research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structures of [Ph3PCH2PPh3]I2 di­chloro­methane disolvate and [Ph3PCH2PPh3](BI4)2

CROSSMARK_Color_square_no_text.svg

aDivision of Chemistry & Biological Chemistry, SPMS-CBC-01-18D, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, and bDepartment of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, Sultanate of Oman
*Correspondence e-mail: rganguly@ntu.edu.sg

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 30 May 2017; accepted 11 July 2017; online 28 July 2017)

Reaction of BI3 with carbodi­phospho­rane, C(PPh3)2, gives a mixture of the dicationic compounds, methyl­enebis(tri­phenyl­phospho­nium) diiodide di­chloro­methane disolvate, C37H32P22+·2I·2CH2Cl2 or [Ph3PCH2PPh3]I2·2CH2Cl2 (I), methyl­enebis(tri­phenyl­phospho­nium) bis­(tetra­iodo­borate), C37H32P22+·2BI4 or [Ph3PCH2PPh3](BI4)2 (II). Solvents are the source of the protons at the ylidic C atom. The P—C—P angle is 124.1 (2)° for (I) and 121.7 (3)° for (II), while the two P—C bond lengths are 1.804 (4) and 1.807 (5) Å in (I), and 1.817 (5) and 1.829 (5) Å in (II). In the crystal of (I), the protons of the central P—CH2—P C atom exhibit weak C—H⋯I hydrogen bonds with the respective anions. The anions in turn are linked to the di­chloro­methane solvent mol­ecules by C—H⋯I hydrogen bonds. In the crystal of (II), one of the BI4 anions is linked to a phenyl H atom via a weak C—H⋯I hydrogen bond.

1. Chemical context

Carbodi­phospho­ranes, C(PH3)2, have been known since the early 1960s (Ramirez et al., 1961[Ramirez, N. B., Desai, B., Hansen, N. & McKelvie, N. (1961). J. Am. Chem. Soc. 83, 3539-3540.]), but recent theoretical and experimental investigations has revived inter­est in these compounds (Tay et al., 2016[Tay, M. Q. Y., Ilic, G., Werner-Zwanziger, U., Lu, Y. P., Ganguly, R., Ricard, L., Frison, G., Carmichael, D. & Vidovic, D. (2016). Organometallics, 35, 439-449.]; Dordevic et al., 2016[Dordevic, N., Ganguly, R., Petkovic, M. & Vidovic, D. (2016). Chem. Commun. 52, 9789-9792.]). Theoretical studies (Frenking & Tonner, 2009[Frenking, R. & Tonner, R. (2009). Pure Appl. Chem. 81, 597-614.]) show the presence of two lone pairs of electrons, σ and π, which can act both as σ- and π-donor substituents (Tay et al., 2013[Tay, M. Q. Y., Lu, Y. P., Ganguly, R. & Vidovic, D. (2013). Angew. Chem. Int. Ed. Engl. 52, 3132-3135.]). Herein, we report on the crystal structures of two dicationic carbodiphophorane species, viz. [Ph3PCH2PPh3]I2·2CH2Cl2, (I), and [Ph3PCH2PPh3](BI4)2, (II).

[Scheme 1]

2. Structural commentary

Compound [Ph3PCH2PPh3]I2, (I), crystallizes as a di­chloro­methane disolvate (Fig. 1[link]), whereas compound (II) is not solvated (Fig. 2[link]). For both compounds, the C2/P1/C1/P2/C20 fragment lies in a plane, as shown in Figs. 1[link] and 2[link], respectively, with the P1—C1—P2 angle being 124.1 (2)° for (I) and 121.7 (3)° for (II); see Tables 1[link] and 2[link]. Such a conformation avoids any significant steric repulsion between the phenyl groups on the adjacent P atoms. The smaller value in compound (II) is attributed to decreased steric repulsion and/or an absence of electrostatic repulsion (Walker & Poli, 1989[Walker, J. D. & Poli, R. (1989). Polyhedron, 8, 1293-1297.]). The P—C bond lengths in compound (I) are slightly shorter than those in compound (II); see Tables 1[link] and 2[link]. In (II), the BI4 anions display regular tetra­hedral geometry, with I—B—I angles ranging from 108.1 (3) to 110.9 (3)°.

Table 1
Selected geometric parameters (Å, °) for (I)[link]

C1—P2 1.804 (4) C1—P1 1.807 (5)
       
P1—C1—P2 124.1 (2)    

Table 2
Selected geometric parameters (Å, °) for (II)[link]

C1—P2 1.817 (5) C1—P1 1.829 (5)
       
P1—C1—P2 121.7 (3)    
[Figure 1]
Figure 1
The mol­ecular structure of compound (I), showing the atom labelling and 40% probability displacement ellipsoids.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II), showing the atom labelling and 40% probability displacement ellipsoids.

3. Supra­molecular features

In the crystal of (I), the iodide anion I1 forms weak hydrogen bonds with atoms H1A and H39A, while iodide anion I2 forms another pair of weak hydrogen bonds with atoms H1B and H38B, as shown in Table 3[link] and Fig. 3[link]. In the crystal of (II), a single C—H⋯I hydrogen bond is observed linking an anion to the [Ph3PCH2PPh3]2+ unit (Table 4[link] and Fig. 4[link]).

Table 3
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯I1i 0.99 2.81 3.802 (4) 175
C39—H39A⋯I1i 0.99 3.05 3.986 (7) 159
C1—H1B⋯I2i 0.99 2.83 3.813 (4) 175
C38—H38B⋯I2ii 0.99 2.88 3.848 (6) 166
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯I1i 0.95 3.02 3.730 (7) 132
Symmetry code: (i) x, y+1, z.
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of compound (I). Only the H atoms (grey balls) participating in hydrogen bonding (dashed lines) have been included (see Table 3[link]).
[Figure 4]
Figure 4
A view along the a axis of the crystal packing of compound (II). Only the H atom (grey ball) participating in hydrogen bonding (dashed lines) has been included (see Table 4[link]).

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, last update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed eight reported structures of the dicationic species, which all show similar conformations. In these eight structures, the P—C—P angle varies from ca 120.89 to 123.35°, while the P—C bond lengths vary from ca 1.802 to 1.833 Å. The smallest P—C—P angle and the shortest P—C bond length, ca 120.89° and 1.802 Å, respectively, are observed in methyl­enebis(tri­phenyl­phospho­nium) dichloride 1,2-di­meth­oxy­ethane monosolvate (CSD refcode CADZUE; Petz et al., 2011[Petz, W., Dehnicke, K. & Neumuller, B. Z. (2011). Z. Anorg. Allg. Chem. 637, 1761-1768.]). While one of the largest P—C—P angles (ca 123.11°) and longest P—C bond lengths (ca 1.825 Å) were observed for methyl­enebis(tri­phenyl­phospho­nium) bis­(tetra­chloro­indium) di­chloro­methane monosolvate (CIYGIB; Petz et al., 2008[Petz, W., Fahlbusch, M., Gromm, E. & Neumuller, B. Z. (2008). Z. Anorg. Allg. Chem. 634, 682-687.]). Inter­estingly, in compound (I), the P—C bond lengths are short [1.804 (4) and 1.807 (5) Å], while the P—C—P angle [124.1 (2)°] is one of the largest observed to date.

5. Synthesis and crystallization

(Ph3)2C (0.1 g, 0.19 mmol) and 1 equivalent of BI3 were mixed in ca 10 ml of DCM and left to stir overnight under inert conditions. The volume of the resulting solution was reduced to ca 3 ml and layered with ca 5 ml of hexane. A crop of crystals formed in a few days [yield 0.02 g, 4% based on (PPh3)2C, for (I) and 0.015 g, 5% based on (PPh3)2C, for (II)].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The H atoms were included in calculated positions and treated as riding atoms, with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C). For both compounds, a small number of reflections were affected by the beam stop and were omitted from the final cycles of refinement.

Table 5
Experimental details

  (I) (II)
Crystal data
Chemical formula C37H32P22+·2I·2CH2Cl2 C37H32P22+·2BI4
Mr 962.22 1575.38
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 153 153
a, b, c (Å) 9.7510 (13), 22.914 (3), 18.204 (2) 19.7878 (6), 14.3122 (3), 16.0646 (4)
β (°) 104.629 (2) 96.230 (1)
V3) 3935.5 (9) 4522.7 (2)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.98 5.58
Crystal size (mm) 0.14 × 0.12 × 0.06 0.14 × 0.12 × 0.08
 
Data collection
Diffractometer Bruker CCD area detector Bruker CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.74, 0.89 0.51, 0.66
No. of measured, independent and observed [I > 2σ(I)] reflections 18605, 7318, 5579 52611, 14486, 9439
Rint 0.050 0.064
(sin θ/λ)max−1) 0.607 0.727
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.083, 1.05 0.045, 0.124, 0.92
No. of reflections 7318 14486
No. of parameters 424 442
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.65, −0.71 2.32, −2.11
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Methylenebis(triphenylphosphonium) diiodide dichloromethane disolvate (I) top
Crystal data top
C37H32P22+·2I·2CH2Cl2F(000) = 1896
Mr = 962.22Dx = 1.624 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.7510 (13) ÅCell parameters from 3861 reflections
b = 22.914 (3) Åθ = 2.8–24.4°
c = 18.204 (2) ŵ = 1.98 mm1
β = 104.629 (2)°T = 153 K
V = 3935.5 (9) Å3Plate, colourless
Z = 40.14 × 0.12 × 0.06 mm
Data collection top
CCD area detector
diffractometer
7318 independent reflections
Radiation source: fine-focus sealed tube, Bruker KappaCCD5579 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 8.3333 pixels mm-1θmax = 25.5°, θmin = 2.7°
phi and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 2727
Tmin = 0.74, Tmax = 0.89l = 2219
18605 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0157P)2 + 9.1897P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
7318 reflectionsΔρmax = 0.65 e Å3
424 parametersΔρmin = 0.71 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. (I: reflections 0 0 2, 1 0 0, 0 2 1, 1 1 0, -1 1 1, 0 2 0, 1 1 1, -1 2 4, -1 2 1 and 0 1 1, were affected by the beam stop and omitted from the final cycles of refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5915 (5)0.66498 (19)0.7366 (2)0.0139 (10)
H1A0.58340.67250.78890.017*
H1B0.62650.62450.73620.017*
C20.3140 (5)0.6175 (2)0.7224 (3)0.0179 (11)
C30.1671 (5)0.6199 (2)0.6984 (3)0.0233 (12)
H30.12250.64580.65880.028*
C40.0859 (6)0.5846 (2)0.7323 (3)0.0278 (13)
H40.01460.58610.7160.033*
C50.1509 (6)0.5470 (2)0.7900 (3)0.0262 (13)
H50.0950.52310.81370.031*
C60.2969 (6)0.5441 (2)0.8133 (3)0.0247 (12)
H60.34140.51810.85280.03*
C70.3787 (6)0.5791 (2)0.7789 (3)0.0221 (12)
H70.47910.57670.79430.026*
C80.3361 (5)0.73662 (19)0.6724 (3)0.0160 (11)
C90.3560 (5)0.7676 (2)0.7407 (3)0.0196 (11)
H90.41290.75190.78660.024*
C100.2921 (5)0.8211 (2)0.7402 (3)0.0243 (12)
H100.30570.84230.78630.029*
C110.2087 (6)0.8445 (2)0.6744 (3)0.0273 (13)
H110.16680.88190.67490.033*
C120.1868 (6)0.8138 (2)0.6085 (3)0.0297 (13)
H120.12740.82950.56320.036*
C130.2501 (6)0.7597 (2)0.6065 (3)0.0249 (12)
H130.23440.73870.56020.03*
C140.4079 (5)0.6383 (2)0.5839 (3)0.0178 (11)
C150.3739 (6)0.5799 (2)0.5665 (3)0.0265 (13)
H150.34810.55520.60280.032*
C160.3778 (6)0.5583 (2)0.4965 (3)0.0296 (13)
H160.3540.51860.48450.036*
C170.4160 (6)0.5938 (2)0.4434 (3)0.0292 (13)
H170.41910.57840.39540.035*
C180.4496 (6)0.6514 (2)0.4606 (3)0.0262 (13)
H180.4750.67570.42380.031*
C190.4469 (5)0.6746 (2)0.5305 (3)0.0202 (11)
H190.4710.71430.54210.024*
C200.8846 (5)0.6956 (2)0.7980 (3)0.0176 (11)
C210.8860 (5)0.6523 (2)0.8515 (3)0.0212 (11)
H210.80180.63150.85160.025*
C221.0114 (6)0.6397 (2)0.9046 (3)0.0249 (12)
H221.01310.60970.94080.03*
C231.1341 (6)0.6703 (2)0.9056 (3)0.0269 (13)
H231.21970.66130.94230.032*
C241.1314 (6)0.7142 (2)0.8528 (3)0.0264 (12)
H241.2150.73570.85380.032*
C251.0084 (6)0.7266 (2)0.7991 (3)0.0256 (12)
H251.00740.75640.76260.031*
C260.6846 (5)0.7867 (2)0.7281 (3)0.0172 (11)
C270.7029 (5)0.8101 (2)0.8007 (3)0.0226 (12)
H270.74530.78750.84420.027*
C280.6589 (6)0.8667 (2)0.8089 (3)0.0292 (13)
H280.67090.8830.85810.035*
C290.5976 (6)0.8995 (2)0.7454 (3)0.0318 (14)
H290.56780.93830.7510.038*
C300.5794 (6)0.8761 (2)0.6738 (3)0.0315 (14)
H300.53780.89920.63060.038*
C310.6212 (5)0.8193 (2)0.6641 (3)0.0238 (12)
H310.60670.8030.61470.029*
C320.7769 (5)0.6952 (2)0.6357 (3)0.0195 (11)
C330.8345 (5)0.7377 (2)0.5967 (3)0.0235 (12)
H330.84080.77710.61320.028*
C340.8822 (6)0.7217 (2)0.5340 (3)0.0309 (14)
H340.91990.75050.50710.037*
C350.8754 (6)0.6651 (2)0.5106 (3)0.0281 (13)
H350.90830.65480.46750.034*
C360.8204 (6)0.6220 (2)0.5494 (3)0.0294 (13)
H360.81790.58240.53360.035*
C370.7700 (5)0.6376 (2)0.6108 (3)0.0210 (11)
H370.730.60870.63640.025*
C380.9861 (7)0.9392 (3)0.8330 (3)0.0417 (16)
H38A0.8990.93670.7910.05*
H38B1.05570.96340.81540.05*
C390.7581 (8)0.5313 (3)0.9713 (3)0.0547 (19)
H39A0.68440.5620.96070.066*
H39B0.79950.52880.9270.066*
Cl11.05582 (17)0.86895 (7)0.85465 (9)0.0467 (4)
Cl20.9455 (2)0.97306 (7)0.91165 (10)0.0580 (5)
Cl30.8912 (3)0.55037 (10)1.05242 (10)0.0822 (7)
Cl40.6801 (2)0.46429 (8)0.98340 (10)0.0677 (6)
I10.44524 (4)0.31630 (2)0.06172 (2)0.02704 (10)
I20.28004 (4)0.49269 (2)0.25393 (2)0.02568 (10)
P10.41286 (14)0.66527 (5)0.67665 (7)0.0155 (3)
P20.73153 (14)0.71173 (5)0.72243 (7)0.0155 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.018 (3)0.015 (2)0.012 (2)0.000 (2)0.011 (2)0.0007 (18)
C20.016 (3)0.021 (3)0.018 (3)0.003 (2)0.007 (2)0.000 (2)
C30.019 (3)0.027 (3)0.026 (3)0.001 (2)0.010 (3)0.004 (2)
C40.020 (3)0.033 (3)0.032 (3)0.004 (2)0.007 (3)0.002 (2)
C50.028 (3)0.025 (3)0.031 (3)0.006 (2)0.016 (3)0.003 (2)
C60.033 (3)0.027 (3)0.016 (3)0.004 (2)0.007 (3)0.004 (2)
C70.021 (3)0.025 (3)0.023 (3)0.000 (2)0.010 (3)0.003 (2)
C80.015 (3)0.014 (2)0.019 (3)0.003 (2)0.004 (2)0.0011 (19)
C90.011 (3)0.027 (3)0.020 (3)0.000 (2)0.003 (2)0.002 (2)
C100.023 (3)0.029 (3)0.022 (3)0.000 (2)0.007 (3)0.009 (2)
C110.029 (3)0.020 (3)0.034 (3)0.006 (2)0.010 (3)0.000 (2)
C120.031 (3)0.027 (3)0.028 (3)0.007 (3)0.001 (3)0.007 (2)
C130.030 (3)0.026 (3)0.017 (3)0.006 (2)0.004 (3)0.006 (2)
C140.011 (3)0.022 (3)0.017 (3)0.001 (2)0.002 (2)0.001 (2)
C150.028 (3)0.023 (3)0.028 (3)0.005 (2)0.006 (3)0.002 (2)
C160.035 (4)0.021 (3)0.031 (3)0.002 (2)0.004 (3)0.008 (2)
C170.031 (3)0.037 (3)0.019 (3)0.002 (3)0.004 (3)0.010 (2)
C180.029 (3)0.040 (3)0.010 (2)0.000 (3)0.005 (2)0.005 (2)
C190.020 (3)0.022 (3)0.019 (3)0.003 (2)0.005 (2)0.001 (2)
C200.016 (3)0.018 (2)0.019 (3)0.002 (2)0.003 (2)0.002 (2)
C210.017 (3)0.027 (3)0.019 (3)0.004 (2)0.004 (2)0.003 (2)
C220.023 (3)0.030 (3)0.021 (3)0.000 (2)0.005 (3)0.008 (2)
C230.021 (3)0.038 (3)0.018 (3)0.003 (3)0.003 (2)0.001 (2)
C240.016 (3)0.039 (3)0.025 (3)0.004 (2)0.006 (3)0.004 (2)
C250.021 (3)0.032 (3)0.022 (3)0.006 (2)0.002 (3)0.002 (2)
C260.016 (3)0.017 (2)0.019 (3)0.001 (2)0.006 (2)0.001 (2)
C270.013 (3)0.027 (3)0.029 (3)0.002 (2)0.006 (2)0.001 (2)
C280.025 (3)0.030 (3)0.032 (3)0.004 (3)0.006 (3)0.007 (2)
C290.025 (3)0.020 (3)0.056 (4)0.003 (2)0.020 (3)0.004 (3)
C300.029 (3)0.026 (3)0.039 (3)0.005 (3)0.009 (3)0.011 (3)
C310.020 (3)0.024 (3)0.027 (3)0.003 (2)0.006 (3)0.001 (2)
C320.009 (3)0.028 (3)0.021 (3)0.001 (2)0.003 (2)0.002 (2)
C330.021 (3)0.028 (3)0.021 (3)0.002 (2)0.004 (2)0.002 (2)
C340.031 (3)0.043 (3)0.024 (3)0.002 (3)0.017 (3)0.011 (3)
C350.026 (3)0.045 (3)0.015 (3)0.008 (3)0.008 (3)0.003 (2)
C360.027 (3)0.038 (3)0.024 (3)0.002 (3)0.008 (3)0.007 (2)
C370.023 (3)0.024 (3)0.018 (3)0.003 (2)0.008 (2)0.000 (2)
C380.050 (4)0.043 (4)0.042 (4)0.011 (3)0.027 (4)0.002 (3)
C390.077 (6)0.049 (4)0.036 (4)0.004 (4)0.008 (4)0.007 (3)
Cl10.0424 (10)0.0460 (9)0.0603 (10)0.0025 (8)0.0290 (9)0.0043 (8)
Cl20.0904 (15)0.0384 (9)0.0600 (11)0.0085 (9)0.0462 (11)0.0062 (8)
Cl30.1066 (18)0.0915 (15)0.0420 (10)0.0446 (14)0.0070 (12)0.0157 (10)
Cl40.0869 (16)0.0624 (12)0.0483 (10)0.0130 (11)0.0067 (11)0.0028 (9)
I10.0287 (2)0.0339 (2)0.01825 (17)0.00212 (16)0.00550 (16)0.00344 (15)
I20.0279 (2)0.01925 (17)0.0337 (2)0.00037 (15)0.01483 (17)0.00000 (14)
P10.0156 (7)0.0181 (6)0.0130 (6)0.0011 (5)0.0041 (6)0.0004 (5)
P20.0150 (7)0.0172 (6)0.0143 (6)0.0007 (5)0.0037 (6)0.0001 (5)
Geometric parameters (Å, º) top
C1—P21.804 (4)C20—C251.396 (7)
C1—P11.807 (5)C20—P21.794 (5)
C2—C71.380 (7)C21—C221.384 (7)
C2—C31.389 (7)C22—C231.383 (7)
C2—P11.795 (5)C23—C241.387 (7)
C3—C41.383 (7)C24—C251.372 (7)
C4—C51.381 (7)C26—C311.391 (7)
C5—C61.381 (7)C26—C271.396 (6)
C6—C71.387 (7)C26—P21.787 (5)
C8—C131.383 (7)C27—C281.385 (7)
C8—C91.402 (6)C28—C291.382 (7)
C8—P11.792 (5)C29—C301.377 (7)
C9—C101.373 (7)C30—C311.390 (7)
C10—C111.376 (7)C32—C371.391 (7)
C11—C121.360 (7)C32—C331.403 (7)
C12—C131.388 (7)C32—P21.786 (5)
C14—C151.396 (6)C33—C341.385 (7)
C14—C191.403 (6)C34—C351.361 (7)
C14—P11.787 (5)C35—C361.397 (7)
C15—C161.377 (7)C36—C371.376 (7)
C16—C171.384 (7)C38—Cl11.754 (6)
C17—C181.377 (7)C38—Cl21.760 (6)
C18—C191.387 (6)C39—Cl41.752 (7)
C20—C211.388 (6)C39—Cl31.758 (7)
P1—C1—P2124.1 (2)C24—C25—C20120.1 (5)
C7—C2—C3120.0 (5)C31—C26—C27120.6 (4)
C7—C2—P1122.4 (4)C31—C26—P2122.3 (4)
C3—C2—P1117.5 (4)C27—C26—P2116.9 (4)
C4—C3—C2119.9 (5)C28—C27—C26119.6 (5)
C5—C4—C3120.0 (5)C29—C28—C27119.9 (5)
C6—C5—C4120.2 (5)C30—C29—C28120.4 (5)
C5—C6—C7119.9 (5)C29—C30—C31120.9 (5)
C2—C7—C6119.9 (5)C30—C31—C26118.7 (5)
C13—C8—C9119.5 (4)C37—C32—C33119.1 (4)
C13—C8—P1122.8 (4)C37—C32—P2119.2 (4)
C9—C8—P1117.5 (4)C33—C32—P2121.4 (4)
C10—C9—C8119.1 (5)C34—C33—C32119.6 (5)
C9—C10—C11121.3 (5)C35—C34—C33120.6 (5)
C12—C11—C10119.6 (5)C34—C35—C36120.6 (5)
C11—C12—C13120.8 (5)C37—C36—C35119.2 (5)
C8—C13—C12119.7 (4)C36—C37—C32120.8 (5)
C15—C14—C19120.2 (4)Cl1—C38—Cl2112.1 (3)
C15—C14—P1119.6 (4)Cl4—C39—Cl3111.4 (3)
C19—C14—P1120.1 (4)C14—P1—C8111.3 (2)
C16—C15—C14119.6 (5)C14—P1—C2109.7 (2)
C15—C16—C17120.7 (5)C8—P1—C2107.9 (2)
C18—C17—C16119.7 (5)C14—P1—C1111.2 (2)
C17—C18—C19121.1 (5)C8—P1—C1111.0 (2)
C18—C19—C14118.7 (5)C2—P1—C1105.5 (2)
C21—C20—C25119.9 (5)C32—P2—C26112.3 (2)
C21—C20—P2123.0 (4)C32—P2—C20106.8 (2)
C25—C20—P2117.1 (4)C26—P2—C20109.2 (2)
C22—C21—C20119.3 (5)C32—P2—C1111.5 (2)
C23—C22—C21120.8 (5)C26—P2—C1110.4 (2)
C22—C23—C24119.5 (5)C20—P2—C1106.3 (2)
C25—C24—C23120.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···I1i0.992.813.802 (4)175
C39—H39A···I1i0.993.053.986 (7)159
C1—H1B···I2i0.992.833.813 (4)175
C38—H38B···I2ii0.992.883.848 (6)166
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+3/2, z+1/2.
Methylenebis(triphenylphosphonium) bis(tetraiodoborate) (II) top
Crystal data top
C37H32P22+·2BI4F(000) = 2872
Mr = 1575.38Dx = 2.314 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 19.7878 (6) ÅCell parameters from 7264 reflections
b = 14.3122 (3) Åθ = 2.5–25.5°
c = 16.0646 (4) ŵ = 5.58 mm1
β = 96.230 (1)°T = 153 K
V = 4522.7 (2) Å3Block, colourless
Z = 40.14 × 0.12 × 0.08 mm
Data collection top
CCD area detector
diffractometer
14486 independent reflections
Radiation source: fine-focus sealed tube, Bruker KappaCCD9439 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
Detector resolution: 8.3333 pixels mm-1θmax = 31.1°, θmin = 1.8°
phi and ω scansh = 2827
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 2020
Tmin = 0.51, Tmax = 0.66l = 2319
52611 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0618P)2 + 4.3616P]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max = 0.001
14486 reflectionsΔρmax = 2.32 e Å3
442 parametersΔρmin = 2.11 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. II: reflections 0 0 2, 2 0 0, 1 1 1, 2 1 0, -1 0 2, -2 1 1, -1 1 1 and 0 1 2, were affected by the beam stop and omitted from the final cycles of refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.4572 (3)0.0659 (4)0.2238 (4)0.0196 (12)
B20.9220 (3)0.4312 (4)0.1661 (4)0.0209 (12)
C10.6997 (3)0.5283 (3)0.5764 (3)0.0163 (10)
H1A0.6890.52850.51480.02*
H1B0.65570.53110.60030.02*
C20.6780 (3)0.3291 (3)0.5616 (4)0.0194 (11)
C30.6740 (3)0.2450 (4)0.6055 (4)0.0336 (15)
H30.69990.2360.65820.04*
C40.6314 (4)0.1752 (4)0.5707 (6)0.046 (2)
H40.62860.11770.59960.056*
C50.5937 (3)0.1876 (5)0.4963 (5)0.0428 (19)
H50.56510.13850.47360.051*
C60.5958 (3)0.2702 (5)0.4526 (5)0.0398 (16)
H60.56830.27880.4010.048*
C70.6390 (3)0.3410 (4)0.4857 (4)0.0321 (14)
H70.64170.39790.45580.039*
C80.8151 (3)0.4054 (3)0.5583 (4)0.0186 (10)
C90.8776 (3)0.4303 (4)0.6004 (4)0.0238 (12)
H90.88060.4480.65760.029*
C100.9357 (3)0.4292 (4)0.5589 (4)0.0298 (14)
H100.97850.44540.58790.036*
C110.9310 (3)0.4046 (4)0.4758 (5)0.0333 (15)
H110.97070.40450.44740.04*
C120.8694 (3)0.3799 (4)0.4332 (4)0.0287 (13)
H120.86680.36330.37570.034*
C130.8110 (3)0.3791 (4)0.4739 (4)0.0241 (12)
H130.76870.3610.44480.029*
C140.7477 (3)0.4003 (3)0.7157 (3)0.0183 (10)
C150.6960 (3)0.4326 (4)0.7618 (4)0.0249 (12)
H150.65810.46540.73470.03*
C160.7009 (3)0.4160 (4)0.8470 (4)0.0309 (13)
H160.6660.43740.87850.037*
C170.7562 (4)0.3684 (4)0.8869 (4)0.0336 (14)
H170.75940.35820.94560.04*
C180.8066 (3)0.3357 (4)0.8414 (4)0.0331 (14)
H180.84430.30290.8690.04*
C190.8024 (3)0.3507 (4)0.7556 (4)0.0237 (11)
H190.83670.32710.72430.028*
C200.6845 (3)0.7276 (3)0.5731 (3)0.0177 (10)
C210.6246 (3)0.7120 (4)0.5224 (3)0.0209 (11)
H210.61170.65020.50610.025*
C220.5832 (3)0.7867 (4)0.4954 (4)0.0282 (13)
H220.5420.77640.46040.034*
C230.6024 (4)0.8767 (4)0.5201 (4)0.0342 (15)
H230.57380.92790.50260.041*
C240.6626 (3)0.8924 (4)0.5695 (4)0.0311 (14)
H240.67570.95440.5850.037*
C250.7040 (3)0.8184 (4)0.5966 (4)0.0258 (12)
H250.74540.82920.63110.031*
C260.8159 (2)0.6531 (3)0.5470 (3)0.0156 (10)
C270.8679 (3)0.7133 (4)0.5778 (4)0.0222 (11)
H270.86920.73740.63310.027*
C280.9174 (3)0.7379 (4)0.5279 (4)0.0294 (13)
H280.95260.77960.54850.035*
C290.9159 (3)0.7025 (4)0.4487 (4)0.0264 (13)
H290.95040.71990.4150.032*
C300.8655 (3)0.6422 (4)0.4165 (4)0.0268 (13)
H300.86550.61750.36170.032*
C310.8144 (3)0.6179 (4)0.4658 (4)0.0215 (11)
H310.77860.57760.44420.026*
C320.7668 (3)0.6419 (3)0.7154 (3)0.0177 (10)
C330.8287 (3)0.6088 (3)0.7527 (3)0.0182 (10)
H330.8630.59030.7190.022*
C340.8404 (3)0.6030 (4)0.8390 (4)0.0273 (12)
H340.88250.57970.86470.033*
C350.7913 (4)0.6309 (4)0.8873 (4)0.0335 (14)
H350.79930.62540.94650.04*
C360.7303 (3)0.6667 (4)0.8515 (4)0.0311 (14)
H360.69740.68810.8860.037*
C370.7170 (3)0.6715 (4)0.7645 (4)0.0254 (12)
H370.67470.69460.73920.03*
I10.50473 (2)0.01702 (3)0.33197 (3)0.02907 (10)
I20.34522 (2)0.03252 (3)0.19998 (3)0.03574 (11)
I30.50580 (2)0.02646 (4)0.11044 (3)0.03911 (12)
I40.47021 (2)0.21823 (3)0.24780 (3)0.03478 (11)
I50.81419 (2)0.44916 (3)0.19353 (3)0.04437 (13)
I60.97031 (2)0.31216 (3)0.24298 (3)0.02826 (10)
I70.92629 (3)0.40188 (4)0.03197 (3)0.04945 (14)
I80.97951 (3)0.56167 (3)0.20371 (3)0.04060 (12)
P10.73738 (7)0.41452 (9)0.60508 (9)0.0155 (3)
P20.74413 (6)0.63678 (8)0.60451 (8)0.0139 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.014 (3)0.027 (3)0.017 (3)0.003 (2)0.002 (2)0.004 (2)
B20.020 (3)0.022 (3)0.020 (3)0.001 (2)0.001 (2)0.004 (2)
C10.013 (2)0.015 (2)0.020 (3)0.0006 (18)0.001 (2)0.0000 (18)
C20.012 (2)0.020 (2)0.026 (3)0.0061 (18)0.001 (2)0.004 (2)
C30.036 (4)0.019 (3)0.045 (4)0.006 (2)0.002 (3)0.002 (3)
C40.047 (4)0.017 (3)0.076 (6)0.009 (3)0.008 (4)0.006 (3)
C50.026 (3)0.035 (3)0.068 (5)0.011 (3)0.009 (3)0.026 (3)
C60.028 (3)0.050 (4)0.039 (4)0.007 (3)0.007 (3)0.016 (3)
C70.036 (4)0.029 (3)0.030 (3)0.009 (3)0.000 (3)0.002 (2)
C80.019 (3)0.014 (2)0.025 (3)0.0005 (19)0.008 (2)0.0023 (19)
C90.018 (3)0.026 (3)0.028 (3)0.000 (2)0.000 (2)0.000 (2)
C100.019 (3)0.026 (3)0.045 (4)0.002 (2)0.004 (3)0.000 (3)
C110.026 (3)0.029 (3)0.047 (4)0.003 (2)0.013 (3)0.003 (3)
C120.033 (3)0.027 (3)0.028 (3)0.000 (2)0.012 (3)0.005 (2)
C130.022 (3)0.026 (3)0.024 (3)0.003 (2)0.002 (2)0.005 (2)
C140.022 (3)0.016 (2)0.016 (3)0.0050 (19)0.001 (2)0.0026 (18)
C150.021 (3)0.031 (3)0.023 (3)0.001 (2)0.001 (2)0.003 (2)
C160.029 (3)0.042 (3)0.023 (3)0.003 (3)0.005 (3)0.001 (3)
C170.041 (4)0.040 (3)0.020 (3)0.001 (3)0.003 (3)0.009 (3)
C180.036 (4)0.034 (3)0.027 (3)0.003 (3)0.010 (3)0.015 (3)
C190.027 (3)0.024 (3)0.019 (3)0.002 (2)0.001 (2)0.000 (2)
C200.019 (3)0.017 (2)0.018 (3)0.0048 (18)0.004 (2)0.0011 (19)
C210.019 (3)0.026 (3)0.017 (3)0.004 (2)0.001 (2)0.001 (2)
C220.026 (3)0.042 (3)0.015 (3)0.012 (3)0.001 (2)0.003 (2)
C230.048 (4)0.035 (3)0.020 (3)0.023 (3)0.007 (3)0.002 (2)
C240.044 (4)0.021 (3)0.027 (3)0.011 (3)0.002 (3)0.001 (2)
C250.027 (3)0.020 (2)0.029 (3)0.004 (2)0.002 (2)0.002 (2)
C260.012 (2)0.014 (2)0.021 (3)0.0003 (17)0.0027 (19)0.0021 (18)
C270.017 (3)0.030 (3)0.019 (3)0.006 (2)0.001 (2)0.001 (2)
C280.020 (3)0.032 (3)0.036 (4)0.006 (2)0.004 (3)0.004 (3)
C290.020 (3)0.029 (3)0.032 (3)0.002 (2)0.012 (2)0.010 (2)
C300.030 (3)0.026 (3)0.025 (3)0.008 (2)0.008 (3)0.005 (2)
C310.023 (3)0.022 (2)0.021 (3)0.002 (2)0.006 (2)0.000 (2)
C320.017 (2)0.017 (2)0.019 (3)0.0017 (18)0.001 (2)0.0002 (19)
C330.017 (3)0.019 (2)0.018 (3)0.0006 (19)0.001 (2)0.0029 (19)
C340.022 (3)0.031 (3)0.026 (3)0.002 (2)0.009 (2)0.001 (2)
C350.045 (4)0.042 (3)0.014 (3)0.008 (3)0.005 (3)0.004 (2)
C360.036 (4)0.036 (3)0.023 (3)0.001 (3)0.010 (3)0.004 (2)
C370.022 (3)0.028 (3)0.026 (3)0.004 (2)0.006 (2)0.005 (2)
I10.0364 (2)0.02556 (18)0.0242 (2)0.00250 (15)0.00166 (16)0.00448 (15)
I20.01692 (19)0.0617 (3)0.0287 (2)0.00711 (17)0.00315 (16)0.01338 (19)
I30.0213 (2)0.0782 (3)0.0185 (2)0.0046 (2)0.00497 (16)0.0110 (2)
I40.0394 (2)0.02487 (18)0.0370 (2)0.00048 (16)0.00956 (19)0.00293 (16)
I50.0205 (2)0.0557 (3)0.0576 (3)0.01384 (19)0.0074 (2)0.0110 (2)
I60.02340 (19)0.02538 (17)0.0370 (2)0.00730 (14)0.00765 (16)0.00962 (15)
I70.0586 (3)0.0673 (3)0.0207 (2)0.0183 (3)0.0038 (2)0.0119 (2)
I80.0512 (3)0.02285 (19)0.0443 (3)0.00971 (18)0.0105 (2)0.00049 (17)
P10.0129 (6)0.0158 (6)0.0175 (7)0.0006 (5)0.0006 (5)0.0012 (5)
P20.0108 (6)0.0163 (6)0.0143 (6)0.0015 (4)0.0001 (5)0.0008 (5)
Geometric parameters (Å, º) top
B1—I32.224 (6)C14—P11.779 (5)
B1—I42.224 (6)C15—C161.382 (8)
B1—I12.226 (6)C16—C171.386 (9)
B1—I22.258 (6)C17—C181.380 (9)
B2—I72.206 (6)C18—C191.389 (8)
B2—I82.236 (6)C20—C211.382 (8)
B2—I52.241 (6)C20—C251.396 (7)
B2—I62.255 (6)C20—P21.791 (5)
C1—P21.817 (5)C21—C221.388 (7)
C1—P11.829 (5)C22—C231.388 (9)
C2—C71.382 (8)C23—C241.376 (10)
C2—C31.402 (8)C24—C251.381 (8)
C2—P11.784 (5)C26—C271.390 (7)
C3—C41.385 (9)C26—C311.395 (7)
C4—C51.350 (11)C26—P21.792 (5)
C5—C61.377 (10)C27—C281.378 (8)
C6—C71.394 (8)C28—C291.368 (9)
C8—C91.390 (8)C29—C301.376 (8)
C8—C131.400 (8)C30—C311.394 (8)
C8—P11.788 (5)C32—C331.389 (7)
C9—C101.389 (8)C32—C371.392 (7)
C10—C111.374 (9)C32—P21.791 (5)
C11—C121.379 (9)C33—C341.384 (8)
C12—C131.387 (8)C34—C351.367 (9)
C14—C191.391 (8)C35—C361.377 (9)
C14—C151.405 (8)C36—C371.396 (9)
I3—B1—I4109.8 (3)C21—C20—C25120.3 (5)
I3—B1—I1108.7 (3)C21—C20—P2123.1 (4)
I4—B1—I1110.9 (3)C25—C20—P2116.5 (4)
I3—B1—I2108.1 (3)C20—C21—C22120.0 (5)
I4—B1—I2109.3 (3)C23—C22—C21119.4 (6)
I1—B1—I2110.1 (3)C24—C23—C22120.7 (5)
I7—B2—I8110.5 (3)C23—C24—C25120.2 (6)
I7—B2—I5110.6 (3)C24—C25—C20119.4 (6)
I8—B2—I5108.6 (2)C27—C26—C31119.8 (5)
I7—B2—I6109.4 (2)C27—C26—P2119.6 (4)
I8—B2—I6108.1 (3)C31—C26—P2119.8 (4)
I5—B2—I6109.6 (3)C28—C27—C26119.7 (5)
P1—C1—P2121.7 (3)C29—C28—C27120.2 (6)
C7—C2—C3119.5 (5)C28—C29—C30121.6 (5)
C7—C2—P1122.8 (4)C29—C30—C31118.9 (6)
C3—C2—P1117.6 (5)C30—C31—C26119.8 (5)
C4—C3—C2118.8 (7)C33—C32—C37120.3 (5)
C5—C4—C3121.1 (7)C33—C32—P2121.9 (4)
C4—C5—C6121.3 (6)C37—C32—P2117.4 (4)
C5—C6—C7118.8 (7)C34—C33—C32119.7 (5)
C2—C7—C6120.5 (6)C35—C34—C33120.0 (6)
C9—C8—C13119.6 (5)C34—C35—C36121.0 (6)
C9—C8—P1122.5 (4)C35—C36—C37119.9 (6)
C13—C8—P1117.7 (4)C32—C37—C36119.0 (6)
C10—C9—C8120.2 (6)C14—P1—C2108.2 (3)
C11—C10—C9119.8 (6)C14—P1—C8113.6 (3)
C10—C11—C12120.7 (6)C2—P1—C8110.2 (2)
C11—C12—C13120.3 (6)C14—P1—C1110.7 (2)
C12—C13—C8119.4 (5)C2—P1—C1106.2 (2)
C19—C14—C15120.0 (5)C8—P1—C1107.8 (2)
C19—C14—P1121.2 (4)C32—P2—C20109.7 (2)
C15—C14—P1118.5 (4)C32—P2—C26112.4 (2)
C16—C15—C14119.3 (6)C20—P2—C26107.2 (2)
C15—C16—C17120.5 (6)C32—P2—C1110.1 (2)
C18—C17—C16120.2 (6)C20—P2—C1105.3 (2)
C17—C18—C19120.3 (6)C26—P2—C1111.9 (2)
C18—C19—C14119.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···I1i0.953.023.730 (7)132
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

RG thanks the CBC, Nanyang Technological University, for the instrument facilities.

References

First citationBruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDordevic, N., Ganguly, R., Petkovic, M. & Vidovic, D. (2016). Chem. Commun. 52, 9789–9792.  Google Scholar
First citationFrenking, R. & Tonner, R. (2009). Pure Appl. Chem. 81, 597–614.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPetz, W., Dehnicke, K. & Neumuller, B. Z. (2011). Z. Anorg. Allg. Chem. 637, 1761–1768.  CrossRef CAS Google Scholar
First citationPetz, W., Fahlbusch, M., Gromm, E. & Neumuller, B. Z. (2008). Z. Anorg. Allg. Chem. 634, 682–687.  CrossRef CAS Google Scholar
First citationRamirez, N. B., Desai, B., Hansen, N. & McKelvie, N. (1961). J. Am. Chem. Soc. 83, 3539–3540.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTay, M. Q. Y., Ilic, G., Werner-Zwanziger, U., Lu, Y. P., Ganguly, R., Ricard, L., Frison, G., Carmichael, D. & Vidovic, D. (2016). Organometallics, 35, 439–449.  CrossRef CAS Google Scholar
First citationTay, M. Q. Y., Lu, Y. P., Ganguly, R. & Vidovic, D. (2013). Angew. Chem. Int. Ed. Engl. 52, 3132–3135.  CrossRef CAS PubMed Google Scholar
First citationWalker, J. D. & Poli, R. (1989). Polyhedron, 8, 1293–1297.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds