research communications
E)-N′-(3-fluoro-2-hydroxybenzylidene)isonicotinohydrazide
of (aDepartment of Chemistry, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani 12121, Thailand, bMaterials and Textile Technology, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani 12121, Thailand, and cDepartment of Chemistry and Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Muang, Phitsanulok 65000, Thailand
*Correspondence e-mail: filipkielar@nu.ac.th
In the title compound, C13H10FN3O2, the molecule has an E conformation with respect to the C=N bond of the hydrazone bridge. The dihedral angle between the isonicotinoyl and fluorophenol moieties is 4.03 (4)°, and an intramolecular O—H⋯N hydrogen bond generates an S(6) ring motif. In the crystal, molecules are linked by N—H⋯N and C—H⋯N hydrogen bonds, forming chains propagating along the a-axis direction. The chains are linked by C—H⋯O hydrogen bonds, resulting in the formation of layers lying parallel to the ab plane. The also features π–π interactions [centroid-to-centroid distance = 3.6887 (8) Å].
Keywords: crystal structure; iron chelator; isonicotinohydrazide; hydrogen bonding.
CCDC reference: 1560196
1. Chemical context
Hydrazone-based chelators of metal ions are interesting compounds that receive a significant amount of interest (Bendová et al., 2010; Jansová et al., 2014; Hrušková et al., 2016). We have recently published the structures of two derivatives of the prototypical chelator from this class, salicyl aldehyde isonicotinoyl hydrazide (SIH), which were synthesized as potential sensors for metal ions (Chainok et al., 2016). The structures reported have fluorine and methyl substitution in position 5 on the benzene ring. Herein, we report the of a further analogue in this series bearing a fluorine substituent in position 3 of the benzene ring, which was synthesized in order to investigate the effect of the distance between the reporting fluorine atom and the metal chelating unit.
2. Structural commentary
The molecular structure of the title compound, with atom labelling, is presented in Fig. 1. The molecule has an E conformation with respect to the hydrazone bridge (C7=N3). The C6—N2 and C7—N3 bond lengths differ by 0.08 Å hence; these two bonds are formally double and single bonds, respectively. The molecule deviates slightly from planarity with an r.m.s deviation for the fitted non-hydrogen atoms of 0.062 Å. There is an intramolecular O2—H2O⋯N3 hydrogen bond with an S(6) ring motif present in the pyridine carboxamide moiety, and the pyridine ring (N1/C1–C5) is approximately coplanar with the amide group (C6(=O1)N2) [dihedral angle = 8.25 (6)°]. The isonicotinoyl moiety (N1/C1–C6/O1/N2) is inclined to the fluorophenol moiety (C8-C13/O2/F1) by 4.03 (4)°.
3. Supramolecular features
In the crystal, molecules are linked by bifurcated-acceptor N2—H2N⋯N1i and C4—H4⋯N1i hydrogen bonds (Table 1), leading to the formation of zigzag chains lying parallel to the b-axis direction, as shown in Fig. 2. Adjacent chains are further linked via C5—H5⋯O1ii hydrogen bonds, forming layers parallel to the ab plane, as shown in Fig. 3. Within the sheets, there are π–π stacking interactions involving inversion-related molecules [Cg1⋯Cg2i = 3.6887 (8) Å; Cg1 and Cg2 are the centroids of the pyridine (N1/C1–C5) and phenyl (C8–C13) rings, respectively; symmetry code: (i) −x + 1, −y + 1, −z + 1].
4. Database survey
A search of the Cambridge Structural Database (Version 5.38, latest update May 2017; Groom et al., 2016) for compounds with the (E)-N-(2-hydroxybenzylidene)isonicotinohydrazide skeleton revealed 86 hits. They include the isotypic crystal structures with bromide (PORYEC; Xiong & Li, 2014), methoxy (CANCOK, Yu et al., 2005; CANCOK01, Yang, 2007; CANCOK02, Xu, 2013), and hydroxy (WAFVEG; Tecer et al., 2010) groups substituted at the 3-position of the phenyl ring.
5. Synthesis and crystallization
Isonicotinic acid hydrazide (301 mg, 2.19 mmol) and 3-fluorosalicylaldehyde (338 mg, 2.69 mmol) were suspended in a 1:1 mixture of water and ethanol (6 ml). The reaction mixture was stirred at 363 K for 24 h and formation of a precipitate was observed. The reaction mixture was allowed to cool to room temperature and then filtered. The isolated solid was washed with water to give the product as a white solid (510 mg, 1.97 mmol, 90%). Colourless rod-like crystals, suitable for X-ray 1H NMR (400 MHz, DMSO-d6) d 6.94 (1H, m, CH-Ph), 7.32 (1H, dd, J = 8.8, J = 10.4 CH-Ph), 7.44 (1H, d, J = 8.4, CH-Ph), 7.85 (2H, d, J = 5.6, CH-Py), 8.70 (1H, s, CH=N), 8.81 (2H, d, J = 5.6, CH-Py), 11.40 (1H, s, NH), 12.39 (1H, s, OH). HR–MS (ES+) C13H11FN3O2 requires 260.0835 [M + H]+; found 260.0830.
were grown by slow evaporation of a solution in methanol of the title compound.6. Refinement
Crystal data, data collection and structure . H atoms bonded to C, N, and O atoms were placed at calculated positions and refined using a riding-model approximation: N—H = 0.86 Å, O—H = 0.82 Å and C—H = 0.93 Å with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N,C) for other H atoms.
details are summarized in Table 2Supporting information
CCDC reference: 1560196
https://doi.org/10.1107/S2056989017009926/su5379sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017009926/su5379Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017009926/su5379Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989017009926/su5379Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C13H10FN3O2 | F(000) = 536 |
Mr = 259.24 | Dx = 1.429 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.8555 (3) Å | Cell parameters from 5896 reflections |
b = 10.2748 (5) Å | θ = 3.3–26.2° |
c = 14.9390 (7) Å | µ = 0.11 mm−1 |
β = 92.397 (2)° | T = 296 K |
V = 1204.73 (9) Å3 | Rod, light colourless |
Z = 4 | 0.28 × 0.14 × 0.14 mm |
Bruker D8 QUEST CMOS diffractometer | 2475 independent reflections |
Radiation source: microfocus sealed x-ray tube, Incoatec Iµus | 1769 reflections with I > 2σ(I) |
Graphite Double Bounce Multilayer Mirror monochromator | Rint = 0.045 |
Detector resolution: 10.5 pixels mm-1 | θmax = 26.4°, θmin = 3.3° |
φ and ω scans | h = −9→9 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −12→12 |
Tmin = 0.700, Tmax = 0.745 | l = −18→18 |
22872 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0468P)2 + 0.1698P] where P = (Fo2 + 2Fc2)/3 |
2475 reflections | (Δ/σ)max < 0.001 |
173 parameters | Δρmax = 0.16 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
F1 | 0.04982 (16) | 0.68426 (11) | 0.21940 (6) | 0.0860 (4) | |
O1 | 0.42340 (15) | 0.25717 (10) | 0.46852 (6) | 0.0554 (3) | |
O2 | 0.19539 (16) | 0.52442 (11) | 0.33911 (7) | 0.0600 (3) | |
H2O | 0.2346 | 0.4824 | 0.3818 | 0.090* | |
N1 | 0.63170 (16) | 0.03844 (11) | 0.75111 (8) | 0.0441 (3) | |
N2 | 0.34254 (15) | 0.40224 (11) | 0.57234 (7) | 0.0403 (3) | |
H2N | 0.3409 | 0.4242 | 0.6279 | 0.048* | |
N3 | 0.27004 (15) | 0.47948 (11) | 0.50651 (8) | 0.0399 (3) | |
C1 | 0.6525 (2) | 0.01892 (14) | 0.66412 (10) | 0.0468 (4) | |
H1 | 0.7160 | −0.0527 | 0.6473 | 0.056* | |
C2 | 0.58528 (18) | 0.09868 (13) | 0.59763 (9) | 0.0412 (3) | |
H2B | 0.6029 | 0.0803 | 0.5378 | 0.049* | |
C3 | 0.49156 (17) | 0.20612 (12) | 0.62066 (8) | 0.0351 (3) | |
C4 | 0.4691 (2) | 0.22719 (14) | 0.71071 (9) | 0.0446 (4) | |
H4 | 0.4061 | 0.2981 | 0.7293 | 0.054* | |
C5 | 0.5408 (2) | 0.14213 (14) | 0.77255 (9) | 0.0463 (4) | |
H5 | 0.5248 | 0.1581 | 0.8329 | 0.056* | |
C6 | 0.41696 (18) | 0.28991 (13) | 0.54677 (9) | 0.0386 (3) | |
C7 | 0.18964 (18) | 0.58148 (13) | 0.52892 (9) | 0.0388 (3) | |
H7 | 0.1809 | 0.6025 | 0.5891 | 0.047* | |
C8 | 0.11173 (17) | 0.66478 (13) | 0.46000 (9) | 0.0369 (3) | |
C9 | 0.11849 (19) | 0.63208 (13) | 0.36907 (9) | 0.0415 (3) | |
C10 | 0.0421 (2) | 0.71659 (16) | 0.30725 (10) | 0.0524 (4) | |
C11 | −0.0379 (2) | 0.82835 (16) | 0.33089 (11) | 0.0575 (5) | |
H11 | −0.0862 | 0.8831 | 0.2872 | 0.069* | |
C12 | −0.0460 (2) | 0.85917 (15) | 0.42025 (11) | 0.0541 (4) | |
H12 | −0.1014 | 0.9346 | 0.4374 | 0.065* | |
C13 | 0.02768 (19) | 0.77830 (14) | 0.48399 (10) | 0.0468 (4) | |
H13 | 0.0214 | 0.7996 | 0.5443 | 0.056* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.1259 (10) | 0.0961 (8) | 0.0341 (5) | 0.0010 (7) | −0.0206 (5) | 0.0070 (5) |
O1 | 0.0834 (8) | 0.0553 (7) | 0.0275 (5) | 0.0052 (6) | 0.0002 (5) | 0.0019 (5) |
O2 | 0.0887 (9) | 0.0545 (7) | 0.0356 (6) | 0.0095 (6) | −0.0102 (6) | −0.0071 (5) |
N1 | 0.0577 (8) | 0.0394 (7) | 0.0347 (6) | 0.0017 (6) | −0.0025 (5) | 0.0029 (5) |
N2 | 0.0548 (7) | 0.0375 (6) | 0.0279 (6) | −0.0019 (5) | −0.0078 (5) | 0.0044 (5) |
N3 | 0.0493 (7) | 0.0360 (6) | 0.0336 (6) | −0.0058 (5) | −0.0088 (5) | 0.0069 (5) |
C1 | 0.0592 (10) | 0.0391 (8) | 0.0422 (8) | 0.0079 (7) | 0.0015 (7) | −0.0014 (6) |
C2 | 0.0530 (9) | 0.0413 (8) | 0.0293 (7) | −0.0019 (7) | 0.0027 (6) | −0.0033 (6) |
C3 | 0.0411 (7) | 0.0334 (7) | 0.0304 (7) | −0.0078 (6) | −0.0014 (5) | 0.0006 (5) |
C4 | 0.0631 (10) | 0.0387 (8) | 0.0320 (7) | 0.0094 (7) | 0.0016 (6) | −0.0010 (6) |
C5 | 0.0682 (10) | 0.0433 (8) | 0.0273 (7) | 0.0049 (7) | 0.0003 (7) | −0.0001 (6) |
C6 | 0.0477 (8) | 0.0391 (8) | 0.0287 (7) | −0.0074 (6) | −0.0012 (6) | 0.0042 (6) |
C7 | 0.0472 (8) | 0.0397 (7) | 0.0291 (7) | −0.0090 (7) | −0.0049 (6) | 0.0027 (6) |
C8 | 0.0391 (7) | 0.0361 (7) | 0.0348 (7) | −0.0090 (6) | −0.0046 (6) | 0.0042 (6) |
C9 | 0.0498 (9) | 0.0391 (7) | 0.0347 (7) | −0.0084 (7) | −0.0069 (6) | 0.0019 (6) |
C10 | 0.0639 (10) | 0.0603 (10) | 0.0318 (7) | −0.0106 (8) | −0.0127 (7) | 0.0084 (7) |
C11 | 0.0568 (10) | 0.0530 (10) | 0.0610 (11) | −0.0064 (8) | −0.0178 (8) | 0.0228 (8) |
C12 | 0.0529 (9) | 0.0446 (9) | 0.0641 (11) | 0.0022 (7) | −0.0057 (8) | 0.0082 (8) |
C13 | 0.0511 (9) | 0.0451 (8) | 0.0440 (8) | −0.0039 (7) | −0.0012 (7) | 0.0001 (7) |
F1—C10 | 1.3576 (18) | C3—C6 | 1.4997 (18) |
O1—C6 | 1.2195 (16) | C4—H4 | 0.9300 |
O2—H2O | 0.8200 | C4—C5 | 1.3753 (19) |
O2—C9 | 1.3459 (18) | C5—H5 | 0.9300 |
N1—C1 | 1.3317 (19) | C7—H7 | 0.9300 |
N1—C5 | 1.3290 (18) | C7—C8 | 1.4541 (19) |
N2—H2N | 0.8600 | C8—C9 | 1.4026 (19) |
N2—N3 | 1.3692 (15) | C8—C13 | 1.394 (2) |
N2—C6 | 1.3559 (18) | C9—C10 | 1.386 (2) |
N3—C7 | 1.2756 (18) | C10—C11 | 1.362 (2) |
C1—H1 | 0.9300 | C11—H11 | 0.9300 |
C1—C2 | 1.376 (2) | C11—C12 | 1.376 (2) |
C2—H2B | 0.9300 | C12—H12 | 0.9300 |
C2—C3 | 1.3784 (19) | C12—C13 | 1.373 (2) |
C3—C4 | 1.3813 (18) | C13—H13 | 0.9300 |
C9—O2—H2O | 109.5 | N2—C6—C3 | 116.17 (11) |
C5—N1—C1 | 116.42 (12) | N3—C7—H7 | 120.1 |
N3—N2—H2N | 121.2 | N3—C7—C8 | 119.74 (12) |
C6—N2—H2N | 121.2 | C8—C7—H7 | 120.1 |
C6—N2—N3 | 117.53 (11) | C9—C8—C7 | 120.86 (13) |
C7—N3—N2 | 118.90 (12) | C13—C8—C7 | 120.01 (12) |
N1—C1—H1 | 118.1 | C13—C8—C9 | 119.13 (13) |
N1—C1—C2 | 123.77 (13) | O2—C9—C8 | 123.69 (12) |
C2—C1—H1 | 118.1 | O2—C9—C10 | 118.77 (13) |
C1—C2—H2B | 120.3 | C10—C9—C8 | 117.54 (14) |
C1—C2—C3 | 119.32 (12) | F1—C10—C9 | 117.07 (15) |
C3—C2—H2B | 120.3 | F1—C10—C11 | 119.78 (14) |
C2—C3—C4 | 117.38 (12) | C11—C10—C9 | 123.15 (14) |
C2—C3—C6 | 118.19 (12) | C10—C11—H11 | 120.5 |
C4—C3—C6 | 124.40 (13) | C10—C11—C12 | 119.08 (14) |
C3—C4—H4 | 120.4 | C12—C11—H11 | 120.5 |
C5—C4—C3 | 119.28 (13) | C11—C12—H12 | 120.1 |
C5—C4—H4 | 120.4 | C13—C12—C11 | 119.86 (15) |
N1—C5—C4 | 123.83 (13) | C13—C12—H12 | 120.1 |
N1—C5—H5 | 118.1 | C8—C13—H13 | 119.4 |
C4—C5—H5 | 118.1 | C12—C13—C8 | 121.22 (14) |
O1—C6—N2 | 122.72 (12) | C12—C13—H13 | 119.4 |
O1—C6—C3 | 121.11 (13) | ||
F1—C10—C11—C12 | 179.40 (15) | C4—C3—C6—O1 | −170.67 (14) |
O2—C9—C10—F1 | 0.2 (2) | C4—C3—C6—N2 | 9.1 (2) |
O2—C9—C10—C11 | −179.55 (14) | C5—N1—C1—C2 | −0.3 (2) |
N1—C1—C2—C3 | 0.5 (2) | C6—N2—N3—C7 | 175.56 (12) |
N2—N3—C7—C8 | −179.99 (11) | C6—C3—C4—C5 | 178.64 (13) |
N3—N2—C6—O1 | 1.1 (2) | C7—C8—C9—O2 | −0.1 (2) |
N3—N2—C6—C3 | −178.64 (11) | C7—C8—C9—C10 | −179.69 (13) |
N3—C7—C8—C9 | 2.3 (2) | C7—C8—C13—C12 | 179.56 (13) |
N3—C7—C8—C13 | −178.24 (12) | C8—C9—C10—F1 | 179.79 (13) |
C1—N1—C5—C4 | 0.2 (2) | C8—C9—C10—C11 | 0.1 (2) |
C1—C2—C3—C4 | −0.5 (2) | C9—C8—C13—C12 | −1.0 (2) |
C1—C2—C3—C6 | −178.83 (13) | C9—C10—C11—C12 | −0.9 (3) |
C2—C3—C4—C5 | 0.4 (2) | C10—C11—C12—C13 | 0.8 (2) |
C2—C3—C6—O1 | 7.5 (2) | C11—C12—C13—C8 | 0.1 (2) |
C2—C3—C6—N2 | −172.75 (12) | C13—C8—C9—O2 | −179.55 (13) |
C3—C4—C5—N1 | −0.3 (2) | C13—C8—C9—C10 | 0.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2O···N3 | 0.82 | 1.87 | 2.5862 (14) | 145 |
N2—H2N···N1i | 0.86 | 2.16 | 2.9851 (16) | 161 |
C4—H4···N1i | 0.93 | 2.51 | 3.3492 (18) | 151 |
C5—H5···O1ii | 0.93 | 2.37 | 3.2738 (17) | 163 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x, −y+1/2, z+1/2. |
Acknowledgements
The authors thank the Faculty of Science and Technology, Thammasat University, for funds to purchase the X-ray diffractometer.
Funding information
This work was supported by a National Research Council of Thailand grant provided by the Naresuan University Division of Research Administration (R2559B060).
References
Bendová, P., Macková, E., Hašková, P., Vávrová, A., Jirkovský, E., Štěrba, M., Popelová, O., Kalinowski, D. S., Kovaříková, P., Vávrová, K., Richardson, D. R. & Šimůnek, T. (2010). Chem. Res. Toxicol. 23, 1105–1114. Web of Science PubMed Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chainok, K., Makmuang, S. & Kielar, F. (2016). Acta Cryst. E72, 980–983. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hrušková, K., Potůčková, E., Hergeselová, T., Liptáková, L., Hašková, P., Mingas, P., Kovaříková, P., Šimůnek, T. & Vávrová, K. (2016). Eur. J. Med. Chem. 120, 97–110. Web of Science PubMed Google Scholar
Jansová, H., Macháček, M., Wang, Q., Hašková, P., Jirkovská, A., Potůčková, E., Kielar, F., Franz, K. J. & Šimůnek, T. (2014). Free Radical Biol. Med. 74, 210–221. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tecer, E., Dege, N., Zülfikaroğlu, A., Şenyüz, N. & Batı, H. (2010). Acta Cryst. E66, o3369–o3370. Web of Science CSD CrossRef IUCr Journals Google Scholar
Xiong, Y. & Li, W.-H. (2014). J. Coord. Chem. 67, 3279–3287. Web of Science CSD CrossRef CAS Google Scholar
Xu, J. (2013). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 43, 1329–1333. Web of Science CSD CrossRef CAS Google Scholar
Yang, D.-S. (2007). J. Chem. Crystallogr. 37, 343–348. Web of Science CSD CrossRef CAS Google Scholar
Yu, M., Chen, X. & Jing, Z.-L. (2005). Acta Cryst. E61, o1345–o1346. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.