research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structure of Equilenin at 100 K: an estrone-related steroid

CROSSMARK_Color_square_no_text.svg

aWolfson Centre for Materials Processing, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, England, and bDepartment of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland
*Correspondence e-mail: Chris.Frampton@Brunel.ac.uk

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 9 July 2017; accepted 16 July 2017; online 21 July 2017)

The structure of the estrone-related steroid, Equilenin, C18H18O2 (systematic name 3-hy­droxy-13-methyl-11,12,13,14,15,16-hexa­hydro­cyclo­penta­[a]phen­anthren-17-one), has been determined at 100 K. The crystals are ortho­rhom­bic, P212121, and the absolute structure of the mol­ecule in the crystal has been determined by resonant scattering [Flack parameter = −0.05 (4)]. The C atoms of the A and B rings are almost coplanar, with an r.m.s. deviation from planarity of 0.0104 Å. The C ring has a sofa conformation, while the D ring has an envelope conformation with the methine C atom as the flap. The keto O atom and the methyl group are translated 0.78 and 0.79 Å, respectively, from the equivalent positions on 17β-estrone. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming chains parallel to the c-axis direction.

1. Chemical context

The title compound, Equilenin 1, is one member of a series of three estrogenic steroids, the other members being Equilin 2 and 17β-estrone 3, that are components of the hormone replacement therapy medication, `Premarin', a mixture of natural estrogens isolated from the urine of pregnant equine mares. It can be seen from the scheme that on going from 17β-estrone 3 through to the title compound Equilenin 1, there is a progressive aromatization of the B ring of the steroid framework where in 1 rings A and B comprise a fully aromatic naphthalene core. The structure of Equilin 2, was determined by Sawicki et al. (1999b[Sawicki, M. W., Li, N. & Ghosh, D. (1999b). Acta Cryst. C55, 425-427.]), who demonstrated that the presence of the unsaturated C7—C8 bond in the B ring rotates the C and D rings of the steroid such that the 17-keto oxygen atom, O17, is translated by 0.73 Å with respect to the analogous oxygen atom of 3 when an overlay of the two structures was performed based on the superposition of the A rings. The translation of the oxygen atom was implicated in the increased anti-human estrogenic 17β-hy­droxy­steroid de­hydrogenase 1 (17β-HSD1) inhibitory behaviour of 2 with respect to 17β-estone 3 (Sawicki et al., 1999a[Sawicki, M. W., Erman, M., Puranen, T., Vihko, P. & Ghosh, D. (1999a). Proc. Natl Acad. Sci. 96, 840-845.]). The impact of the inhibitory behaviour of 2 is that it causes a reduction of the active estrogen, 17β-estradiol, which is present in elevated concentrations in human breast tumour tissues and responsible for the accelerated growth of the tumour tissue. It is therefore of great inter­est to investigate what the structural and conformational consequences are on the C and D rings of the steroid framework of 1 by having fully unsaturated A and B rings. Although the unit-cell parameters of 1 at room temperature have been previously reported by Ohrt et al. (1967[Ohrt, J. M., Haner, B. A. & Norton, D. A. (1967). Acta Cryst. 23, 1100.]), no three-dimensional structure analysis of this important estrone steroid has been determined. Herein, we report on the crystal structure of this final member of the estrone series of steroids, Equilenin 1, at 100 K.

[Scheme 1]

2. Structural commentary

The crystal structure of Equilenin 1, is ortho­rhom­bic, space group P212121 (Z '= 1) and its mol­ecular structure is illustrated in Fig. 1[link]. The unit cell data agree with the previously reported values (Ohrt et al., 1967[Ohrt, J. M., Haner, B. A. & Norton, D. A. (1967). Acta Cryst. 23, 1100.]) with the caveat that they are slightly smaller owing to some modest isotropic contraction due to the lower temperature. The atoms C1 through C10, which define the AB (napthalene) plane, are little affected by the chiral centres at C13 and C14, and are almost coplanar with an r.m.s. deviation of the fitted atoms of 0.0104 Å and a total puckering amplitude, Q, of 0.033 (2) Å. The greatest displacement from the ten-atom mean plane is atom C10 at −0.019 (1) Å. The C—C bond lengths of the AB rings follow the pattern in which C1—C2, C3—C4, C6—C7 and C8—C9 are significantly shorter, (mean value 1.372 Å), than the remaining seven bonds (mean value 1.421 Å) [Ahmed & Cruickshank, 1952[Ahmed, F. R. & Cruickshank, D. W. J. (1952). Acta Cryst. 5, 852-853.]; Cruickshank & Sparks, 1960[Cruickshank, D. W. J. & Sparks, R. A. (1960). Proc. Roy. Soc. A, 258, 270-285.]], thus demonstrating that the AB ring system is a true aromatic naphthalene core. The aromatization of ring B does however, have a significant effect on the conformations of both the C and D rings of 1, compared to 2 and 3. In contrast to the regular chair conformation of the C rings of 2 and 3, the C ring of 1, has a highly symmetric 13β-envelope conformation characterized by a ΔCs(9) asymmetry parameter of 0.50° (Duax et al., 1976[Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Crystal Structures of Steroids, in Topics in Stereochemistry, edited by N. L. Allinger & E. L. Eliel, Vol. 9, pp. 271-383. Hoboken, NJ, USA: John Wiley & Sons Inc.]); and related pairs of torsion angles [C14—C8—C9—C11, C8—C9—C11—C12, −4.1 (2), 4.1 (2)°; C9—C11—C12—C13, C9—C8—C14—C13, −32.6 (2), 32.7 (2)°; C11—C12—C13—C14, C12—C13—C14—C8, 60.4 (2), −61.3 (1)°]. The downside impact of this conformational change in the C ring of 1 is such that in place of the asymmetric twist or half-chair D ring conformation demonstrated by 2 and 3, the D ring of Equilenin 1 displays a 14α-envelope conformation with a ΔCs(14) of 4.20°; the torsion angles for 1, (with related torsion angles for 2/3 are given in [/]) are C13—C14—C15—C16, C17—C13—C14—C15) −41.3 (2) [−40.2/-39.0]°, 43.3 (2) [44.5/42.9]°; C14—C13—C17—C16, C14—C15—C16—C17, −28.6 (2) [−31.0/-30.9]°, 23.0 (2) [19.6/19.4]°; and C15—C16—C17—C13, 3.6 (2) [8.1/7.5]°. Torsional angle data for 2 and 3 were extracted from structures GODTIC (Sawicki et al., 1999b[Sawicki, M. W., Li, N. & Ghosh, D. (1999b). Acta Cryst. C55, 425-427.]) and ESTRON13 (Shikii et al., 2004[Shikii, K., Sakamoto, S., Seki, H., Utsumi, H. & Yamaguchi, K. (2004). Tetrahedron, 60, 3487-3492.]), respectively (see Section 4, Database survey).

[Figure 1]
Figure 1
View of the mol­ecular structure of compound 1, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Compounds 1 and 2, possibly owing to increased conformational constraint in the B ring, have lower oestrongenic activity than 17β-estrone itself, which has the B ring as the principal point of mol­ecular flexibility (Duax et al., 1976[Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Crystal Structures of Steroids, in Topics in Stereochemistry, edited by N. L. Allinger & E. L. Eliel, Vol. 9, pp. 271-383. Hoboken, NJ, USA: John Wiley & Sons Inc.]; Busetta et al., 1973[Busetta, B., Courseille, C. & Hospital, M. (1973). Acta Cryst. B29, 298-313.]). Inter­estingly this reduction in activity (Marshall, 1970[Marshall, P. G. (1970). Rodd's Chemistry of Carbon Compounds, Vol. IID, edited by S. Coffey, pp. 216-222. Amsterdam: Elsevier.]) does not directly relate to the crystallographically determined degree to which the A and B rings of the steroid are constrained to coplanarity, since 1, possessing an essentially planar naphthalene core, is about five times more estrogenic than 2 which features only approximate coplanarity of its A and B rings with an r.m.s. deviation of the fitted atoms of 0.102 Å, and a total puckering amplitude of 0.270 (2) Å (Sawicki et al., 1999b[Sawicki, M. W., Li, N. & Ghosh, D. (1999b). Acta Cryst. C55, 425-427.]). An overlay of structures 1 (red), 2 (blue) and 3 (green) is shown in Fig. 2[link]. The overlay was performed by a superposition of the atoms in the A ring only. From this overlay it can be calculated that the keto oxygen atom is translated by 0.78 and 0.69 Å, respectively, for compounds 1 and 2 from its position on 3. Perhaps more significant is the degree of translation of the methyl group C18 which is translated by 0.79 and 1.40 Å, respectively, for compounds 1 and 2 from its position on 3 which may account for the increased estrogenic activity of 1 over 2. The stereochemistry assignments at C13 and C14 are S, S; confirmed by resonant scattering through the Flack x parameter value of −0.05 (4).

[Figure 2]
Figure 2
View of the structure overlay of compounds 1 (red), 2 (blue) and 3 (green). The overlay was performed by a superposition of the atoms in the A ring only.

3. Supra­molecular features

In the crystal, the Equilenin 1 mol­ecules are linked head-to-tail by a single O—H⋯Oi hydrogen bond (Table 1[link]), to form chains propagating along the c-axis direction. A view along the b-axis of the crystal packing of the title compound is shown in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O17i 0.95 (3) 1.82 (3) 2.7153 (17) 157 (3)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
View along the b axis of the crystal packing of compound 1. The inter­molecular O—H⋯O hydrogen bonds are shown as dashed lines (see Table 1[link]).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.38, last update February 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the basic steroid ABCD ring framework yielded 401 hits although the hits for 1 and 2 could only be accessed by introducing the aromaticity into the B ring. Of the 401 hits there were eight hits for the structure of 17β-estrone, 3 (ESTRON03–05 and ESTRON10–15), which exists in three polymorphic forms. They include, form I, ortho­rhom­bic P212121 (ESTRON11: Busetta et al., 1973[Busetta, B., Courseille, C. & Hospital, M. (1973). Acta Cryst. B29, 298-313.]), form II, ortho­rhom­bic P212121 (ESTRON03: Debaerdemaeker, 1972[Debaerdemaeker, T. D. J. (1972). Cryst. Struct. Commun. 1, 39-42.]; ESTRON04: van den Bossche et al., 1971[Bossche, G. van den (1971). Bull. Soc. Roy. Sci. Liege, 40, 614.]; ESTRON10: Busetta et al., 1973[Busetta, B., Courseille, C. & Hospital, M. (1973). Acta Cryst. B29, 298-313.]; ESTRON13: Shikii et al., 2004[Shikii, K., Sakamoto, S., Seki, H., Utsumi, H. & Yamaguchi, K. (2004). Tetrahedron, 60, 3487-3492.]; ESTRON14: Zhurova et al., 2006[Zhurova, E. A., Matta, C. F., Wu, N., Zhurov, V. V. & Pinkerton, A. A. (2006). J. Am. Chem. Soc. 128, 8849-8861.]) and form III, monoclinic P21 (Z′ = 2) (ESTRON05, unit-cell determination only: Ohrt et al., 1964[Ohrt, J. M., Haner, B. A. & Norton, D. A. (1964). Acta Cryst. 17, 1611.]; ESTRON12: Busetta et al., 1973[Busetta, B., Courseille, C. & Hospital, M. (1973). Acta Cryst. B29, 298-313.]). The polymorphic behaviour appears to be attributable to the crystal packing and has no significant influence on the conformation of the steroid framework. There was a single entry for 2 (GODTIC: Sawicki et al., 1999b[Sawicki, M. W., Li, N. & Ghosh, D. (1999b). Acta Cryst. C55, 425-427.]) and a single entry for 1 (QQQAMM, unit-cell determination only: Ohrt et al., 1967[Ohrt, J. M., Haner, B. A. & Norton, D. A. (1967). Acta Cryst. 23, 1100.]).

5. Synthesis and crystallization

In common with Equilin 2 the title compound, 1, was isolated from the urine of a pregnant mare (Girard et al., 1932[Girard, A., Sandulesco, G., Fridenson, A., Gudefroy, C. & Rutgers, J. J. (1932). C. R. Acad. Sci. 194, 1020-1022.]; Fieser & Fieser, 1959[Fieser, L. F. & Fieser, M. (1959). Steroids, pp. 460-461 New York: Reinhold Publishing Corporation.]). The sample used for the X-ray data collection was gifted to us from the J. W. Cook collection of the University of Glasgow. Suitable crystals were obtained as needles from ethanol solution, m.p. 531–532 K (evacuated sealed capillary).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The O-bound H atom was located from a difference-Fourier map and freely refined. All remaining H atoms were placed geometrically in idealized positions and refined using a riding model (including free rotation about the methyl C—C bond): C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms. The absolute stereochemistry of 1, was confirmed through the Flack x parameter value of −0.05 (4). This was determined using 1130 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).

Table 2
Experimental details

Crystal data
Chemical formula C18H18O2
Mr 266.32
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 7.27709 (7), 7.32686 (6), 25.5179 (2)
V3) 1360.57 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.66
Crystal size (mm) 0.41 × 0.12 × 0.07
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova Dualflex AtlasS2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Oxford, UK.])
Tmin, Tmax 0.853, 0.960
No. of measured, independent and observed [I > 2σ(I)] reflections 16660, 2769, 2754
Rint 0.022
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.080, 1.01
No. of reflections 2769
No. of parameters 186
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.17
Absolute structure Flack x determined using 1130 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.05 (4)
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Oxford, UK.]), SHELXD2014 (Sheldrick, 2010[Sheldrick, G. M. (2010). Acta Cryst. D66, 479-485.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXD2014 (Sheldrick, 2010); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

3-Hydroxy-13-methyl-11,12,13,14,15,16-hexahydrocyclopenta[a]phenanthren-17-one top
Crystal data top
C18H18O2Dx = 1.300 Mg m3
Mr = 266.32Melting point: 531 K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
a = 7.27709 (7) ÅCell parameters from 13177 reflections
b = 7.32686 (6) Åθ = 3.5–76.4°
c = 25.5179 (2) ŵ = 0.66 mm1
V = 1360.57 (2) Å3T = 100 K
Z = 4Rod, colourless
F(000) = 5680.41 × 0.12 × 0.07 mm
Data collection top
Rigaku Oxford Diffraction SuperNova Dualflex AtlasS2
diffractometer
2769 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source2754 reflections with I > 2σ(I)
Detector resolution: 5.2921 pixels mm-1Rint = 0.022
ω scansθmax = 74.5°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
h = 97
Tmin = 0.853, Tmax = 0.960k = 99
16660 measured reflectionsl = 3131
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.310P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2769 reflectionsΔρmax = 0.26 e Å3
186 parametersΔρmin = 0.17 e Å3
0 restraintsAbsolute structure: Flack x determined using 1130 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.06030 (17)0.42177 (17)0.09478 (4)0.0234 (3)
H3A0.155 (4)0.472 (4)0.0738 (10)0.058 (8)*
O170.23720 (17)0.44067 (19)0.51461 (4)0.0277 (3)
C10.0140 (2)0.4004 (2)0.23492 (6)0.0184 (3)
H1A0.11200.36980.25790.022*
C20.0417 (2)0.3930 (2)0.18189 (6)0.0191 (3)
H2A0.15850.35880.16850.023*
C30.1025 (2)0.4357 (2)0.14700 (6)0.0184 (3)
C40.2710 (2)0.4870 (2)0.16578 (6)0.0185 (3)
H4A0.36730.51520.14200.022*
C50.3030 (2)0.4983 (2)0.22075 (6)0.0164 (3)
C60.4744 (2)0.5542 (2)0.24123 (6)0.0191 (3)
H6A0.57190.58440.21810.023*
C70.5009 (2)0.5651 (2)0.29424 (6)0.0182 (3)
H7A0.61720.60220.30730.022*
C80.3584 (2)0.5223 (2)0.32991 (6)0.0162 (3)
C90.1889 (2)0.4662 (2)0.31167 (6)0.0156 (3)
C100.1585 (2)0.4530 (2)0.25640 (6)0.0156 (3)
C110.0307 (2)0.4177 (2)0.34819 (6)0.0181 (3)
H11A0.00100.28770.34270.022*
H11B0.07770.49100.33790.022*
C120.0654 (2)0.4477 (2)0.40723 (6)0.0188 (3)
H12A0.03210.57430.41690.023*
H12B0.01250.36340.42790.023*
C130.2666 (2)0.4136 (2)0.41985 (5)0.0174 (3)
C140.3840 (2)0.5486 (2)0.38816 (6)0.0175 (3)
H14A0.33640.67330.39650.021*
C150.5749 (2)0.5349 (3)0.41347 (6)0.0233 (3)
H15A0.65100.64320.40530.028*
H15B0.64040.42340.40200.028*
C160.5263 (2)0.5265 (3)0.47245 (6)0.0278 (4)
H16A0.61010.44230.49110.033*
H16B0.53600.64910.48860.033*
C170.3293 (2)0.4572 (2)0.47493 (6)0.0210 (3)
C180.3214 (2)0.2130 (2)0.41011 (6)0.0209 (3)
H18A0.23000.13210.42610.031*
H18B0.44220.18960.42570.031*
H18C0.32690.18990.37230.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0254 (6)0.0327 (6)0.0121 (5)0.0031 (5)0.0025 (4)0.0006 (4)
O170.0239 (6)0.0460 (7)0.0131 (5)0.0037 (6)0.0025 (4)0.0009 (5)
C10.0173 (7)0.0209 (7)0.0170 (7)0.0030 (6)0.0015 (6)0.0020 (5)
C20.0163 (7)0.0216 (7)0.0193 (7)0.0032 (6)0.0028 (6)0.0011 (6)
C30.0219 (7)0.0202 (7)0.0132 (7)0.0004 (6)0.0015 (6)0.0014 (6)
C40.0191 (7)0.0218 (7)0.0146 (7)0.0019 (6)0.0025 (6)0.0023 (5)
C50.0160 (7)0.0183 (7)0.0149 (7)0.0011 (6)0.0011 (5)0.0020 (5)
C60.0146 (7)0.0254 (8)0.0171 (7)0.0000 (6)0.0037 (6)0.0035 (6)
C70.0122 (7)0.0243 (8)0.0182 (7)0.0020 (6)0.0012 (6)0.0030 (6)
C80.0157 (7)0.0192 (7)0.0136 (7)0.0012 (6)0.0005 (5)0.0017 (6)
C90.0145 (7)0.0183 (7)0.0141 (6)0.0004 (6)0.0020 (5)0.0019 (5)
C100.0153 (7)0.0163 (7)0.0152 (7)0.0014 (6)0.0012 (5)0.0014 (5)
C110.0132 (7)0.0269 (8)0.0142 (7)0.0015 (6)0.0011 (5)0.0009 (6)
C120.0132 (7)0.0291 (8)0.0143 (6)0.0007 (6)0.0021 (5)0.0000 (6)
C130.0146 (7)0.0256 (7)0.0121 (6)0.0002 (6)0.0006 (5)0.0010 (6)
C140.0145 (7)0.0241 (7)0.0140 (7)0.0019 (6)0.0004 (5)0.0004 (6)
C150.0154 (7)0.0393 (9)0.0153 (7)0.0042 (7)0.0021 (5)0.0029 (7)
C160.0200 (8)0.0483 (10)0.0151 (7)0.0047 (8)0.0027 (6)0.0019 (7)
C170.0193 (7)0.0287 (8)0.0148 (7)0.0018 (7)0.0010 (5)0.0011 (6)
C180.0195 (7)0.0261 (8)0.0170 (7)0.0013 (6)0.0010 (6)0.0030 (6)
Geometric parameters (Å, º) top
O3—C31.3714 (17)C11—C121.5433 (19)
O3—H3A0.95 (3)C11—H11A0.9900
O17—C171.220 (2)C11—H11B0.9900
C1—C21.369 (2)C12—C131.520 (2)
C1—C101.423 (2)C12—H12A0.9900
C1—H1A0.9500C12—H12B0.9900
C2—C31.411 (2)C13—C171.5118 (19)
C2—H2A0.9500C13—C141.537 (2)
C3—C41.369 (2)C13—C181.544 (2)
C4—C51.4243 (19)C14—C151.535 (2)
C4—H4A0.9500C14—H14A1.0000
C5—C61.413 (2)C15—C161.547 (2)
C5—C101.429 (2)C15—H15A0.9900
C6—C71.369 (2)C15—H15B0.9900
C6—H6A0.9500C16—C171.523 (2)
C7—C81.414 (2)C16—H16A0.9900
C7—H7A0.9500C16—H16B0.9900
C8—C91.381 (2)C18—H18A0.9800
C8—C141.5103 (19)C18—H18B0.9800
C9—C101.4309 (19)C18—H18C0.9800
C9—C111.5234 (19)
C3—O3—H3A111.0 (17)C13—C12—H12A109.7
C2—C1—C10121.43 (14)C11—C12—H12A109.7
C2—C1—H1A119.3C13—C12—H12B109.7
C10—C1—H1A119.3C11—C12—H12B109.7
C1—C2—C3120.34 (14)H12A—C12—H12B108.2
C1—C2—H2A119.8C17—C13—C12116.95 (12)
C3—C2—H2A119.8C17—C13—C14100.69 (12)
C4—C3—O3124.14 (14)C12—C13—C14108.58 (12)
C4—C3—C2120.39 (13)C17—C13—C18105.82 (13)
O3—C3—C2115.46 (14)C12—C13—C18111.80 (13)
C3—C4—C5120.47 (14)C14—C13—C18112.60 (12)
C3—C4—H4A119.8C8—C14—C15121.14 (13)
C5—C4—H4A119.8C8—C14—C13111.54 (13)
C6—C5—C4121.68 (14)C15—C14—C13103.87 (12)
C6—C5—C10118.77 (13)C8—C14—H14A106.5
C4—C5—C10119.55 (14)C15—C14—H14A106.5
C7—C6—C5120.43 (14)C13—C14—H14A106.5
C7—C6—H6A119.8C14—C15—C16101.83 (12)
C5—C6—H6A119.8C14—C15—H15A111.4
C6—C7—C8121.33 (14)C16—C15—H15A111.4
C6—C7—H7A119.3C14—C15—H15B111.4
C8—C7—H7A119.3C16—C15—H15B111.4
C9—C8—C7120.24 (13)H15A—C15—H15B109.3
C9—C8—C14118.66 (13)C17—C16—C15105.59 (13)
C7—C8—C14120.98 (14)C17—C16—H16A110.6
C8—C9—C10119.37 (13)C15—C16—H16A110.6
C8—C9—C11122.58 (13)C17—C16—H16B110.6
C10—C9—C11118.06 (13)C15—C16—H16B110.6
C1—C10—C5117.81 (13)H16A—C16—H16B108.8
C1—C10—C9122.30 (13)O17—C17—C13125.78 (15)
C5—C10—C9119.86 (14)O17—C17—C16125.78 (15)
C9—C11—C12116.13 (13)C13—C17—C16108.43 (13)
C9—C11—H11A108.3C13—C18—H18A109.5
C12—C11—H11A108.3C13—C18—H18B109.5
C9—C11—H11B108.3H18A—C18—H18B109.5
C12—C11—H11B108.3C13—C18—H18C109.5
H11A—C11—H11B107.4H18A—C18—H18C109.5
C13—C12—C11109.95 (12)H18B—C18—H18C109.5
C10—C1—C2—C30.7 (2)C10—C9—C11—C12175.62 (14)
C1—C2—C3—C40.7 (2)C9—C11—C12—C1332.63 (19)
C1—C2—C3—O3179.27 (14)C11—C12—C13—C17173.40 (14)
O3—C3—C4—C5179.87 (14)C11—C12—C13—C1460.42 (17)
C2—C3—C4—C50.2 (2)C11—C12—C13—C1864.41 (16)
C3—C4—C5—C6178.75 (15)C9—C8—C14—C15155.31 (15)
C3—C4—C5—C101.0 (2)C7—C8—C14—C1528.7 (2)
C4—C5—C6—C7179.52 (14)C9—C8—C14—C1332.65 (19)
C10—C5—C6—C70.2 (2)C7—C8—C14—C13151.31 (14)
C5—C6—C7—C80.4 (2)C17—C13—C14—C8175.33 (13)
C6—C7—C8—C90.7 (2)C12—C13—C14—C861.31 (16)
C6—C7—C8—C14175.24 (15)C18—C13—C14—C863.05 (16)
C7—C8—C9—C100.4 (2)C17—C13—C14—C1543.25 (15)
C14—C8—C9—C10175.63 (14)C12—C13—C14—C15166.61 (13)
C7—C8—C9—C11179.82 (14)C18—C13—C14—C1569.03 (16)
C14—C8—C9—C114.1 (2)C8—C14—C15—C16167.57 (14)
C2—C1—C10—C50.1 (2)C13—C14—C15—C1641.33 (17)
C2—C1—C10—C9178.36 (15)C14—C15—C16—C1722.97 (18)
C6—C5—C10—C1178.82 (14)C12—C13—C17—O1733.7 (3)
C4—C5—C10—C10.9 (2)C14—C13—C17—O17151.02 (18)
C6—C5—C10—C90.5 (2)C18—C13—C17—O1791.6 (2)
C4—C5—C10—C9179.25 (14)C12—C13—C17—C16145.92 (15)
C8—C9—C10—C1178.42 (14)C14—C13—C17—C1628.56 (16)
C11—C9—C10—C11.3 (2)C18—C13—C17—C1688.83 (16)
C8—C9—C10—C50.2 (2)C15—C16—C17—O17175.96 (18)
C11—C9—C10—C5179.60 (13)C15—C16—C17—C133.62 (19)
C8—C9—C11—C124.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O17i0.95 (3)1.82 (3)2.7153 (17)157 (3)
Symmetry code: (i) x+1/2, y+1, z1/2.
 

Acknowledgements

We thank the University of Glasgow for the gift of the sample from the J. W. Cook collection.

References

First citationAhmed, F. R. & Cruickshank, D. W. J. (1952). Acta Cryst. 5, 852–853.  CSD CrossRef IUCr Journals Google Scholar
First citationBossche, G. van den (1971). Bull. Soc. Roy. Sci. Liege, 40, 614.  Google Scholar
First citationBusetta, B., Courseille, C. & Hospital, M. (1973). Acta Cryst. B29, 298–313.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationCruickshank, D. W. J. & Sparks, R. A. (1960). Proc. Roy. Soc. A, 258, 270–285.  CrossRef CAS Google Scholar
First citationDebaerdemaeker, T. D. J. (1972). Cryst. Struct. Commun. 1, 39–42.  CAS Google Scholar
First citationDuax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Crystal Structures of Steroids, in Topics in Stereochemistry, edited by N. L. Allinger & E. L. Eliel, Vol. 9, pp. 271–383. Hoboken, NJ, USA: John Wiley & Sons Inc.  Google Scholar
First citationFieser, L. F. & Fieser, M. (1959). Steroids, pp. 460–461 New York: Reinhold Publishing Corporation.  Google Scholar
First citationGirard, A., Sandulesco, G., Fridenson, A., Gudefroy, C. & Rutgers, J. J. (1932). C. R. Acad. Sci. 194, 1020–1022.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMarshall, P. G. (1970). Rodd's Chemistry of Carbon Compounds, Vol. IID, edited by S. Coffey, pp. 216–222. Amsterdam: Elsevier.  Google Scholar
First citationOhrt, J. M., Haner, B. A. & Norton, D. A. (1964). Acta Cryst. 17, 1611.  CSD CrossRef IUCr Journals Google Scholar
First citationOhrt, J. M., Haner, B. A. & Norton, D. A. (1967). Acta Cryst. 23, 1100.  CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Oxford, UK.  Google Scholar
First citationSawicki, M. W., Erman, M., Puranen, T., Vihko, P. & Ghosh, D. (1999a). Proc. Natl Acad. Sci. 96, 840–845.  CrossRef CAS PubMed Google Scholar
First citationSawicki, M. W., Li, N. & Ghosh, D. (1999b). Acta Cryst. C55, 425–427.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2010). Acta Cryst. D66, 479–485.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikii, K., Sakamoto, S., Seki, H., Utsumi, H. & Yamaguchi, K. (2004). Tetrahedron, 60, 3487–3492.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhurova, E. A., Matta, C. F., Wu, N., Zhurov, V. V. & Pinkerton, A. A. (2006). J. Am. Chem. Soc. 128, 8849–8861.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds