research communications
H-benzimidazole
and DFT study of 2-(pyren-1-yl)-1aDepartment of Chemistry, College of Science, Sultan Qaboos University, PO Box 36 Al-Khod 123, Muscat, Sultanate of Oman, bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Atakum–Samsun, Turkey, and cDepartment of Chemistry, National Taras Shevchenko University of Kiev, 64/13, Volodymyrska Street, City of Kyiv 01601, Ukraine
*Correspondence e-mail: malinachem88@gmail.com
In the title compound, C23H14N2, (I), the dihedral angle between the mean planes of the pyrene and benzimidazole ring systems is 42.08 (5)°, with a bridging C—C bond length of 1.463 (3) Å. In the crystal, molecules are linked by N—H⋯N hydrogen bonds, forming columns propagating along the b-axis direction. The columns are linked via C—H⋯π interactions, forming slabs parallel to the ab plane. There are no significant π–π interactions present in the The density functional theory (DFT) optimized structure, at the B3LYP/ 6-311G(d,p) level, is compared with the experimentally determined solid-state structure of the title compound.
Keywords: crystal structure; pyrene-1-carbaldehyde; o-phenylenediamine; benzimidazole; N—H⋯N hydrogen bonding; C—H⋯π interactions; DFT.
CCDC reference: 1547858
1. Chemical context
Benzimidazoles, which are analogues of imidazole contained in histidine, are an important class of biologically active compounds (Collman et al., 1973). In addition, they are excellent organic ligands of many metal ions (Sundberg & Martin, 1974). The pyrene unit is one of the most commonly used fluorophores due to its strong luminescence and chemical stability (Aoki et al., 1991; Nishizawa et al., 1999; van der Veen et al., 2000). Another interesting feature of the pyrene unit is the interaction between the pyrene aromatic rings in the crystal packing, which can permit the formation of highly ordered molecular aggregates in the solid state by architecturally controlled self-assembly (Desiraju & Gavezzotti, 1989; Munakata et al., 1994). Pyrene is a commonly used fluorophore due to its unusual fluorescence properties, viz. intense fluorescence signals and vibronic band dependence with the media (Karpovich & Blanchard, 1995), and has been used in fluorescence sensors (Bell & Hext, 2004) and excimer formation (Lodeiro et al., 2006). As a result of these particular properties and because of its chemical stability, it is also employed as a probe for solid-state studies and polymer association (Seixas de Melo et al., 2003).
The title compound was prepared from an equimolar mixuture of 1:1 o-phenylenediamine and pyrene-1-carbaldehyde. Synthesis and characterization of many benzimidazole-ring-containing compounds have been reported (Yan et al., 2009; Hallett et al., 2012; Xia et al., 2014; Dhanalakshmi et al., 2014; Guo et al., 2015; Song et al., 2010), but very few compounds have been structurally characterized. Previously, Zhao et al. (2016) reported on the synthesis of 2-(pyren-1-yl)benzimidazole, used as a fluorescent probe for the detection of iron(III) ions in aqueous solution, but gave no structural details of the compound. The present work is part of an ongoing structural study of pyrene-ring-system derivatives (Faizi & Prisyazhnaya, 2015). The results of the calculations by density functional theory (DFT) on (I), carried out at the B3LYP/6-311G(d,p) level, are compared with the experimentally determined molecular structure in the solid state.
2. Structural commentary
The molecular structure of the title compound, (I), is illustrated in Fig. 1. The compound is nonplanar, the rotation around the bond connecting the two aromatic moieties, which is predominantly σ in character [C16—C17 = 1.463 (3) Å], being described by the torsion angle N1—C17—C16—C1 of −39.49 (10)°. The mean planes of the pyrene (atoms C1–C16; r.m.s. deviation = 0.038 Å) and benzimidazole (N1/N2/C17–C23) ring systems are inclined to one another by 42.08 (5)°, reflecting the significant deviation from overall molecular planarity.
3. Supramolecular features
In the crystal of (I), molecules are assembled via N2—H⋯N1i hydrogen bonds (Table 1) into columns propagating along the b-axis direction (Fig. 2). The columns are linked by C—H⋯π interactions (Table 1), forming slabs parallel to the ab plane (Fig. 3).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.38, last update May 2017; Groom et al., 2016) gave a number of hits for similar compounds, viz. phenyl-2-benzimidazole derivatives (II) (CSD refcode FOBZUS; Li et al., 2005) and (III) (LIYTIW; Bei et al., 2000), and phenanthroimidazole derivatives (IV) (ERODOE; Bu et al., 2003) and (V) (SUZHIE; Krebs et al., 2001). All four organic compounds are nonplanar and have a similar C—C bond length between the aromatic ring systems. In (I), this bond (C16—C17) is 1.463 (3) Å, and the two ring systems are inclined to one another by 42.08 (5)°. These values are close to those reported for compounds (II) (1.474 Å and 40.17°), (III) (1.467 Å and 31.12°) and (V) (1.436 and 30.12°), but the anthracene–phenanthroimidazole compound (IV) has a larger deviation from planarity, with the two aromatic ring systems being almost perpendicular to one another (1.488 Å and 76.54°) due to significant of the anthracene moiety. Two other compounds are worth mentioning, viz. 9-(1H-benzimidazol-2-yl)-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinoline (VI) (TAQHUR; Gonzalez & Unnamatla, 2017) and 2-(pyren-1-yl)-1H-phenanthro[9,10-d]imidazole unknown solvate (VII) (KUFLOO; Subeesh et al., 2015). In (VI), the mean plane of the pyridoquinoline moiety is inclined to the benzimidole ring system by 37.94 (10)° and the bridging C—C bond is 1.467 (3) Å, similar to the situation in (I). In (VII), the mean plane of the pyrene ring system is inclined to the phenanthroimidazole mean plane by 63.37 (6)° and the bridging C—C bond is 1.463 (5) Å. As in (IV), this large dihedral angle is due to steric hinderance.
5. DFT study
The DFT quantum-chemical calculations were performed at the B3LYP/6-311G(d,p) level (Becke, 1993), as implemented in GAUSSIAN09 (Frisch et al., 2009). DFT structure optimization of (I) was performed starting from the X-ray geometry and the values compared with experimental values (see Table 2). From these results we can conclude that basis set 6-311G(d,p) is well suited in its approach to the experimental data.
|
The DFT study of (I) shows that the HOMO and LUMO are localized in the plane extending from the whole pyrene ring to the benzimidazole ring. The electron distribution of the HOMO-1, HOMO, LUMO and the LUMO+1 energy levels are shown in Fig. 4. The molecular orbital of HOMO contains both σ and π character, whereas HOMO-1 is dominated by orbital density. The LUMO is mainly composed of density, while LUMO+1 has both σ and π character and electronic density. The HOMO–LUMO gap was found to be 0.273 a.u. and the frontier molecular orbital energies, EHOMO and ELUMO, were −0.20083 and −0.07230 a.u., respectively.
6. Synthesis and crystallization
Pyrene-1-carbaldehyde (0.2306 g, 1.0 mmol) was added to a 50 ml round-bottomed flask containing 10 ml of CH2Cl2. Then a 10 ml CH2Cl2 solution containing 0.1080 g (1.0 mmol) o-phenylenediamine was added dropwise over a period of 30 min with stirring. The mixture was stirred at room temperature for 48 h. The solvent was then evaporated and the residue purified by aluminium oxide gel-column using CH2Cl2 as the to obtain a pale-yellow powder of (I) (yield 0.2311 g, 72.6%). Colourless prismatic crystals were obtained by slow evaporation of a solution of (I) from methanol.
7. Refinement
Crystal data, data collection and structure . The N-bound H atoms were located in a difference Fourier map and refined with Uiso(H) = 1.2Ueq(N). The C-bound H atoms were included in calculated positions and refined as riding, with C—H = 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1547858
https://doi.org/10.1107/S2056989017010271/su5378sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017010271/su5378Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017010271/su5378Isup3.cml
Data collection: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b) and PLATON (Spek, 2009).
C23H14N2 | Dx = 1.386 Mg m−3 |
Mr = 318.36 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 1528 reflections |
a = 8.7344 (8) Å | θ = 2.4–16.1° |
b = 9.5967 (9) Å | µ = 0.08 mm−1 |
c = 36.410 (3) Å | T = 273 K |
V = 3052.0 (5) Å3 | Prism, colorless |
Z = 8 | 0.65 × 0.43 × 0.32 mm |
F(000) = 1328 |
Bruker APEXII CCD area detector diffractometer | 1951 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.103 |
Graphite monochromator | θmax = 26.0°, θmin = 2.6° |
phi and ω scans | h = −10→10 |
36046 measured reflections | k = −11→11 |
2986 independent reflections | l = −44→44 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.113 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0467P)2 + 1.2809P] where P = (Fo2 + 2Fc2)/3 |
2986 reflections | (Δ/σ)max < 0.001 |
230 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.15929 (18) | 0.66443 (16) | 0.32741 (4) | 0.0190 (4) | |
N2 | 0.21591 (19) | 0.89171 (17) | 0.32393 (5) | 0.0195 (4) | |
C23 | 0.0470 (2) | 0.73209 (19) | 0.30713 (5) | 0.0176 (5) | |
C17 | 0.2581 (2) | 0.7637 (2) | 0.33673 (5) | 0.0190 (5) | |
C16 | 0.4042 (2) | 0.74213 (19) | 0.35556 (5) | 0.0195 (5) | |
C18 | 0.0808 (2) | 0.8748 (2) | 0.30499 (5) | 0.0179 (4) | |
C1 | 0.4229 (2) | 0.6448 (2) | 0.38432 (5) | 0.0193 (5) | |
C12 | 0.5724 (2) | 0.6212 (2) | 0.39850 (5) | 0.0199 (5) | |
C11 | 0.6999 (2) | 0.6952 (2) | 0.38411 (5) | 0.0210 (5) | |
C19 | −0.0099 (2) | 0.9680 (2) | 0.28557 (5) | 0.0214 (5) | |
H19 | 0.012157 | 1.062811 | 0.284937 | 0.026* | |
C20 | −0.1341 (2) | 0.9132 (2) | 0.26728 (5) | 0.0235 (5) | |
H20 | −0.195476 | 0.971887 | 0.253275 | 0.028* | |
C13 | 0.5956 (2) | 0.5241 (2) | 0.42759 (5) | 0.0220 (5) | |
C2 | 0.2978 (2) | 0.5706 (2) | 0.40072 (6) | 0.0235 (5) | |
H2 | 0.198943 | 0.585875 | 0.392152 | 0.028* | |
C8 | 0.7452 (2) | 0.4990 (2) | 0.44151 (5) | 0.0252 (5) | |
C14 | 0.6749 (2) | 0.7950 (2) | 0.35696 (6) | 0.0239 (5) | |
H14 | 0.756769 | 0.847263 | 0.348192 | 0.029* | |
C4 | 0.4691 (2) | 0.4519 (2) | 0.44303 (6) | 0.0253 (5) | |
C15 | 0.5309 (2) | 0.8170 (2) | 0.34299 (6) | 0.0231 (5) | |
H15 | 0.517365 | 0.883532 | 0.324701 | 0.028* | |
C22 | −0.0814 (2) | 0.6796 (2) | 0.28931 (5) | 0.0224 (5) | |
H22 | −0.106657 | 0.585627 | 0.290863 | 0.027* | |
C21 | −0.1703 (2) | 0.7709 (2) | 0.26926 (5) | 0.0247 (5) | |
H21 | −0.255742 | 0.737591 | 0.256826 | 0.030* | |
C10 | 0.8497 (2) | 0.6653 (2) | 0.39798 (6) | 0.0273 (5) | |
H10 | 0.933899 | 0.711258 | 0.388120 | 0.033* | |
C9 | 0.8707 (2) | 0.5716 (2) | 0.42512 (6) | 0.0292 (5) | |
H9 | 0.969483 | 0.553670 | 0.433385 | 0.035* | |
C3 | 0.3207 (2) | 0.4788 (2) | 0.42841 (6) | 0.0271 (5) | |
H3 | 0.236939 | 0.431824 | 0.438185 | 0.033* | |
C7 | 0.7635 (3) | 0.4060 (2) | 0.47055 (6) | 0.0311 (6) | |
H7 | 0.860961 | 0.389193 | 0.479795 | 0.037* | |
C5 | 0.4941 (3) | 0.3609 (2) | 0.47218 (6) | 0.0318 (6) | |
H5 | 0.411550 | 0.314383 | 0.482643 | 0.038* | |
C6 | 0.6397 (3) | 0.3386 (2) | 0.48582 (6) | 0.0357 (6) | |
H6 | 0.654109 | 0.277746 | 0.505401 | 0.043* | |
H1A | 0.271 (2) | 0.975 (2) | 0.3280 (6) | 0.033 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0191 (9) | 0.0153 (9) | 0.0225 (9) | 0.0003 (7) | −0.0016 (8) | 0.0003 (8) |
N2 | 0.0203 (10) | 0.0129 (9) | 0.0253 (9) | −0.0010 (8) | −0.0014 (8) | 0.0010 (7) |
C23 | 0.0207 (11) | 0.0152 (10) | 0.0170 (10) | 0.0012 (8) | 0.0014 (9) | 0.0013 (8) |
C17 | 0.0198 (11) | 0.0168 (11) | 0.0205 (10) | 0.0007 (9) | 0.0039 (10) | 0.0006 (8) |
C16 | 0.0200 (11) | 0.0158 (10) | 0.0227 (11) | 0.0009 (9) | 0.0000 (10) | −0.0016 (8) |
C18 | 0.0177 (11) | 0.0180 (10) | 0.0181 (10) | 0.0013 (8) | 0.0016 (9) | −0.0006 (8) |
C1 | 0.0201 (11) | 0.0167 (11) | 0.0210 (11) | 0.0009 (9) | 0.0014 (9) | −0.0029 (9) |
C12 | 0.0208 (11) | 0.0187 (11) | 0.0202 (10) | 0.0009 (9) | 0.0008 (9) | −0.0029 (9) |
C11 | 0.0201 (11) | 0.0205 (11) | 0.0224 (11) | 0.0009 (9) | 0.0002 (9) | −0.0035 (9) |
C19 | 0.0258 (12) | 0.0151 (10) | 0.0234 (11) | 0.0019 (9) | 0.0021 (10) | 0.0015 (9) |
C20 | 0.0254 (12) | 0.0232 (12) | 0.0221 (11) | 0.0076 (9) | −0.0011 (10) | 0.0011 (9) |
C13 | 0.0228 (12) | 0.0220 (11) | 0.0213 (11) | 0.0038 (9) | −0.0002 (10) | −0.0012 (9) |
C2 | 0.0200 (12) | 0.0235 (11) | 0.0270 (12) | 0.0024 (9) | −0.0002 (10) | 0.0027 (10) |
C8 | 0.0246 (12) | 0.0265 (12) | 0.0246 (11) | 0.0052 (9) | −0.0009 (10) | 0.0005 (9) |
C14 | 0.0212 (12) | 0.0218 (11) | 0.0288 (12) | −0.0035 (9) | 0.0036 (10) | 0.0010 (9) |
C4 | 0.0260 (12) | 0.0237 (12) | 0.0263 (12) | 0.0027 (10) | 0.0006 (10) | 0.0027 (9) |
C15 | 0.0260 (12) | 0.0174 (11) | 0.0259 (11) | 0.0005 (9) | −0.0005 (10) | 0.0036 (9) |
C22 | 0.0253 (12) | 0.0154 (11) | 0.0267 (11) | −0.0014 (9) | −0.0005 (10) | −0.0022 (9) |
C21 | 0.0240 (12) | 0.0246 (12) | 0.0256 (12) | 0.0009 (9) | −0.0043 (10) | −0.0032 (9) |
C10 | 0.0208 (12) | 0.0316 (13) | 0.0296 (12) | −0.0013 (10) | 0.0027 (10) | 0.0018 (10) |
C9 | 0.0183 (12) | 0.0361 (14) | 0.0333 (13) | 0.0056 (10) | −0.0041 (10) | −0.0008 (11) |
C3 | 0.0209 (12) | 0.0287 (12) | 0.0317 (12) | −0.0023 (10) | 0.0046 (10) | 0.0075 (10) |
C7 | 0.0259 (13) | 0.0351 (13) | 0.0325 (12) | 0.0066 (10) | −0.0054 (11) | 0.0050 (10) |
C5 | 0.0289 (13) | 0.0341 (14) | 0.0326 (13) | 0.0015 (11) | 0.0033 (11) | 0.0102 (10) |
C6 | 0.0367 (14) | 0.0382 (14) | 0.0322 (13) | 0.0097 (11) | −0.0022 (12) | 0.0143 (11) |
N1—C17 | 1.330 (2) | C13—C8 | 1.423 (3) |
N1—C23 | 1.389 (2) | C2—C3 | 1.354 (3) |
N2—C17 | 1.364 (2) | C2—H2 | 0.9300 |
N2—C18 | 1.376 (2) | C8—C7 | 1.392 (3) |
N2—H1A | 0.94 (2) | C8—C9 | 1.429 (3) |
C23—C22 | 1.390 (3) | C14—C15 | 1.373 (3) |
C23—C18 | 1.403 (3) | C14—H14 | 0.9300 |
C17—C16 | 1.463 (3) | C4—C5 | 1.391 (3) |
C16—C15 | 1.397 (3) | C4—C3 | 1.425 (3) |
C16—C1 | 1.412 (3) | C15—H15 | 0.9300 |
C18—C19 | 1.389 (3) | C22—C21 | 1.380 (3) |
C1—C12 | 1.422 (3) | C22—H22 | 0.9300 |
C1—C2 | 1.434 (3) | C21—H21 | 0.9300 |
C12—C11 | 1.421 (3) | C10—C9 | 1.349 (3) |
C12—C13 | 1.426 (3) | C10—H10 | 0.9300 |
C11—C14 | 1.393 (3) | C9—H9 | 0.9300 |
C11—C10 | 1.431 (3) | C3—H3 | 0.9300 |
C19—C20 | 1.377 (3) | C7—C6 | 1.378 (3) |
C19—H19 | 0.9300 | C7—H7 | 0.9300 |
C20—C21 | 1.403 (3) | C5—C6 | 1.381 (3) |
C20—H20 | 0.9300 | C5—H5 | 0.9300 |
C13—C4 | 1.420 (3) | C6—H6 | 0.9300 |
C17—N1—C23 | 105.01 (16) | C7—C8—C13 | 118.9 (2) |
C17—N2—C18 | 107.25 (16) | C7—C8—C9 | 122.8 (2) |
C17—N2—H1A | 124.7 (13) | C13—C8—C9 | 118.26 (18) |
C18—N2—H1A | 128.1 (13) | C15—C14—C11 | 120.81 (19) |
N1—C23—C22 | 130.42 (18) | C15—C14—H14 | 119.6 |
N1—C23—C18 | 109.72 (17) | C11—C14—H14 | 119.6 |
C22—C23—C18 | 119.84 (18) | C5—C4—C13 | 119.1 (2) |
N1—C17—N2 | 112.48 (17) | C5—C4—C3 | 122.8 (2) |
N1—C17—C16 | 125.73 (17) | C13—C4—C3 | 118.12 (18) |
N2—C17—C16 | 121.57 (17) | C14—C15—C16 | 121.67 (19) |
C15—C16—C1 | 119.46 (18) | C14—C15—H15 | 119.2 |
C15—C16—C17 | 117.66 (17) | C16—C15—H15 | 119.2 |
C1—C16—C17 | 122.80 (18) | C21—C22—C23 | 118.06 (19) |
N2—C18—C19 | 131.90 (18) | C21—C22—H22 | 121.0 |
N2—C18—C23 | 105.54 (16) | C23—C22—H22 | 121.0 |
C19—C18—C23 | 122.51 (18) | C22—C21—C20 | 121.24 (19) |
C16—C1—C12 | 118.71 (18) | C22—C21—H21 | 119.4 |
C16—C1—C2 | 123.31 (19) | C20—C21—H21 | 119.4 |
C12—C1—C2 | 117.96 (18) | C9—C10—C11 | 121.1 (2) |
C11—C12—C1 | 120.40 (18) | C9—C10—H10 | 119.4 |
C11—C12—C13 | 119.29 (18) | C11—C10—H10 | 119.4 |
C1—C12—C13 | 120.30 (18) | C10—C9—C8 | 121.8 (2) |
C14—C11—C12 | 118.83 (18) | C10—C9—H9 | 119.1 |
C14—C11—C10 | 122.10 (19) | C8—C9—H9 | 119.1 |
C12—C11—C10 | 119.07 (18) | C2—C3—C4 | 122.0 (2) |
C20—C19—C18 | 116.68 (19) | C2—C3—H3 | 119.0 |
C20—C19—H19 | 121.7 | C4—C3—H3 | 119.0 |
C18—C19—H19 | 121.7 | C6—C7—C8 | 121.2 (2) |
C19—C20—C21 | 121.62 (19) | C6—C7—H7 | 119.4 |
C19—C20—H20 | 119.2 | C8—C7—H7 | 119.4 |
C21—C20—H20 | 119.2 | C6—C5—C4 | 121.1 (2) |
C4—C13—C8 | 119.43 (18) | C6—C5—H5 | 119.5 |
C4—C13—C12 | 120.17 (18) | C4—C5—H5 | 119.5 |
C8—C13—C12 | 120.40 (19) | C7—C6—C5 | 120.3 (2) |
C3—C2—C1 | 121.41 (19) | C7—C6—H6 | 119.9 |
C3—C2—H2 | 119.3 | C5—C6—H6 | 119.9 |
C1—C2—H2 | 119.3 |
Cg1, Cg6 and Cg7 are the centroids of rings N1/N2/C17/C18/C23, C18-C23 and N1/N2/C17-C23. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1A···N1i | 0.94 (2) | 1.92 (2) | 2.838 (2) | 164 (2) |
C14—H14···Cg6ii | 0.93 | 2.83 | 3.537 (2) | 134 |
C21—H21···Cg1iii | 0.93 | 2.95 | 3.605 (2) | 129 |
C21—H21···Cg7iii | 0.93 | 2.84 | 3.618 (2) | 142 |
Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) x+1, y, z; (iii) x−1/2, y, −z+1/2. |
Bonds | X-ray | B3LYP/6–311G(d,p) |
C17—N2 | 1.364 (2) | 1.365 |
C18—N2 | 1.376 (2) | 1.375 |
C17—N1 | 1.330 (2) | 1.329 |
C23—N1 | 1.389 (2) | 1.389 |
C17—C16 | 1.463 (3) | 1.462 |
C16—C17—N2 | 121.57 (17) | 121.51 |
C16—C17—N1 | 125.73 (17) | 125.82 |
N1—C17—N2 | 112.48 (17) | 112.44 |
Acknowledgements
The authors are grateful to the Ondokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, Samsun, Turkey, for X-ray data collection and the Department of Chemistry, National Taras Shevchenko University of Kiev, Kyiv, Ukraine.
References
Aoki, I., Kawabata, H., Nakashima, K. & Shinkai, S. (1991). J. Chem. Soc. Chem. Commun. pp. 1771–1773. CrossRef Web of Science Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Bei, F., Jian, F., Yang, X., Lu, L., Wang, X., Shanmuga Sundara Raj, S. & Fun, H.-K. (2000). Acta Cryst. C56, 718–719. CSD CrossRef CAS IUCr Journals Google Scholar
Bell, T. W. & Hext, N. M. (2004). Chem. Soc. Rev. 33, 589–598. PubMed CAS Google Scholar
Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bu, L., Sawada, T., Shosenji, H., Yoshida, K. & Mataka, S. (2003). Dyes Pigm. 57, 181–183. CSD CrossRef CAS Google Scholar
Collman, J. P., Gagne, R. R., Halbert, T. R., Marchon, J. C. & Reed, C. A. (1973). J. Am. Chem. Soc. 95, 7868–7870. CrossRef CAS PubMed Google Scholar
Desiraju, G. R. & Gavezzotti, A. (1989). J. Chem. Soc. Chem. Commun. pp. 621–623. CrossRef Web of Science Google Scholar
Dhanalakshmi, P., Thimmarayaperumal, S. & Shanmugam, S. (2014). RSC Adv. 4, 12028–12036. CrossRef CAS Google Scholar
Faizi, M. S. H. & Prisyazhnaya, E. V. (2015). Acta Cryst. E71, 261–263. Web of Science CSD CrossRef IUCr Journals Google Scholar
Frisch, M. J. et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Gonzalez, G. G. & Unnamatla, M. V. B. (2017). IUCrData, 2, x170445. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Guo, Z., Yuan, J., Cui, Y., Chang, F., Sun, W. & Liu, M. (2015). Chem. Eur. J. 11, 4155–4162. CrossRef Google Scholar
Hallett, A. J., White, N., Wu, W., Cui, X., Horton, P. N., Coles, S. J., Zhao, J. & Pope, S. J. A. (2012). Chem. Commun. 48, 10838–10840. CSD CrossRef CAS Google Scholar
Karpovich, D. S. & Blanchard, G. J. (1995). J. Phys. Chem. 99, 3951–3958. CrossRef CAS Web of Science Google Scholar
Krebs, F. C., Lindvold, L. R. & Jorgensen, M. (2001). Tetrahedron Lett. 42, 6753–6755. CSD CrossRef CAS Google Scholar
Li, X.-M., Du, L.-P., Li, Y. & Zhang, S.-S. (2005). Acta Cryst. E61, o1902–o1903. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lodeiro, C., Lima, J. C., Parola, A. J., Seixas de Melo, J. S., Capelo, J. L., Covelo, B., Tamayo, A. & Pedras, B. (2006). Sens. Actuators B Chem. 115, 276–286. Web of Science CrossRef CAS Google Scholar
Munakata, M., Dai, J., Maekawa, M., Kuroda-Sowa, T. & Fukui, J. (1994). J. Chem. Soc. Chem. Commun. pp. 2331–2332. CSD CrossRef Web of Science Google Scholar
Nishizawa, S., Kato, Y. & Teramae, N. (1999). J. Am. Chem. Soc. 121, 9463–9464. Web of Science CrossRef CAS Google Scholar
Seixas de Melo, J., Costa, T., Miguel, M. da G., Lindman, B. & Schillén, K. (2003). J. Phys. Chem. B, 107, 12605–12621. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Song, C., Sun, Z., Xia, L., Suo, Y. & You, J. (2010). J. Liq. Chromatogr. Relat. Technol. 33, 859–874. CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Subeesh, M. S., Shanmugasundaram, K., Sunesh, C. D., Won, Y. S. & Choe, A. (2015). J. Mater. Chem. C, 3, 4683. CSD CrossRef Google Scholar
Sundberg, R. J. & Martin, R. B. (1974). Chem. Rev. 74, 471–517. CrossRef CAS Web of Science Google Scholar
Veen, N. J. van der, Flink, S., Deij, M. A., Egberink, R. J. M., van Veggel, F. C. J. M. & Reinhoudt, D. N. (2000). J. Am. Chem. Soc. 122, 6112–6113. Google Scholar
Xia, L., Wu, C., Suna, Z. & You, J. (2014). Anal. Methods, 6, 1135–1141. CrossRef CAS Google Scholar
Yan, Y.-N., Lin, D.-Y., Pan, W.-L., Li, X.-L., Wan, Y.-Q., Mai, Y.-L. & Song, H.-C. (2009). Spectrochim. Acta Part A, 74, 233–242. CSD CrossRef Google Scholar
Zhao, M., Deng, Z., Tang, J., Zhou, X., Chen, Z., Li, X., Yang, L. & Ma, L.-J. (2016). Analyst, 141, 2308–2312. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.