41—C42—C431.4 (6)
C14—C9—O4—P1155.0 (3)C46—C41—O16—P3117.7 (3)
C15—C12—C13—C14178.9 (5)C47—C44—C45—C46179.7 (5)
C17—C18—C19—C201.3 (6)O1—C1—C2—C3174.9 (4)
C17—O7—P2—N169.3 (3)O1—C1—C6—C5174.4 (4)
C17—O7—P2—N2161.5 (2)O2—C7—O3—C80.7 (10)
C17—O7—P2—O1046.7 (3)O4—C9—C10—C11177.9 (4)
C18—C17—C22—C211.0 (5)O4—C9—C14—C13178.1 (4)
C18—C17—O7—P242.0 (4)O5—C15—O6—C162.8 (13)
C18—C19—C20—C211.0 (6)O7—C17—C18—C19179.6 (3)
C18—C19—C20—C23179.6 (4)O7—C17—C22—C21179.5 (3)
C19—C20—C21—C220.8 (6)O8—C23—O9—C240.9 (9)
C19—C20—C23—O8172.6 (5)O10—C25—C26—C27178.0 (3)
C19—C20—C23—O910.5 (6)O10—C25—C30—C29178.3 (3)
C20—C21—C22—C170.8 (6)O11—C31—O12—C325.5 (7)
C20—C23—O9—C24177.7 (5)O13—C33—C34—C35172.9 (3)
C21—C20—C23—O88.1 (7)O13—C33—C38—C37171.3 (3)
C21—C20—C23—O9168.8 (4)O14—C39—O15—C406.3 (8)
C22—C17—C18—C191.3 (5)O16—C41—C42—C43175.8 (3)
C22—C17—O7—P2139.6 (3)O16—C41—C46—C45175.3 (4)
C23—C20—C21—C22179.8 (4)O17—C47—O18—C481.9 (11)
C25—C26—C27—C280.0 (5)P1—N1—P2—N24.0 (2)
C25—O10—P2—N172.8 (3)P1—N1—P2—O7118.61 (17)
C25—O10—P2—N259.8 (3)P1—N1—P2—O10132.93 (16)
C25—O10—P2—O7171.0 (2)P1—N3—P3—N23.4 (2)
C26—C25—C30—C290.6 (5)P1—N3—P3—O13123.41 (18)
C26—C25—O10—P2149.5 (2)P1—N3—P3—O16133.21 (18)
C26—C27—C28—C290.4 (5)P2—N1—P1—N38.3 (2)
C26—C27—C28—C31179.1 (3)P2—N1—P1—O1135.53 (16)
C27—C28—C29—C300.9 (5)P2—N1—P1—O4117.68 (17)
C27—C28—C31—O116.3 (6)P2—N2—P3—N39.8 (2)
C27—C28—C31—O12176.3 (3)P2—N2—P3—O13137.04 (17)
C28—C29—C30—C251.0 (5)P2—N2—P3—O16119.26 (17)
C28—C31—O12—C32177.2 (4)P3—N2—P2—N113.5 (2)
C29—C28—C31—O11173.1 (4)P3—N2—P2—O7111.43 (18)
C29—C28—C31—O124.2 (5)P3—N2—P2—O10142.30 (16)
C30—C25—C26—C270.1 (5)P3—N3—P1—N112.3 (3)
C30—C25—O10—P232.7 (4)P3—N3—P1—O1140.13 (17)
C31—C28—C29—C30178.6 (3)P3—N3—P1—O4110.02 (18)
Dihedral angles between the phosphazene ring and attached benzene rings (°) top
AtomsAngleAtomsAngle
C1–C684.95 (19)C25–C3088.16 (13)
C9–C1484.12 (16)C33–C3883.22 (13)
C17–C2228.21 (14)C41–C4682.92 (17)
 

Acknowledgements

We would like to thank Ms Y. Zhu for technical assistance.

Funding information

Funding for this research was provided by: Science and Technology Hall of Henan Province (award No. 162102210038); Science and Technology Bureau of Zheng-Zhou City (award No. 20150250).

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationCruickshank, D. W. J. (1961). J. Chem. Soc. pp. 5486–5504.  CrossRef Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuo, Y. N., Zhao, C., Liu, S. Z., Li, D., Wang, S. J., Qiu, J. J. & Liu, C. M. (2009). Polym. Bull. 62, 421–431.  Web of Science CrossRef CAS Google Scholar
First citationPatil, B. R., Machakanur, S. S., Badiger, D. S., Hunoor, R. S., Gudasi, K. B., Nethaji, M. & Annie Bligh, S. W. (2011). J. Mol. Struct. 1003, 52–61.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhu, J., Li, Q., Zheng, F.-W., He, J. & Qu, L.-B. (2015). Acta Cryst. E71, o955–o956.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds