research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structures of two adamantyl-substituted 1,2,4-triazole-5-thione N-Mannich bases

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, and cDepartment of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo University–CINN, Oviedo 33006, Spain
*Correspondence e-mail: sgg@uniovi.es

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 19 April 2017; accepted 2 July 2017; online 7 July 2017)

In the title N-Mannich bases, 3-(adamantan-1-yl)-4-(4-fluoro­phen­yl)-1-[(4-phenyl­piperazin-1-yl)meth­yl]-4,5-di­hydro-1H-1,2,4-triazole-5-thione (C29H34FN5S) (I), and 3-(adamantan-1-yl)-4-(4-fluoro­phen­yl)-1-{[4-(2-meth­oxyphen­yl)piperazin-1-yl]-meth­yl}-4,5-di­hydro-1H-1,2,4-triazole-5-thione (C30H36FN5OS) (II), fluoro­phenyl, adamantane and piperazine moieties are linked to a planar triazole ring. There is an additional phenyl ring on the piperazine ring in (I) and a meth­oxy­phenyl ring in (II). In compound (I), the fluoro­phenyl and phenyl rings are inclined to the triazole ring by 86.55 (13) and 60.52 (12)°, respectively, and the two aryl rings are inclined to one another by 66.37 (13)°. In compound (II), the corresponding dihedral angles are 83.35 (13), 71.38 (15) and 11.97 (16)°, respectively. The crystal structure of (I) shows pairs of C—H⋯F hydrogen bonds forming inversion dimers, while in the crystal of compound (II), in addition to the C—H⋯F hydrogen bonds that generate chains parallel to the b axis, there are C—H⋯π inter­actions present that link the chains to form layers parallel to the ab plane.

1. Chemical context

The incorporation of an adamantyl moiety into various bioactive mol­ecules results in compounds with relatively high lipophilicity, which in turn modifies the bioavailability and modulates the therapeutic indices through various mechanisms (Liu et al., 2011[Liu, J., Obando, D., Liao, V., Lifa, T. & Codd, R. (2011). Eur. J. Med. Chem. 46, 1949-1963.]; Lamoureux & Artavia, 2010[Lamoureux, G. & Artavia, G. (2010). Curr. Med. Chem. 17, 2967-2978.]). Several adamantane-based drugs have been developed as anti­viral (Davies et al., 1964[Davies, W. L., Grunert, R. R., Haff, R. F., Mcgahen, J. W., Neumayer, E. M., Paulshock, M., Watts, J. C., Wood, T. R., Hermann, E. C. & Hoffmann, C. E. (1964). Science, 144, 862-863.]; Togo et al., 1968[Togo, Y., Hornick, R. B. & Dawkins, A. T. (1968). J. Am. Med. Assoc. 203, 1089-1094.]; Rosenthal et al., 1982[Rosenthal, K. S., Sokol, M. S., Ingram, R. L., Subramanian, R. & Fort, R. C. (1982). Antimicrob. Agents Chemother. 22, 1031-1036.]; El-Emam et al., 2004[El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.]; Burstein et al., 1999[Burstein, M. E., Serbin, A. V., Khakhulina, T. V., Alymova, I. V., Stotskaya, L. L., Bogdan, O. P., Manukchina, E. E., Jdanov, V. V., Sharova, N. K. & Bukrinskaya, A. G. (1999). Antiviral Res. 41, 135-144.]; Balzarini et al., 2009[Balzarini, J., Orzeszko-Krzesińska, B., Maurin, J. K. & Orzeszko, A. (2009). Eur. J. Med. Chem. 44, 303-311.]), anti-Parkinsonian (Schwab et al., 1969[Schwab, R. S., England, A. C. Jr, Poskanzer, D. C. & Young, R. R. (1969). J. Am. Med. Assoc. 208, 1168-1170.]) and hypoglycaemic (Villhauer et al., 2003[Villhauer, E. B., Brinkman, J. A., Naderi, G. B., Burkey, B. F., Dunning, B. E., Prasad, K., Mangold, B. L., Russell, M. E. & Hughes, T. E. (2003). J. Med. Chem. 46, 2774-2789.]; Augeri et al., 2005[Augeri, D. J., Robl, J. A., Betebenner, D. A., Magnin, D. R., Khanna, A., Robertson, J. G., Wang, A., Simpkins, L. M., Taunk, P., Huang, Q., Han, S., Abboa-Offei, B., Cap, M., Xin, L., Tao, L., Tozzo, E., Welzel, G. E., Egan, D. M., Marcinkeviciene, J., Chang, S. Y., Biller, S. A., Kirby, M. S., Parker, R. A. & Hamann, L. G. (2005). J. Med. Chem. 48, 5025-5037.]) drugs. In addition, numerous adamantane-based analogues have promising anti­cancer (Sun et al., 2002[Sun, S. Y., Yue, P., Chen, X., Hong, W. K. & Lotan, R. (2002). Cancer Res. 62, 2430-2436.]), bactericidal (Protopopova et al., 2005[Protopopova, M., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Einck, L. & Nacy, C. A. (2005). J. Antimicrob. Chemother. 56, 968-974.]; El-Emam et al., 2013[El-Emam, A. A., Al-Tamimi, A.-S., Al-Omar, M. A., Alrashood, K. A. & Habib, E. E. (2013). Eur. J. Med. Chem. 68, 96-102.]; Kadi et al., 2010[Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006-5011.]; Al-Abdullah et al.; 2014[Al-Abdullah, E. S., Asiri, H. H., Lahsasni, S., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2014). Drug Des. Dev. Ther. 8, 505-518.]; Al-Deeb et al., 2006[Al-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim.-Forsch. Drug. Res. 56, 40-47.]) and fungicidal (Omar et al., 2010[Omar, K., Geronikaki, A., Zoumpoulakis, P., Camoutsis, C., Soković, M., Ćirić, A. & Glamoćlija, J. (2010). Bioorg. Med. Chem. 18, 426-432.]) activities. In a continuation of our ongoing studies on the pharmacological and structural properties of adamantyl 1,2,4-triazole derivatives (Al-Abdullah et al., 2012[Al-Abdullah, E. S., Asiri, H. H., El-Emam, A. & Ng, S. W. (2012). Acta Cryst. E68, o345.]; Al-Tamimi et al., 2014[Al-Tamimi, A. S., El-Emam, A. A., Al-Deeb, O. A., Prasad, O., Pathak, S. K., Srivastava, R. & Sinha, L. (2014). Spectrochim. Acta Part A, 124, 108-123.]; El-Emam et al.; 2013[El-Emam, A. A., Al-Tamimi, A.-S., Al-Omar, M. A., Alrashood, K. A. & Habib, E. E. (2013). Eur. J. Med. Chem. 68, 96-102.]; 2014[El-Emam, A. A., Al-Tuwaijri, H. M., Al-Abdullah, E. S., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o25-o26.]), we report herein on the synthesis and crystal structures of the title adamantyl-substituted 1,2,4-triazole-5-thione N-Mannich bases, (I)[link] and (II)[link].

[Scheme 1]

2. Structural commentary

The mol­ecular structures of the title compounds, (I)[link] and (II)[link], are illustrated in Figs. 1[link] and 2[link], respectively. In both mol­ecules the piperazine rings have a chair conformation, with the N-bound substituents occupying equatorial positions. In (I)[link], the fluoro­phenyl ring (C13–C18) and the phenyl ring (C24–C29) are inclined to the triazole ring (N1–N3/C11/C12) by 86.55 (13) and 60.52 (12)°, respectively. The two aryl rings are inclined to one another by 66.37 (13)°. In compound (II)[link], the fluoro­phenyl ring (C13–C18) and the phenyl ring (C24–C29) are inclined to the triazole ring (N1–N3/C11/C12) by 83.35 (13) and 71.38 (15)°, respectively, while the two aryl rings are inclined to one another by only 11.97 (16)°. This difference in conformation is illustrated by the structural overlap diagram, shown in Fig. 3[link].

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], with the atom labelling and 30% probability displacement ellipsoids.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], with the atom labelling and 30% probability displacement ellipsoids.
[Figure 3]
Figure 3
A structural overlap of compounds (I)[link] and (II)[link] [colour code: (I)[link] blue, (II)[link] red].

3. Supra­molecular features

In the crystal of compound (I)[link], mol­ecules are linked by pairs of C—H⋯F hydrogen bonds, forming inversion dimers (Table 1[link] and Fig. 4[link]). In compound (II)[link], mol­ecules are linked by C—H⋯F hydrogen bonds, forming chains parallel to the b-axis direction. The chains are linked by C—H⋯π inter­actions, forming layers parallel to the ab plane (Table 2[link] and Fig. 5[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22B⋯F1i 0.99 2.49 3.332 (4) 142
Symmetry code: (i) -x+2, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1 and Cg8 are the centroids of rings (N1–N3/C11/C12) and (C24–C29), respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21A⋯F1i 0.97 2.47 3.407 (3) 162
C18—H18ACg1ii 0.93 2.81 3.661 152
C9—H9ACg8iii 0.97 2.80 3.697 155
Symmetry codes: (i) x, y-1, z; (ii) -x, -y, -z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 4]
Figure 4
The crystal packing of compound (I)[link], viewed along the c axis. The hydrogen bonds are shown as dashed lines (see Table 1[link]), and only the H atoms involved in these inter­actions have been included.
[Figure 5]
Figure 5
The crystal packing of compound (II)[link], viewed along the c axis, showing the C—H⋯F hydrogen bonds (dashed cyan lines) and some of the C—H⋯π inter­actions (dashed red lines); see Table 2[link]. Only the H atoms involved in these inter­actions have been included.

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, last update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 3-(adamantan-1-yl)-4-[(piperazin-1-yl) meth­yl]-1,2,4-triazole-3(3H)-thione moiety gave 14 hits. One compound, 3-(adamantan-1-yl)-4-phenyl-1-[(4-phenyl­piperazin-1-yl)meth­yl]-1H-1,2,4-triazole-5(4H)-thione (GAPWUR; Al-Abdullah et al., 2012[Al-Abdullah, E. S., Asiri, H. H., El-Emam, A. & Ng, S. W. (2012). Acta Cryst. E68, o345.]), is very similar to compound (I)[link]. It has a phenyl ring substituent on the piperazine ring and a phenyl ring substituent on the triazole ring, which are inclined to one another by 72.4 (2)°, and by 89.0 (2) and 74.4 (2)°, respectively, to the triazole ring. In compound (I)[link], the corresponding dihedral angles are 66.37 (13), 86.55 (13) and 60.52 (12)°, respectively. Two compounds have a 2-meth­oxy­phenyl ring substituent on the piperazine ring, viz. (3-(1-adamant­yl)-1-{[4-(2-meth­oxy­phen­yl)piperazin-1-yl]meth­yl}-4-methyl-1H-1,2,4-triazole-5(4H)-thione (YUPVIP; El-Emam et al., 2014[El-Emam, A. A., Al-Tuwaijri, H. M., Al-Abdullah, E. S., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o25-o26.]), with a methyl substituent on the triazole ring, and 3-(adamantan-1-yl)-4-ethyl-1-{[4-(2-meth­oxy­phen­yl)piperazin-1-yl]meth­yl}-1H-1, 2,4-triazole-5(4H)-thione (RITMUE; Al-Tamimi et al., 2010[Al-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.]) with an ethyl substituent on the triazole ring. In these two compounds the meth­oxy­phenyl rings are inclined to the triazole ring by 67.1 (1) and 59.4 (1)°, respectively. In compound (II)[link], the corresponding dihedral angle is 71.38 (15)°.

5. Synthesis and crystallization

The title compounds, (I)[link] and (II)[link], were synthesized via the reaction of 3-(adamantan-1-yl)-4-(4-fluoro­meth­yl)-4H-1,2,4-triazole-5-thiol (Al-Deeb et al., 2006[Al-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim.-Forsch. Drug. Res. 56, 40-47.]) with the appropriate monosubstituted piperazie and a formaldehyde solution, as outlined in Fig. 6[link].

[Figure 6]
Figure 6
Reaction schemes for the syntheses of compounds (I)[link] and (II)[link].

Compound (I): 1-Phenyl­piperazine (325 mg, 2 mmol) and a 37% formaldehyde solution (1 ml) were added to a solution of 3-(adamantan-1-yl)-4-(4-fluoro­meth­yl)-4H-1,2,4-triazole-5-thiol (659 mg, 2 mmol) in ethanol (10 ml), and the mixture was heated under reflux for 1 h then allowed to stand overnight. Cold water (3 ml) was slowly added and the mixture was stirred for 20 min. The precipitated crude product was filtered, washed with water, dried, and crystallized from ethanol to yield 846 mg (84%) of compound (I)[link] as colourless plate-shaped crystals (m.p. 469–471 K). 1H NMR (700.17 MHz): δ 1.47–1.49 (m, 3H, adamantane-H), 1.60–1.62 (m, 3H, adamantane-H), 1.80 (s, 6H, adamantane-H), 1.89 (s, 3H, adamantane-H), 2.89–2.91 (m, 4H, piperazine-H), 3.14–3.15 (m, 4H, piperazine-H), 5.14 (s, 2H, CH2), 6.77–6.79 (m, 1H, Ar-H), 6.94 (d, 2H, Ar-H, J = 8.4 Hz), 7.20–7.22 (m, 2H, Ar-H), 7.41–7.49 (m, 4H, Ar-H). 13C NMR (125.76 MHz): δ 27.61, 36.07, 39.62, 39.74 (adamantane-C), 48.73, 50.30 (piperazine-C), 69.06 (CH2), 116.0, 116.78, 119.41, 129.37, 132.80, 133.10, 151.48, 156.28 (Ar-C), 162.17 (triazole C-3), 170.95 (C=S).

Compound (II): 1-(2-Meth­oxy­phen­yl)piperazine (385 mg, 2 mmol) and a 37% formaldehyde solution (1 ml) were added to a solution of 3-(adamantan-1-yl)-4-(4-fluoro­meth­yl)-4H-1,2,4-triazole-5-thiol (659 mg, 2 mmol) in ethanol (10 ml), and the mixture was heated under reflux for 1 h then allowed to stand overnight. The precipitated crude product was filtered, washed with cold ethanol, dried, and crystallized from ethanol to yield 865 mg (81%) of compound (II)[link] as colourless block-like crystals (m.p. 462–464 K). 1H NMR (700.17 MHz): δ 1.49–1.50 (m, 3H, adamantane-H), 1.61–1.63 (m, 3H, adamantane-H), 1.83 (s, 6H, adamantane-H), 1.90 (s, 3H, adamantane-H), 2.89–2.90 (m, 4H, piperazine-H), 2.96–2.98 (m, 4H, piperazine-H), 3.78 (s, 3H, OCH3), 5.11 (s, 2H, CH2), 6.88–6.96 (m, 4H, Ar-H), 7.42–7.52 (m, 4H, Ar-H). 13C NMR (125.76 MHz): δ 27.61, 35.77, 36.07, 39.61 (adamantane-C), 50.54, 50.58 (piperazine-C), 55.65 (OCH3), 69.39 (CH2), 112.08, 116.78, 118.51, 121.23, 123.02, 132.79, 133.13, 141.53, 152.36, 156.32 (Ar-C), 162.17 (triazole C-3), 171.0 (C=S).

Suitable single crystals of compounds (I)[link] and (II)[link] were obtained by slow evaporation of CHCl3:EtOH solutions (1:1, 5 ml) at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].The C-bound H atoms were positioned geometrically and treated as riding atoms: C—H = 0.93–1.00 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C29H34FN5S C30H36FN5OS
Mr 503.67 533.7
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 296 293
a, b, c (Å) 10.4173 (5), 10.9849 (5), 12.0002 (6) 11.3074 (7), 12.1576 (8), 20.4976 (13)
α, β, γ (°) 72.769 (2), 84.623 (2), 89.244 (2) 90, 101.328 (2), 90
V3) 1305.66 (11) 2762.9 (3)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.16 0.16
Crystal size (mm) 0.45 × 0.33 × 0.09 0.42 × 0.19 × 0.16
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.939, 0.986 0.965, 0.975
No. of measured, independent and observed [I > 2σ(I)] reflections 49580, 6011, 3533 67287, 6350, 3203
Rint 0.076 0.134
(sin θ/λ)max−1) 0.650 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.163, 1.03 0.055, 0.133, 1.01
No. of reflections 6007 6347
No. of parameters 325 344
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.25 0.16, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2016 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS2016 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015), WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

3-(Adamantan-1-yl)-4-(4-fluorophenyl)-1-[(4-phenylpiperazin-1-yl)methyl]-4,5-dihydro-1H-1,2,4-triazole-5-thione (I) top
Crystal data top
C29H34FN5SZ = 2
Mr = 503.67F(000) = 536
Triclinic, P1Dx = 1.281 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4173 (5) ÅCell parameters from 9217 reflections
b = 10.9849 (5) Åθ = 2.5–23.7°
c = 12.0002 (6) ŵ = 0.16 mm1
α = 72.769 (2)°T = 296 K
β = 84.623 (2)°Plate, colourless
γ = 89.244 (2)°0.45 × 0.33 × 0.09 mm
V = 1305.66 (11) Å3
Data collection top
Bruker APEXII CCD
diffractometer
6011 independent reflections
Radiation source: fine-focus sealed tube3533 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
φ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1313
Tmin = 0.939, Tmax = 0.986k = 1414
49580 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.065P)2 + 0.6113P]
where P = (Fo2 + 2Fc2)/3
6007 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.25 e Å3
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.97289 (7)0.79726 (7)0.53684 (7)0.0643 (2)
F10.9953 (2)0.2584 (2)0.8886 (2)0.1173 (9)
N10.74459 (18)0.67026 (17)0.62307 (16)0.0391 (5)
N20.59860 (19)0.80635 (18)0.54133 (17)0.0454 (5)
N30.7211 (2)0.85604 (18)0.50475 (17)0.0472 (5)
N40.7392 (2)1.01606 (19)0.30911 (17)0.0494 (5)
N50.7233 (2)0.9884 (2)0.08319 (18)0.0497 (5)
C10.3802 (2)0.6521 (3)0.6157 (2)0.0528 (7)
H1A0.36440.74280.60980.063*
H1B0.39330.64440.53530.063*
C20.2634 (3)0.5709 (3)0.6825 (3)0.0592 (7)
H2A0.18520.60030.640.071*
C30.2423 (3)0.5859 (3)0.8050 (3)0.0716 (9)
H3A0.2260.67640.79970.086*
H3B0.16610.53460.84860.086*
C40.3614 (3)0.5414 (3)0.8693 (2)0.0660 (8)
H4A0.34720.55160.94960.079*
C50.4791 (2)0.6218 (3)0.8034 (2)0.0514 (7)
H5A0.55590.59320.84630.062*
H5B0.46460.71230.79860.062*
C60.5025 (2)0.6083 (2)0.67938 (19)0.0365 (5)
C70.2865 (3)0.4317 (3)0.6911 (3)0.0669 (8)
H7A0.30070.42160.61170.08*
H7B0.21010.37950.73280.08*
C80.4048 (3)0.3872 (3)0.7577 (3)0.0606 (8)
H8A0.41970.29520.76470.073*
C90.5233 (2)0.4665 (2)0.6893 (2)0.0487 (6)
H9A0.53670.45570.610.058*
H9B0.60110.43620.73030.058*
C100.3844 (3)0.4035 (3)0.8797 (3)0.0727 (9)
H10A0.30930.35130.92450.087*
H10B0.46140.37440.92230.087*
C110.6145 (2)0.6934 (2)0.61309 (19)0.0381 (5)
C120.8141 (2)0.7769 (2)0.5529 (2)0.0442 (6)
C130.8086 (2)0.5622 (2)0.6933 (2)0.0393 (5)
C140.8596 (2)0.4721 (2)0.6427 (2)0.0505 (6)
H14A0.85110.48170.56240.061*
C150.9223 (3)0.3690 (3)0.7086 (3)0.0648 (8)
H15A0.95720.30580.67530.078*
C160.9332 (3)0.3597 (3)0.8221 (3)0.0700 (9)
C170.8867 (3)0.4476 (3)0.8746 (2)0.0679 (9)
H17A0.8970.43750.95460.081*
C180.8236 (2)0.5524 (3)0.8079 (2)0.0520 (7)
H18A0.79130.61640.84120.062*
C190.7401 (3)0.9915 (2)0.4322 (2)0.0548 (7)
H19A0.67161.04250.4590.066*
H19B0.82361.02230.44760.066*
C200.6161 (3)1.0001 (3)0.2677 (2)0.0530 (7)
H20A0.54841.04440.30390.064*
H20B0.59250.90840.29080.064*
C210.6245 (3)1.0548 (3)0.1353 (2)0.0530 (7)
H21A0.54031.04450.10690.064*
H21B0.64621.14690.11210.064*
C230.8397 (3)0.9514 (3)0.2571 (2)0.0574 (7)
H23A0.82030.85880.28140.069*
H23B0.92360.96440.28480.069*
C220.8475 (3)1.0037 (3)0.1250 (2)0.0585 (7)
H22A0.87221.09510.10060.07*
H22B0.91450.9580.08970.07*
C240.7295 (3)1.0128 (2)0.0403 (2)0.0502 (6)
C250.8004 (3)0.9305 (3)0.0903 (3)0.0678 (8)
H25A0.84230.85990.04170.081*
C260.8102 (4)0.9509 (4)0.2097 (3)0.0820 (10)
H26A0.85840.89380.24260.098*
C270.7515 (4)1.0521 (4)0.2813 (3)0.0837 (11)
H27A0.75991.0660.36370.1*
C280.6804 (3)1.1335 (4)0.2340 (3)0.0782 (10)
H28A0.63871.20360.28350.094*
C290.6692 (3)1.1139 (3)0.1138 (3)0.0633 (8)
H29A0.61951.17060.08160.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0496 (4)0.0660 (5)0.0691 (5)0.0162 (3)0.0024 (3)0.0092 (4)
F10.0819 (14)0.1034 (16)0.1216 (18)0.0377 (12)0.0074 (12)0.0334 (13)
N10.0401 (11)0.0368 (11)0.0371 (11)0.0016 (8)0.0025 (8)0.0076 (8)
N20.0497 (12)0.0399 (11)0.0410 (11)0.0049 (9)0.0022 (9)0.0058 (9)
N30.0543 (13)0.0385 (11)0.0415 (12)0.0042 (10)0.0042 (9)0.0030 (9)
N40.0572 (13)0.0475 (12)0.0411 (12)0.0079 (10)0.0001 (10)0.0107 (9)
N50.0502 (13)0.0550 (13)0.0439 (12)0.0054 (10)0.0022 (9)0.0155 (10)
C10.0481 (15)0.0545 (16)0.0541 (16)0.0109 (12)0.0079 (12)0.0130 (13)
C20.0377 (14)0.0703 (19)0.074 (2)0.0088 (13)0.0132 (13)0.0255 (15)
C30.0447 (16)0.090 (2)0.085 (2)0.0052 (15)0.0155 (15)0.0409 (18)
C40.0536 (17)0.098 (2)0.0467 (16)0.0167 (16)0.0137 (13)0.0262 (16)
C50.0447 (14)0.0666 (17)0.0468 (15)0.0077 (12)0.0044 (11)0.0248 (13)
C60.0380 (12)0.0370 (12)0.0341 (12)0.0051 (10)0.0005 (9)0.0114 (10)
C70.0460 (16)0.075 (2)0.089 (2)0.0099 (14)0.0048 (15)0.0379 (17)
C80.0475 (15)0.0402 (15)0.093 (2)0.0066 (12)0.0009 (14)0.0186 (14)
C90.0415 (14)0.0434 (14)0.0637 (17)0.0020 (11)0.0014 (12)0.0206 (12)
C100.0544 (18)0.081 (2)0.064 (2)0.0212 (16)0.0055 (14)0.0049 (16)
C110.0438 (13)0.0378 (13)0.0320 (12)0.0050 (10)0.0003 (10)0.0107 (10)
C120.0507 (15)0.0422 (14)0.0381 (13)0.0036 (11)0.0031 (11)0.0114 (11)
C130.0324 (12)0.0402 (13)0.0413 (14)0.0017 (10)0.0008 (10)0.0073 (10)
C140.0423 (14)0.0535 (16)0.0567 (16)0.0025 (12)0.0017 (12)0.0185 (13)
C150.0451 (16)0.0540 (18)0.092 (2)0.0079 (13)0.0001 (15)0.0185 (16)
C160.0418 (16)0.066 (2)0.079 (2)0.0101 (14)0.0003 (15)0.0128 (17)
C170.0473 (16)0.099 (2)0.0415 (16)0.0024 (16)0.0036 (12)0.0037 (16)
C180.0403 (14)0.0688 (18)0.0453 (15)0.0011 (12)0.0010 (11)0.0160 (13)
C190.0785 (19)0.0372 (14)0.0445 (15)0.0067 (13)0.0011 (13)0.0069 (11)
C200.0562 (16)0.0494 (15)0.0514 (16)0.0017 (12)0.0045 (12)0.0148 (12)
C210.0516 (15)0.0584 (16)0.0490 (16)0.0068 (13)0.0034 (12)0.0164 (13)
C230.0482 (15)0.0715 (19)0.0477 (16)0.0004 (13)0.0034 (12)0.0105 (13)
C220.0480 (16)0.076 (2)0.0475 (16)0.0016 (14)0.0001 (12)0.0136 (14)
C240.0522 (15)0.0520 (16)0.0479 (15)0.0042 (12)0.0024 (12)0.0176 (12)
C250.076 (2)0.069 (2)0.063 (2)0.0030 (16)0.0014 (16)0.0289 (16)
C260.084 (2)0.103 (3)0.073 (2)0.006 (2)0.0066 (19)0.051 (2)
C270.086 (2)0.117 (3)0.0518 (19)0.022 (2)0.0013 (18)0.031 (2)
C280.079 (2)0.094 (3)0.056 (2)0.0078 (19)0.0103 (17)0.0124 (18)
C290.0690 (19)0.0678 (19)0.0543 (18)0.0011 (15)0.0054 (14)0.0200 (15)
Geometric parameters (Å, º) top
S1—C121.658 (3)C8—H8A1
F1—C161.358 (3)C9—H9A0.99
N1—C111.385 (3)C9—H9B0.99
N1—C121.389 (3)C10—H10A0.99
N1—C131.433 (3)C10—H10B0.99
N2—C111.303 (3)C13—C181.371 (3)
N2—N31.375 (3)C13—C141.383 (3)
N3—C121.346 (3)C14—C151.373 (4)
N3—C191.490 (3)C14—H14A0.95
N4—C191.422 (3)C15—C161.351 (5)
N4—C201.449 (3)C15—H15A0.95
N4—C231.452 (3)C16—C171.361 (5)
N5—C241.421 (3)C17—C181.389 (4)
N5—C211.453 (3)C17—H17A0.95
N5—C221.459 (3)C18—H18A0.95
C1—C21.530 (4)C19—H19A0.99
C1—C61.545 (3)C19—H19B0.99
C1—H1A0.99C20—C211.518 (3)
C1—H1B0.99C20—H20A0.99
C2—C71.519 (4)C20—H20B0.99
C2—C31.523 (4)C21—H21A0.99
C2—H2A1C21—H21B0.99
C3—C41.521 (4)C23—C221.513 (4)
C3—H3A0.99C23—H23A0.99
C3—H3B0.99C23—H23B0.99
C4—C101.501 (4)C22—H22A0.99
C4—C51.529 (4)C22—H22B0.99
C4—H4A1C24—C291.383 (4)
C5—C61.536 (3)C24—C251.394 (4)
C5—H5A0.99C25—C261.377 (4)
C5—H5B0.99C25—H25A0.95
C6—C111.511 (3)C26—C271.365 (5)
C6—C91.540 (3)C26—H26A0.95
C7—C81.528 (4)C27—C281.370 (5)
C7—H7A0.99C27—H27A0.95
C7—H7B0.99C28—C291.387 (4)
C8—C101.522 (4)C28—H28A0.95
C8—C91.539 (4)C29—H29A0.95
C11—N1—C12108.39 (19)N2—C11—N1110.2 (2)
C11—N1—C13130.57 (18)N2—C11—C6122.5 (2)
C12—N1—C13121.01 (19)N1—C11—C6127.21 (19)
C11—N2—N3105.12 (19)N3—C12—N1102.9 (2)
C12—N3—N2113.44 (18)N3—C12—S1130.23 (18)
C12—N3—C19125.9 (2)N1—C12—S1126.90 (19)
N2—N3—C19120.1 (2)C18—C13—C14120.9 (2)
C19—N4—C20116.2 (2)C18—C13—N1119.8 (2)
C19—N4—C23114.0 (2)C14—C13—N1119.3 (2)
C20—N4—C23110.5 (2)C15—C14—C13119.9 (3)
C24—N5—C21116.6 (2)C15—C14—H14A120.1
C24—N5—C22113.3 (2)C13—C14—H14A120.1
C21—N5—C22109.8 (2)C16—C15—C14118.1 (3)
C2—C1—C6110.4 (2)C16—C15—H15A120.9
C2—C1—H1A109.6C14—C15—H15A120.9
C6—C1—H1A109.6C15—C16—F1118.9 (3)
C2—C1—H1B109.6C15—C16—C17123.8 (3)
C6—C1—H1B109.6F1—C16—C17117.3 (3)
H1A—C1—H1B108.1C16—C17—C18118.2 (3)
C7—C2—C3109.6 (3)C16—C17—H17A120.9
C7—C2—C1109.9 (2)C18—C17—H17A120.9
C3—C2—C1109.2 (2)C13—C18—C17119.1 (3)
C7—C2—H2A109.4C13—C18—H18A120.5
C3—C2—H2A109.4C17—C18—H18A120.5
C1—C2—H2A109.4N4—C19—N3116.3 (2)
C4—C3—C2109.3 (2)N4—C19—H19A108.2
C4—C3—H3A109.8N3—C19—H19A108.2
C2—C3—H3A109.8N4—C19—H19B108.2
C4—C3—H3B109.8N3—C19—H19B108.2
C2—C3—H3B109.8H19A—C19—H19B107.4
H3A—C3—H3B108.3N4—C20—C21109.7 (2)
C10—C4—C3109.9 (3)N4—C20—H20A109.7
C10—C4—C5109.9 (2)C21—C20—H20A109.7
C3—C4—C5110.1 (3)N4—C20—H20B109.7
C10—C4—H4A109C21—C20—H20B109.7
C3—C4—H4A109H20A—C20—H20B108.2
C5—C4—H4A109N5—C21—C20109.2 (2)
C4—C5—C6110.0 (2)N5—C21—H21A109.8
C4—C5—H5A109.7C20—C21—H21A109.8
C6—C5—H5A109.7N5—C21—H21B109.8
C4—C5—H5B109.7C20—C21—H21B109.8
C6—C5—H5B109.7H21A—C21—H21B108.3
H5A—C5—H5B108.2N4—C23—C22109.7 (2)
C11—C6—C5109.46 (19)N4—C23—H23A109.7
C11—C6—C9113.41 (18)C22—C23—H23A109.7
C5—C6—C9108.6 (2)N4—C23—H23B109.7
C11—C6—C1108.72 (18)C22—C23—H23B109.7
C5—C6—C1108.15 (19)H23A—C23—H23B108.2
C9—C6—C1108.4 (2)N5—C22—C23110.3 (2)
C2—C7—C8108.9 (2)N5—C22—H22A109.6
C2—C7—H7A109.9C23—C22—H22A109.6
C8—C7—H7A109.9N5—C22—H22B109.6
C2—C7—H7B109.9C23—C22—H22B109.6
C8—C7—H7B109.9H22A—C22—H22B108.1
H7A—C7—H7B108.3C29—C24—C25118.1 (3)
C10—C8—C7110.3 (2)C29—C24—N5123.6 (2)
C10—C8—C9109.7 (2)C25—C24—N5118.3 (2)
C7—C8—C9109.1 (2)C26—C25—C24120.4 (3)
C10—C8—H8A109.2C26—C25—H25A119.8
C7—C8—H8A109.2C24—C25—H25A119.8
C9—C8—H8A109.2C27—C26—C25120.8 (3)
C8—C9—C6109.8 (2)C27—C26—H26A119.6
C8—C9—H9A109.7C25—C26—H26A119.6
C6—C9—H9A109.7C26—C27—C28119.8 (3)
C8—C9—H9B109.7C26—C27—H27A120.1
C6—C9—H9B109.7C28—C27—H27A120.1
H9A—C9—H9B108.2C27—C28—C29120.1 (3)
C4—C10—C8109.3 (2)C27—C28—H28A120
C4—C10—H10A109.8C29—C28—H28A120
C8—C10—H10A109.8C24—C29—C28120.8 (3)
C4—C10—H10B109.8C24—C29—H29A119.6
C8—C10—H10B109.8C28—C29—H29A119.6
H10A—C10—H10B108.3
C11—N2—N3—C120.5 (3)C11—N1—C12—N30.6 (2)
C11—N2—N3—C19172.6 (2)C13—N1—C12—N3178.6 (2)
C6—C1—C2—C759.7 (3)C11—N1—C12—S1178.75 (18)
C6—C1—C2—C360.6 (3)C13—N1—C12—S10.8 (3)
C7—C2—C3—C460.3 (3)C11—N1—C13—C1883.5 (3)
C1—C2—C3—C460.2 (3)C12—N1—C13—C1894.0 (3)
C2—C3—C4—C1060.7 (3)C11—N1—C13—C1499.5 (3)
C2—C3—C4—C560.4 (3)C12—N1—C13—C1483.1 (3)
C10—C4—C5—C660.9 (3)C18—C13—C14—C152.3 (4)
C3—C4—C5—C660.2 (3)N1—C13—C14—C15179.3 (2)
C4—C5—C6—C11177.0 (2)C13—C14—C15—C160.6 (4)
C4—C5—C6—C958.7 (3)C14—C15—C16—F1179.9 (3)
C4—C5—C6—C158.7 (3)C14—C15—C16—C170.8 (5)
C2—C1—C6—C11178.1 (2)C15—C16—C17—C180.5 (5)
C2—C1—C6—C559.4 (3)F1—C16—C17—C18179.6 (2)
C2—C1—C6—C958.2 (3)C14—C13—C18—C172.5 (4)
C3—C2—C7—C859.2 (3)N1—C13—C18—C17179.5 (2)
C1—C2—C7—C860.8 (3)C16—C17—C18—C131.2 (4)
C2—C7—C8—C1059.0 (3)C20—N4—C19—N369.5 (3)
C2—C7—C8—C961.5 (3)C23—N4—C19—N360.7 (3)
C10—C8—C9—C659.5 (3)C12—N3—C19—N4102.6 (3)
C7—C8—C9—C661.4 (3)N2—N3—C19—N486.3 (3)
C11—C6—C9—C8179.9 (2)C19—N4—C20—C21168.6 (2)
C5—C6—C9—C858.2 (3)C23—N4—C20—C2159.5 (3)
C1—C6—C9—C859.1 (3)C24—N5—C21—C20169.9 (2)
C3—C4—C10—C860.1 (3)C22—N5—C21—C2059.5 (3)
C5—C4—C10—C861.2 (3)N4—C20—C21—N559.9 (3)
C7—C8—C10—C459.6 (3)C19—N4—C23—C22168.7 (2)
C9—C8—C10—C460.6 (3)C20—N4—C23—C2258.3 (3)
N3—N2—C11—N10.1 (2)C24—N5—C22—C23168.7 (2)
N3—N2—C11—C6176.33 (19)C21—N5—C22—C2359.0 (3)
C12—N1—C11—N20.3 (3)N4—C23—C22—N557.8 (3)
C13—N1—C11—N2178.0 (2)C21—N5—C24—C2915.0 (4)
C12—N1—C11—C6175.7 (2)C22—N5—C24—C29113.9 (3)
C13—N1—C11—C62.0 (4)C21—N5—C24—C25165.1 (3)
C5—C6—C11—N297.1 (3)C22—N5—C24—C2566.0 (3)
C9—C6—C11—N2141.4 (2)C29—C24—C25—C260.5 (4)
C1—C6—C11—N220.8 (3)N5—C24—C25—C26179.4 (3)
C5—C6—C11—N178.4 (3)C24—C25—C26—C270.4 (5)
C9—C6—C11—N143.0 (3)C25—C26—C27—C281.0 (5)
C1—C6—C11—N1163.6 (2)C26—C27—C28—C290.7 (5)
N2—N3—C12—N10.7 (3)C25—C24—C29—C280.8 (4)
C19—N3—C12—N1172.3 (2)N5—C24—C29—C28179.1 (3)
N2—N3—C12—S1178.63 (18)C27—C28—C29—C240.2 (5)
C19—N3—C12—S17.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22B···F1i0.992.493.332 (4)142
Symmetry code: (i) x+2, y+1, z+1.
3-(Adamantan-1-yl)-4-(4-fluorophenyl)-1-{[4-(2-methoxyphenyl)piperazin-1-yl]methyl}-4,5-dihydro-1H-1,2,4-triazole-5-thione (II) top
Crystal data top
C30H36FN5OSF(000) = 1136
Mr = 533.7Dx = 1.283 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8790 reflections
a = 11.3074 (7) Åθ = 2.5–22.8°
b = 12.1576 (8) ŵ = 0.16 mm1
c = 20.4976 (13) ÅT = 293 K
β = 101.328 (2)°Block, colourless
V = 2762.9 (3) Å30.42 × 0.19 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
6350 independent reflections
Radiation source: fine-focus sealed tube3203 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.134
φ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1414
Tmin = 0.965, Tmax = 0.975k = 1515
67287 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.8222P]
where P = (Fo2 + 2Fc2)/3
6347 reflections(Δ/σ)max < 0.001
344 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.22 e Å3
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.24167 (6)0.32667 (6)0.43345 (3)0.0608 (2)
F10.3856 (2)0.79567 (15)0.45842 (10)0.1199 (8)
O10.34615 (16)0.06806 (14)0.77358 (8)0.0618 (5)
N10.19559 (16)0.42142 (14)0.54744 (10)0.0428 (5)
N30.13241 (17)0.25598 (15)0.53226 (9)0.0469 (5)
N20.10390 (17)0.28893 (15)0.59193 (10)0.0481 (5)
N40.18293 (18)0.05911 (15)0.54290 (9)0.0476 (5)
N50.35533 (17)0.04464 (14)0.64472 (9)0.0439 (5)
C10.0665 (2)0.5658 (2)0.64261 (13)0.0583 (7)
H1A0.10870.60990.6150.07*
H1B0.01370.55020.61740.07*
C20.0572 (3)0.6293 (2)0.70571 (14)0.0645 (8)
H2A0.0140.69840.69320.077*
C30.0100 (3)0.5635 (2)0.74851 (16)0.0755 (9)
H3A0.09070.54760.72420.091*
H3B0.01670.60530.78790.091*
C40.0574 (3)0.4566 (2)0.76852 (15)0.0750 (9)
H4A0.01350.41310.79620.09*
C50.0666 (3)0.3909 (2)0.70539 (14)0.0680 (8)
H5A0.10840.32210.71790.082*
H5B0.01370.37390.68080.082*
C60.13488 (19)0.45742 (17)0.66124 (11)0.0412 (6)
C70.1822 (3)0.6551 (2)0.74427 (15)0.0741 (9)
H7A0.22540.69870.7170.089*
H7B0.17650.69750.78360.089*
C80.2498 (2)0.5495 (2)0.76445 (14)0.0688 (8)
H8A0.33050.56680.78970.083*
C90.2610 (2)0.4844 (2)0.70174 (13)0.0596 (7)
H9A0.30510.41680.71430.072*
H9B0.30540.52740.67480.072*
C100.1828 (3)0.4810 (3)0.80713 (14)0.0807 (9)
H10A0.22580.41270.81940.097*
H10B0.17790.52070.84760.097*
C110.14343 (19)0.39012 (18)0.60057 (11)0.0413 (6)
C120.1899 (2)0.33355 (19)0.50378 (12)0.0455 (6)
C130.2440 (2)0.52480 (18)0.53089 (11)0.0429 (6)
C140.3666 (2)0.5415 (2)0.54450 (13)0.0610 (7)
H14A0.41730.49020.56950.073*
C150.4142 (3)0.6341 (3)0.52107 (16)0.0785 (10)
H15A0.49690.64660.530.094*
C160.3373 (4)0.7071 (2)0.48460 (16)0.0740 (9)
C170.2163 (3)0.6944 (2)0.47141 (14)0.0666 (8)
H17A0.16620.74720.44740.08*
C180.1692 (2)0.60109 (19)0.49462 (12)0.0514 (6)
H18A0.08620.58970.48570.062*
C190.1079 (2)0.14220 (19)0.50729 (12)0.0550 (7)
H19A0.02460.12460.50830.066*
H19B0.11650.13990.46120.066*
C200.3118 (2)0.0819 (2)0.55064 (12)0.0541 (7)
H20A0.33220.1460.57880.065*
H20B0.33050.09830.50750.065*
C210.3869 (2)0.0149 (2)0.58108 (12)0.0560 (7)
H21A0.37280.07720.5510.067*
H21B0.47190.00390.5880.067*
C220.2259 (2)0.06913 (19)0.63489 (12)0.0505 (6)
H22A0.20530.08940.6770.061*
H22B0.20660.13070.60460.061*
C230.1536 (2)0.03040 (19)0.60675 (12)0.0483 (6)
H23A0.06810.01450.60110.058*
H23B0.17210.09180.63730.058*
C240.4291 (2)0.12587 (18)0.68294 (12)0.0453 (6)
C250.5089 (2)0.1917 (2)0.65777 (13)0.0592 (7)
H25A0.51850.18140.61420.071*
C260.5751 (3)0.2730 (2)0.69618 (16)0.0722 (8)
H26A0.62890.3160.67830.087*
C270.5616 (2)0.2903 (2)0.76022 (16)0.0686 (8)
H27A0.60310.34710.78520.082*
C280.4857 (2)0.2226 (2)0.78764 (13)0.0591 (7)
H28A0.47810.23260.83160.071*
C290.4211 (2)0.14002 (19)0.74968 (13)0.0482 (6)
C300.3295 (3)0.0813 (2)0.83902 (13)0.0715 (8)
H30A0.27620.02510.84910.107*
H30B0.40590.07550.86910.107*
H30C0.2950.15230.84370.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0707 (5)0.0622 (4)0.0515 (4)0.0101 (4)0.0172 (3)0.0018 (3)
F10.190 (2)0.0819 (13)0.1131 (15)0.0717 (13)0.0917 (15)0.0292 (11)
O10.0783 (13)0.0624 (12)0.0492 (11)0.0115 (10)0.0236 (9)0.0040 (9)
N10.0404 (11)0.0354 (11)0.0527 (12)0.0050 (9)0.0089 (9)0.0016 (10)
N30.0552 (12)0.0383 (11)0.0467 (12)0.0066 (10)0.0083 (10)0.0046 (10)
N20.0510 (12)0.0386 (12)0.0548 (13)0.0025 (9)0.0107 (10)0.0056 (10)
N40.0623 (14)0.0379 (11)0.0429 (12)0.0048 (10)0.0111 (10)0.0022 (9)
N50.0504 (12)0.0391 (11)0.0444 (12)0.0031 (9)0.0144 (9)0.0027 (9)
C10.0616 (17)0.0520 (16)0.0596 (17)0.0177 (13)0.0078 (13)0.0084 (13)
C20.078 (2)0.0475 (15)0.0713 (19)0.0150 (14)0.0220 (17)0.0104 (14)
C30.0684 (19)0.074 (2)0.093 (2)0.0041 (16)0.0361 (17)0.0302 (17)
C40.104 (2)0.0573 (18)0.080 (2)0.0273 (17)0.059 (2)0.0141 (16)
C50.087 (2)0.0501 (16)0.077 (2)0.0167 (14)0.0416 (17)0.0140 (14)
C60.0379 (13)0.0357 (13)0.0507 (14)0.0002 (10)0.0109 (11)0.0047 (11)
C70.100 (2)0.0554 (18)0.073 (2)0.0244 (17)0.0324 (18)0.0197 (15)
C80.0542 (17)0.088 (2)0.0603 (18)0.0096 (16)0.0028 (14)0.0189 (16)
C90.0476 (15)0.0727 (18)0.0578 (17)0.0027 (13)0.0086 (13)0.0064 (14)
C100.115 (3)0.075 (2)0.0538 (18)0.0137 (19)0.0211 (19)0.0017 (16)
C110.0348 (12)0.0383 (14)0.0496 (15)0.0037 (10)0.0055 (11)0.0008 (11)
C120.0408 (13)0.0425 (14)0.0509 (15)0.0101 (11)0.0033 (12)0.0030 (12)
C130.0398 (14)0.0430 (14)0.0469 (14)0.0009 (11)0.0110 (11)0.0053 (11)
C140.0442 (16)0.0736 (19)0.0639 (18)0.0019 (14)0.0076 (13)0.0123 (15)
C150.062 (2)0.101 (3)0.078 (2)0.037 (2)0.0290 (18)0.036 (2)
C160.108 (3)0.0583 (19)0.068 (2)0.038 (2)0.049 (2)0.0253 (16)
C170.095 (2)0.0471 (17)0.0617 (19)0.0013 (16)0.0260 (17)0.0011 (14)
C180.0515 (15)0.0464 (15)0.0565 (16)0.0025 (12)0.0112 (13)0.0004 (13)
C190.0658 (17)0.0420 (15)0.0519 (16)0.0003 (12)0.0017 (13)0.0088 (12)
C200.0679 (18)0.0503 (15)0.0493 (16)0.0090 (13)0.0246 (13)0.0092 (12)
C210.0662 (17)0.0518 (16)0.0546 (16)0.0119 (13)0.0231 (14)0.0034 (13)
C220.0526 (16)0.0437 (14)0.0548 (16)0.0053 (12)0.0095 (12)0.0005 (12)
C230.0492 (14)0.0427 (14)0.0539 (16)0.0028 (11)0.0123 (12)0.0019 (12)
C240.0510 (14)0.0332 (12)0.0514 (16)0.0025 (11)0.0093 (12)0.0007 (11)
C250.0704 (18)0.0520 (16)0.0562 (17)0.0172 (14)0.0147 (14)0.0009 (13)
C260.077 (2)0.0632 (19)0.078 (2)0.0246 (16)0.0208 (17)0.0007 (17)
C270.0634 (18)0.0545 (17)0.083 (2)0.0115 (14)0.0028 (16)0.0106 (16)
C280.0621 (17)0.0562 (16)0.0572 (17)0.0057 (14)0.0073 (14)0.0131 (14)
C290.0474 (15)0.0418 (14)0.0559 (17)0.0045 (11)0.0113 (13)0.0020 (12)
C300.083 (2)0.084 (2)0.0484 (17)0.0038 (16)0.0137 (15)0.0073 (15)
Geometric parameters (Å, º) top
S1—C121.661 (2)C8—H8A0.98
F1—C161.364 (3)C9—H9A0.97
O1—C291.374 (3)C9—H9B0.97
O1—C301.400 (3)C10—H10A0.97
N1—C121.387 (3)C10—H10B0.97
N1—C111.390 (3)C13—C181.372 (3)
N1—C131.438 (3)C13—C141.374 (3)
N3—C121.342 (3)C14—C151.375 (4)
N3—N21.384 (3)C14—H14A0.93
N3—C191.482 (3)C15—C161.358 (4)
N2—C111.309 (3)C15—H15A0.93
N4—C191.425 (3)C16—C171.351 (4)
N4—C231.454 (3)C17—C181.377 (3)
N4—C201.461 (3)C17—H17A0.93
N5—C241.424 (3)C18—H18A0.93
N5—C211.464 (3)C19—H19A0.97
N5—C221.468 (3)C19—H19B0.97
C1—C21.528 (3)C20—C211.512 (3)
C1—C61.537 (3)C20—H20A0.97
C1—H1A0.97C20—H20B0.97
C1—H1B0.97C21—H21A0.97
C2—C31.500 (4)C21—H21B0.97
C2—C71.510 (4)C22—C231.510 (3)
C2—H2A0.98C22—H22A0.97
C3—C41.522 (4)C22—H22B0.97
C3—H3A0.97C23—H23A0.97
C3—H3B0.97C23—H23B0.97
C4—C101.511 (4)C24—C251.380 (3)
C4—C51.541 (4)C24—C291.399 (3)
C4—H4A0.98C25—C261.388 (3)
C5—C61.531 (3)C25—H25A0.93
C5—H5A0.97C26—C271.367 (4)
C5—H5B0.97C26—H26A0.93
C6—C111.507 (3)C27—C281.385 (4)
C6—C91.538 (3)C27—H27A0.93
C7—C81.509 (4)C28—C291.387 (3)
C7—H7A0.97C28—H28A0.93
C7—H7B0.97C30—H30A0.96
C8—C101.514 (4)C30—H30B0.96
C8—C91.536 (3)C30—H30C0.96
C29—O1—C30118.5 (2)N1—C11—C6127.1 (2)
C12—N1—C11108.77 (18)N3—C12—N1103.03 (19)
C12—N1—C13119.51 (19)N3—C12—S1128.71 (18)
C11—N1—C13131.62 (19)N1—C12—S1128.26 (18)
C12—N3—N2113.44 (18)C18—C13—C14120.0 (2)
C12—N3—C19125.4 (2)C18—C13—N1119.7 (2)
N2—N3—C19121.01 (19)C14—C13—N1119.8 (2)
C11—N2—N3105.01 (19)C13—C14—C15119.9 (3)
C19—N4—C23114.40 (19)C13—C14—H14A120.1
C19—N4—C20113.73 (19)C15—C14—H14A120.1
C23—N4—C20110.29 (18)C16—C15—C14118.4 (3)
C24—N5—C21116.26 (18)C16—C15—H15A120.8
C24—N5—C22113.26 (18)C14—C15—H15A120.8
C21—N5—C22109.82 (19)C17—C16—C15123.3 (3)
C2—C1—C6109.8 (2)C17—C16—F1118.6 (4)
C2—C1—H1A109.7C15—C16—F1118.0 (3)
C6—C1—H1A109.7C16—C17—C18118.0 (3)
C2—C1—H1B109.7C16—C17—H17A121
C6—C1—H1B109.7C18—C17—H17A121
H1A—C1—H1B108.2C13—C18—C17120.3 (3)
C3—C2—C7109.5 (2)C13—C18—H18A119.8
C3—C2—C1110.6 (2)C17—C18—H18A119.8
C7—C2—C1109.6 (2)N4—C19—N3115.62 (19)
C3—C2—H2A109N4—C19—H19A108.4
C7—C2—H2A109N3—C19—H19A108.4
C1—C2—H2A109N4—C19—H19B108.4
C2—C3—C4109.2 (2)N3—C19—H19B108.4
C2—C3—H3A109.8H19A—C19—H19B107.4
C4—C3—H3A109.8N4—C20—C21111.4 (2)
C2—C3—H3B109.8N4—C20—H20A109.4
C4—C3—H3B109.8C21—C20—H20A109.4
H3A—C3—H3B108.3N4—C20—H20B109.4
C10—C4—C3110.0 (2)C21—C20—H20B109.4
C10—C4—C5109.3 (2)H20A—C20—H20B108
C3—C4—C5109.2 (3)N5—C21—C20110.12 (19)
C10—C4—H4A109.4N5—C21—H21A109.6
C3—C4—H4A109.4C20—C21—H21A109.6
C5—C4—H4A109.4N5—C21—H21B109.6
C6—C5—C4110.3 (2)C20—C21—H21B109.6
C6—C5—H5A109.6H21A—C21—H21B108.2
C4—C5—H5A109.6N5—C22—C23109.88 (18)
C6—C5—H5B109.6N5—C22—H22A109.7
C4—C5—H5B109.6C23—C22—H22A109.7
H5A—C5—H5B108.1N5—C22—H22B109.7
C11—C6—C5108.80 (19)C23—C22—H22B109.7
C11—C6—C1111.76 (19)H22A—C22—H22B108.2
C5—C6—C1108.2 (2)N4—C23—C22109.52 (19)
C11—C6—C9110.99 (18)N4—C23—H23A109.8
C5—C6—C9108.4 (2)C22—C23—H23A109.8
C1—C6—C9108.60 (19)N4—C23—H23B109.8
C8—C7—C2109.8 (2)C22—C23—H23B109.8
C8—C7—H7A109.7H23A—C23—H23B108.2
C2—C7—H7A109.7C25—C24—C29117.8 (2)
C8—C7—H7B109.7C25—C24—N5123.5 (2)
C2—C7—H7B109.7C29—C24—N5118.7 (2)
H7A—C7—H7B108.2C24—C25—C26121.4 (3)
C7—C8—C10110.0 (2)C24—C25—H25A119.3
C7—C8—C9109.2 (2)C26—C25—H25A119.3
C10—C8—C9109.4 (2)C27—C26—C25120.3 (3)
C7—C8—H8A109.4C27—C26—H26A119.9
C10—C8—H8A109.4C25—C26—H26A119.9
C9—C8—H8A109.4C26—C27—C28119.5 (3)
C8—C9—C6110.0 (2)C26—C27—H27A120.2
C8—C9—H9A109.7C28—C27—H27A120.2
C6—C9—H9A109.7C27—C28—C29120.2 (3)
C8—C9—H9B109.7C27—C28—H28A119.9
C6—C9—H9B109.7C29—C28—H28A119.9
H9A—C9—H9B108.2O1—C29—C28123.7 (2)
C4—C10—C8109.2 (2)O1—C29—C24115.7 (2)
C4—C10—H10A109.8C28—C29—C24120.6 (2)
C8—C10—H10A109.8O1—C30—H30A109.5
C4—C10—H10B109.8O1—C30—H30B109.5
C8—C10—H10B109.8H30A—C30—H30B109.5
H10A—C10—H10B108.3O1—C30—H30C109.5
N2—C11—N1109.73 (19)H30A—C30—H30C109.5
N2—C11—C6123.1 (2)H30B—C30—H30C109.5
C12—N3—N2—C110.7 (2)C11—N1—C12—S1178.65 (17)
C19—N3—N2—C11176.39 (19)C13—N1—C12—S14.6 (3)
C6—C1—C2—C360.5 (3)C12—N1—C13—C1888.6 (3)
C6—C1—C2—C760.3 (3)C11—N1—C13—C1887.3 (3)
C7—C2—C3—C460.2 (3)C12—N1—C13—C1483.7 (3)
C1—C2—C3—C460.6 (3)C11—N1—C13—C14100.5 (3)
C2—C3—C4—C1060.1 (3)C18—C13—C14—C150.7 (4)
C2—C3—C4—C559.9 (3)N1—C13—C14—C15171.5 (2)
C10—C4—C5—C660.3 (3)C13—C14—C15—C160.2 (4)
C3—C4—C5—C660.2 (3)C14—C15—C16—C171.5 (4)
C4—C5—C6—C11179.3 (2)C14—C15—C16—F1176.4 (2)
C4—C5—C6—C159.1 (3)C15—C16—C17—C182.0 (4)
C4—C5—C6—C958.5 (3)F1—C16—C17—C18176.0 (2)
C2—C1—C6—C11178.4 (2)C14—C13—C18—C170.3 (4)
C2—C1—C6—C558.6 (3)N1—C13—C18—C17172.0 (2)
C2—C1—C6—C958.8 (3)C16—C17—C18—C131.0 (4)
C3—C2—C7—C860.3 (3)C23—N4—C19—N375.5 (3)
C1—C2—C7—C861.2 (3)C20—N4—C19—N352.4 (3)
C2—C7—C8—C1059.4 (3)C12—N3—C19—N4104.2 (3)
C2—C7—C8—C960.7 (3)N2—N3—C19—N471.0 (3)
C7—C8—C9—C659.9 (3)C19—N4—C20—C21172.94 (19)
C10—C8—C9—C660.6 (3)C23—N4—C20—C2157.0 (2)
C11—C6—C9—C8178.1 (2)C24—N5—C21—C20172.6 (2)
C5—C6—C9—C858.6 (3)C22—N5—C21—C2057.1 (3)
C1—C6—C9—C858.7 (3)N4—C20—C21—N556.0 (3)
C3—C4—C10—C859.0 (3)C24—N5—C22—C23168.36 (19)
C5—C4—C10—C861.0 (3)C21—N5—C22—C2359.8 (2)
C7—C8—C10—C458.6 (3)C19—N4—C23—C22171.58 (19)
C9—C8—C10—C461.4 (3)C20—N4—C23—C2258.7 (2)
N3—N2—C11—N10.3 (2)N5—C22—C23—N460.5 (2)
N3—N2—C11—C6177.88 (18)C21—N5—C24—C2513.9 (3)
C12—N1—C11—N21.1 (2)C22—N5—C24—C25114.7 (3)
C13—N1—C11—N2175.1 (2)C21—N5—C24—C29165.9 (2)
C12—N1—C11—C6177.0 (2)C22—N5—C24—C2965.5 (3)
C13—N1—C11—C66.8 (4)C29—C24—C25—C263.0 (4)
C5—C6—C11—N23.9 (3)N5—C24—C25—C26177.2 (2)
C1—C6—C11—N2123.3 (2)C24—C25—C26—C270.6 (4)
C9—C6—C11—N2115.2 (2)C25—C26—C27—C283.1 (4)
C5—C6—C11—N1178.3 (2)C26—C27—C28—C292.0 (4)
C1—C6—C11—N158.8 (3)C30—O1—C29—C282.9 (3)
C9—C6—C11—N162.6 (3)C30—O1—C29—C24176.8 (2)
N2—N3—C12—N11.3 (2)C27—C28—C29—O1178.5 (2)
C19—N3—C12—N1176.79 (19)C27—C28—C29—C241.7 (4)
N2—N3—C12—S1178.75 (16)C25—C24—C29—O1176.1 (2)
C19—N3—C12—S13.3 (3)N5—C24—C29—O13.7 (3)
C11—N1—C12—N31.4 (2)C25—C24—C29—C284.2 (3)
C13—N1—C12—N3175.31 (18)N5—C24—C29—C28176.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg8 are the centroids of rings (N1–N3/C11/C12) and (C24–C29), respectively.
D—H···AD—HH···AD···AD—H···A
C21—H21A···F1i0.972.473.407 (3)162
C18—H18A···Cg1ii0.932.813.661152
C9—H9A···Cg8iii0.972.803.697155
Symmetry codes: (i) x, y1, z; (ii) x, y, z; (iii) x+1, y1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: elemam5@hotmail.com.

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research and the Research Centre, College of Sciences, King Saud University for funding this research.

Funding information

Financial support from the Spanish Ministerio de Economía y Competitividad (MINECO-13-MAT2013–40950-R, MAT2016–78155-C2–1-R and FPI grant BES-2011–046948 to MSMA), Gobierno del Principado de Asturias (GRUPIN14–060) and FEDER funding, is also gratefully acknowledged

References

First citationAl-Abdullah, E. S., Asiri, H. H., El-Emam, A. & Ng, S. W. (2012). Acta Cryst. E68, o345.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl-Abdullah, E. S., Asiri, H. H., Lahsasni, S., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2014). Drug Des. Dev. Ther. 8, 505–518.  CAS Google Scholar
First citationAl-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim.-Forsch. Drug. Res. 56, 40–47.  CAS Google Scholar
First citationAl-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl-Tamimi, A. S., El-Emam, A. A., Al-Deeb, O. A., Prasad, O., Pathak, S. K., Srivastava, R. & Sinha, L. (2014). Spectrochim. Acta Part A, 124, 108–123.  CAS Google Scholar
First citationAugeri, D. J., Robl, J. A., Betebenner, D. A., Magnin, D. R., Khanna, A., Robertson, J. G., Wang, A., Simpkins, L. M., Taunk, P., Huang, Q., Han, S., Abboa-Offei, B., Cap, M., Xin, L., Tao, L., Tozzo, E., Welzel, G. E., Egan, D. M., Marcinkeviciene, J., Chang, S. Y., Biller, S. A., Kirby, M. S., Parker, R. A. & Hamann, L. G. (2005). J. Med. Chem. 48, 5025–5037.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBalzarini, J., Orzeszko-Krzesińska, B., Maurin, J. K. & Orzeszko, A. (2009). Eur. J. Med. Chem. 44, 303–311.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurstein, M. E., Serbin, A. V., Khakhulina, T. V., Alymova, I. V., Stotskaya, L. L., Bogdan, O. P., Manukchina, E. E., Jdanov, V. V., Sharova, N. K. & Bukrinskaya, A. G. (1999). Antiviral Res. 41, 135–144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDavies, W. L., Grunert, R. R., Haff, R. F., Mcgahen, J. W., Neumayer, E. M., Paulshock, M., Watts, J. C., Wood, T. R., Hermann, E. C. & Hoffmann, C. E. (1964). Science, 144, 862–863.  CrossRef PubMed CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl-Emam, A. A., Al-Tamimi, A.-S., Al-Omar, M. A., Alrashood, K. A. & Habib, E. E. (2013). Eur. J. Med. Chem. 68, 96–102.  Web of Science CAS PubMed Google Scholar
First citationEl-Emam, A. A., Al-Tuwaijri, H. M., Al-Abdullah, E. S., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o25–o26.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLamoureux, G. & Artavia, G. (2010). Curr. Med. Chem. 17, 2967–2978.  CrossRef CAS PubMed Google Scholar
First citationLiu, J., Obando, D., Liao, V., Lifa, T. & Codd, R. (2011). Eur. J. Med. Chem. 46, 1949–1963.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOmar, K., Geronikaki, A., Zoumpoulakis, P., Camoutsis, C., Soković, M., Ćirić, A. & Glamoćlija, J. (2010). Bioorg. Med. Chem. 18, 426–432.  Web of Science CrossRef PubMed CAS Google Scholar
First citationProtopopova, M., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Einck, L. & Nacy, C. A. (2005). J. Antimicrob. Chemother. 56, 968–974.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRosenthal, K. S., Sokol, M. S., Ingram, R. L., Subramanian, R. & Fort, R. C. (1982). Antimicrob. Agents Chemother. 22, 1031–1036.  CrossRef CAS PubMed Google Scholar
First citationSchwab, R. S., England, A. C. Jr, Poskanzer, D. C. & Young, R. R. (1969). J. Am. Med. Assoc. 208, 1168–1170.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, S. Y., Yue, P., Chen, X., Hong, W. K. & Lotan, R. (2002). Cancer Res. 62, 2430–2436.  Web of Science PubMed CAS Google Scholar
First citationTogo, Y., Hornick, R. B. & Dawkins, A. T. (1968). J. Am. Med. Assoc. 203, 1089–1094.  CrossRef CAS Google Scholar
First citationVillhauer, E. B., Brinkman, J. A., Naderi, G. B., Burkey, B. F., Dunning, B. E., Prasad, K., Mangold, B. L., Russell, M. E. & Hughes, T. E. (2003). J. Med. Chem. 46, 2774–2789.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds