research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A one-dimensional bromide-bridged PtII/PtIV mixed-valence complex with a 2-bromo­ethane­sulfonate counter-ion

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry & Research Center for Smart Molecules, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, 171-8501 Tokyo, Japan, bDepartment of Chemistry, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, 153-8902 Tokyo, Japan, and cDepartment of Chemistry, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, 171-8501 Tokyo, Japan
*Correspondence e-mail: cnmatsu@rikkyo.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 19 May 2017; accepted 28 June 2017; online 4 July 2017)

The title salt, catena-poly[[[bis­(ethyl­enedi­amine)­platinum(II)]-μ-bromido-[bis(ethyl­enedi­amine)­platinum(IV)]-μ-bromido] tetra­kis­(2-bromo­ethane­sulfon­ate) dihydrate], {[PtIIPtIVBr2(C2H8N2)4](C2H4BrSO3)4·2H2O}n, crystallizes in the space group P21212. It has a linear chain structure extending parallel to the c axis, composed of square-planar [Pt(en)2]2+ and elongated octa­hedral trans-[PtBr2(en)2]2+ cations (en is ethyl­enedi­amine) stacked alternately and bridged by the Br atoms. The Pt site of the [PtII/IV(en)2] unit is located on a general position. The Br site, which is also located on a general position, is equally disordered over two positions. The Pt and Br atoms form a slight zigzag ⋯Br—PtIV—Br⋯PtII⋯ chain, with PtIV—Br bond lengths of 2.453 (2) and 2.491 (3) Å, PtII⋯Br contacts of 3.069 (2) and 3.032 (3) Å, and PtIV—Br⋯PtII angles of 178.06 (13) and 177.70 (13)°. The mixed-valence state of the Pt site is expressed by the parameter δ = (PtIV–Br)/(PtII⋯Br), with values of 0.799 and 0.822 for the two independent Br atoms. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds between the amine groups of the Pt complex chains, the sulfonate groups and water mol­ecules of crystallization, stabilize the cationic columnar structure.

1. Chemical context

The title mixed-valence compound, [PtII(en)2][PtIVBr2(en)2](BrC2H4SO3)4·2H2O (en is ethyl­enedi­amine, C2N2H8), (I)[link], is a member of the family of one-dimensional halogenido-bridged mixed-valence metal complexes, form­ulated as [MII(AA)2][MIVX2(AA)2]Y4 [MII/MIV = PtII/PtIV, PdII/PdIV, NiII/NiIV, PdII/PtIV, NiII/PtIV; X = Cl, Br, I; AA = NH2(CH2)2NH2, etc.; Y = ClO4, HSO4, X, etc.], hereafter abbreviated as MX-chain structures, which occur in typical mixed-valence compounds belonging to class II in the classification of Robin & Day (1967[Robin, M. B. & Day, P. (1967). Advances Inorganic Chemistry and Radiochemistry, edited by H. J. Emeléus & A. G. Sharpe, Vol. 10, pp. 247-422. New York: Academic Press.]). Compounds with MX-chain structures have attracted much inter­est because of their one-dimensional mixed-valence electron systems, as described in a previous report (Matsushita, 2006[Matsushita, N. (2006). Acta Cryst. C62, m33-m36.]).

The metal–halogen distances in compounds with MX-chain structures characterize the physical properties based on the mixed-valence electronic state. Compound (I)[link] is one of the first examples of such a compound comprising a sulfonate ion having an alkyl group with a halogen atom at the terminal position, as an organic part of the counter-ion.

[Scheme 1]

2. Structural commentary

The structures of the mol­ecular components of (I)[link] are displayed in Fig. 1[link]. The asymmetric unit of (I)[link] comprises of a Pt-complex moiety, [PtII(en)2]2+ or [PtIVBr2(en)2]2+, two 2-BrCH2CH2SO3 anions, and two half-mol­ecules of water, the O atoms of which are located on a site with symmetry ..2. The Pt-complex moiety and the sulfonate anions lie on general positions. As shown in Fig. 2[link], the structure of (I)[link] is built up of columns extending parallel to the c axis, composed of square-planar [Pt(en)2]2+ and elongated octa­hedral trans-[PtBr2(en)2]2+ cations stacked alternately and bridged by the Br atoms. The Pt and Br atoms form an infinite slight zigzag ⋯Br—PtIV—Br⋯PtII⋯ chain. The Br atoms are not located at the exact midpoint between adjacent Pt atoms and are equally disordered over two sites close to the midpoint. Thus, the Pt site is occupationally disordered by PtII and PtIV atoms. The valence ordering of the Pt site in (I)[link] belongs to one of three different classes of the order–disorder problem pointed out by Keller (1982[Keller, H. J. (1982). Extended Linear Chain Compounds, edited by J. S. Miller, pp. 357-407. New York: Plenum.]). The structure of (I)[link] can be regarded as being of an one-dimensionally ordered structure type, with the other two directions being in a disordered state. The structural order–disorder situation of the Pt site in (I)[link] has also been observed in the structures of a number of other MX-chain compounds (Endres et al., 1980[Endres, H., Keller, H. J., Keppler, B., Martin, R., Steiger, W. & Traeger, U. (1980). Acta Cryst. B36, 760-761.]; Beauchamp et al., 1982[Beauchamp, A. L., Layek, D. & Theophanides, T. (1982). Acta Cryst. B38, 1158-1164.]; Cannas et al., 1983[Cannas, M., Bonaria Lucchesini, M. & Marongiu, G. (1983). Acta Cryst. C39, 1514-1517.]; Yamashita et al., 1985[Yamashita, M., Toriumi, K. & Ito, T. (1985). Acta Cryst. C41, 876-878.]; Matsushita et al., 1992[Matsushita, N., Taga, T. & Tsujikawa, I. (1992). Acta Cryst. C48, 1936-1939.]; Toriumi et al., 1993[Toriumi, K., Yamashita, M., Kurita, S., Murase, I. & Ito, T. (1993). Acta Cryst. B49, 497-506.]; Huckett et al., 1993[Huckett, S. C., Scott, B., Love, S. P., Donohoe, R. J., Burns, C. J., Garcia, E., Frankcom, T. & Swanson, B. I. (1993). Inorg. Chem. 32, 2137-2144.]; Matsushita, 2003[Matsushita, N. (2003). Acta Cryst. E59, m26-m28.], 2005a[Matsushita, N. (2005a). Acta Cryst. E61, m514-m516.],b[Matsushita, N. (2005b). Acta Cryst. E61, m1301-m1303.], 2015[Matsushita, N. (2015). Acta Cryst. E71, 1155-1158.]; Matsushita & Taira, 2015[Matsushita, N. & Taira, A. (2015). Acta Cryst. C71, 1033-1036.]).

[Figure 1]
Figure 1
The structures of the mol­ecular components of compound (I)[link], showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms. Light-blue dashed lines represent N—H⋯O hydrogen bonds. Each site of atoms Br1 and Br2 is half occupied. [Symmetry code: (i) x, y, z − 1.]
[Figure 2]
Figure 2
A view of the columnar structure of compound (I)[link], running parallel to the c axis. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms. The green hollow Br ellipsoids and the green hollow lines between Pt and Br atoms represent the disordered part of the Pt–Br chain. Light-blue dashed lines represent hydrogen bonds. [Symmetry codes: (i) x, y, z − 1; (ii) x, y, z + 1; (iii) −x, −y + 1, z.]

With respect to the two sites for the disordered Br atoms, the shorter Pt—Br distances are assigned to PtIV—Br and the longer ones to PtII⋯Br, as follows: Br—PtIV—Br; Pt1—Br1 = 2.453 (2) Å, Pt1—Br2 = 2.491 (3) Å, and Br1—PtIV—Br2 = 178.33 (6)°; Br⋯PtII⋯Br; Pt1⋯Br1 = 3.069 (2) Å, Pt⋯Br2 = 3.032 (3) Å, and Br1⋯PtII⋯Br2 = 178.64 (5)°. Bond angles of the Pt—Br chain are Pt1—Br1⋯Pt1 = 178.06 (13)° and Pt1—Br2⋯Pt1 = 177.70 (13)°. Other bond lengths and angles are given in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Pt1—N2 2.039 (7) Br3—Br4ii 4.429 (2)
Pt1—N1 2.039 (7) S1—O1 1.425 (9)
Pt1—N3 2.040 (7) S1—O3 1.442 (8)
Pt1—N4 2.046 (8) S1—O2 1.444 (8)
N1—C1 1.490 (13) S1—C5 1.802 (10)
N2—C2 1.498 (13) C5—C6 1.493 (15)
N3—C3 1.494 (15) Br4—C8 1.940 (12)
N4—C4 1.511 (14) S2—O5 1.442 (8)
C1—C2 1.494 (14) S2—O6 1.459 (9)
C3—C4 1.387 (19) S2—O4 1.464 (7)
Br3—C6 1.970 (12) S2—C7 1.789 (10)
Br3—Br4i 3.822 (2) C7—C8 1.461 (18)
       
N2—Pt1—N1 83.6 (3) C3—C4—N4 113.7 (11)
N3—Pt1—N4 84.1 (3) O1—S1—O3 110.6 (6)
N2—Pt1—Br1 89.2 (3) O1—S1—O2 113.7 (6)
N1—Pt1—Br1 91.3 (3) O3—S1—O2 111.8 (6)
N3—Pt1—Br1 90.9 (3) O1—S1—C5 109.4 (6)
N4—Pt1—Br1 89.6 (3) O3—S1—C5 105.8 (5)
N2—Pt1—Br2 89.1 (3) O2—S1—C5 104.9 (5)
N1—Pt1—Br2 92.8 (3) C6—C5—S1 108.7 (8)
N3—Pt1—Br2 90.9 (3) C5—C6—Br3 107.7 (8)
N4—Pt1—Br2 88.2 (3) O5—S2—O6 112.0 (6)
C1—N1—Pt1 109.5 (6) O5—S2—O4 112.2 (5)
C2—N2—Pt1 108.2 (6) O6—S2—O4 112.9 (5)
C3—N3—Pt1 109.2 (6) O5—S2—C7 105.9 (5)
C4—N4—Pt1 107.7 (6) O6—S2—C7 106.3 (5)
N1—C1—C2 107.3 (8) O4—S2—C7 106.9 (5)
C1—C2—N2 107.9 (8) C8—C7—S2 109.6 (8)
C4—C3—N3 111.6 (11) C7—C8—Br4 112.3 (9)
Symmetry codes: (i) -x+1, -y+1, z-1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z].

The structural parameters indicating the mixed-valence state of the Pt atom, expressed by δ = (PtIV–Br)/(PtII⋯Br), are 0.799 and 0.822 for Br1 and Br2, respectively. These values are slightly smaller than those of [Pt(tn)2][PtBr2(tn)2](BF4)4 (tn is 1,3-di­amino­propane; 0.826; Cannas et al., 1983[Cannas, M., Bonaria Lucchesini, M. & Marongiu, G. (1983). Acta Cryst. C39, 1514-1517.]), [Pt(en)2][PtBr2(en)2](ClO4)4 (0.827 for a higher temperature phase at 313 K exhibiting space-group type Ibam and 0.828 for a lower temperature phase at 298 K exhibiting space-group type P21/m; Toriumi et al., 1993[Toriumi, K., Yamashita, M., Kurita, S., Murase, I. & Ito, T. (1993). Acta Cryst. B49, 497-506.]), and comparable with those of [Pt(NH3)4][PtBr2(NH3)4](HSO4)4 (0.817; Tanaka et al., 1982[Tanaka, M., Tsujikawa, I., Toriumi, K. & Ito, T. (1982). Acta Cryst. B38, 2793-2797.]), [Pt(tn)2][PtBr2(tn)2](ClO4)4 (0.815; Cannas et al., 1983[Cannas, M., Bonaria Lucchesini, M. & Marongiu, G. (1983). Acta Cryst. C39, 1514-1517.]), [Pt(en)2][PtBr2(en)2](HSO4)4 (0.813; Matsushita et al., 1992[Matsushita, N., Taga, T. & Tsujikawa, I. (1992). Acta Cryst. C48, 1936-1939.]) but larger than those of [Pt(CH3CH2NH2)4][PtBr2(CH3CH2NH2)4]Br4 (0.787 and 0.599; Endres et al., 1980[Endres, H., Keller, H. J., Keppler, B., Martin, R., Steiger, W. & Traeger, U. (1980). Acta Cryst. B36, 760-761.]).

3. Supra­molecular features

Hydrogen-bonding inter­actions in (I)[link] (Table 2[link]) stabilize the columnar structure composed only of the cationic complexes, as shown in Fig. 2[link]. A [PtII/IV(en)2] unit is bound to an adjacent Pt-complex unit in the column by four hydrogen-bond linkages as follows: N1—H1A⋯O4⋯H8–O8⋯H1B—N1, N2—H2A⋯O7—H7⋯O3—S1—O2⋯H2B—N2, N3—H3A⋯O6—S2—O5⋯H3B—N3, N4—H4A⋯O3⋯H4B—N4. In addition, the donor N4—H4A group is also hydrogen bonded to atom O1, and forms a three-centre hydrogen bond. Such hydrogen-bond linkages are a common structural motif in MX-chain compounds (Matsushita, 2003[Matsushita, N. (2003). Acta Cryst. E59, m26-m28.], 2005a[Matsushita, N. (2005a). Acta Cryst. E61, m514-m516.],b[Matsushita, N. (2005b). Acta Cryst. E61, m1301-m1303.], 2006[Matsushita, N. (2006). Acta Cryst. C62, m33-m36.], 2015[Matsushita, N. (2015). Acta Cryst. E71, 1155-1158.]; Matsushita & Taira, 2015[Matsushita, N. & Taira, A. (2015). Acta Cryst. C71, 1033-1036.]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4 0.89 2.02 2.897 (11) 169
N1—H1B⋯O8 0.89 2.16 2.936 (11) 146
N2—H2A⋯O7 0.89 2.20 3.022 (9) 153
N2—H2B⋯O2 0.89 2.17 2.981 (12) 152
N3—H3A⋯O6iii 0.89 2.14 2.962 (12) 152
N3—H3B⋯O5 0.89 2.06 2.934 (12) 167
N4—H4A⋯O1iv 0.89 2.48 3.039 (13) 121
N4—H4A⋯O3iv 0.89 2.36 3.182 (14) 153
N4—H4B⋯O3v 0.89 2.30 3.186 (13) 172
O7—H7⋯O3iii 0.83 2.07 2.874 (11) 161
O8—H8⋯O4vi 0.82 2.00 2.811 (10) 169
Symmetry codes: (iii) x, y, z+1; (iv) -x, -y+1, z; (v) -x, -y+1, z+1; (vi) -x+1, -y+1, z+1.

The columns are arranged in layers parallel to the ac plane as a result of the inter­columnar hydrogen-bond linkages, connecting in the direction of the a axis, as shown in Figs. 3[link] and 4[link]. Stacking the layers to the direction of the b axis makes the three-dimensional crystal packing through contacts between the terminal Br atoms of the 2-bromo­ethane-1-sulfonate ions. The needle-like crystal form, its elongated direction being parallel to the c axis, does not reflect the layer structure but the columnar structure. The crystal form suggests that the Br⋯Br contacts contribute as much to binding the layers and constructing the crystal packing as the inter­columnar hydrogen-bond linkages. Such terminal Br atoms of the alkyl chain therefore appear as significant contributors to the crystal packing.

[Figure 3]
Figure 3
The crystal packing of compound (I)[link], viewed along the c axis. Light-blue and green dashed lines represent the hydrogen bonds and the short contacts between Br atoms. Orange solid lines indicate the unit cell.
[Figure 4]
Figure 4
The crystal packing of compound (I)[link], projected on the bc plane. Light-blue and green dashed lines represent hydrogen bonds and the short contacts between Br atoms. Orange solid lines indicate the unit cell.

4. Synthesis and crystallization

The title compound was prepared by a procedure similar to a previous literature protocal (Matsushita & Taira, 1999[Matsushita, N. & Taira, A. (1999). Synth. Met. 102, 1787-1788.]). To a solution of [Pt(en)2]Cl2 (0.231 g, 0.598 mmol) solved in a mixture of water (10 ml) and ethanol (2 ml) was added an ethano­lic solution (2 ml) of Br2 (32 µl, 0.62 mmol). After removing excess Br2 by heating for 2.5 h, to this solution (including the PtIV complex species) was added an aqueous solution of [Pt(en)2]Cl2 (0.346 g, 0.896 mmol), and then an aqueous solution of sodium 2-bromo­ethane­sulfonate (3.414 g, 0.0162 mol). The resulting solution was allowed to stand at room temperature for about one month. Metallic lustrous green needle-like crystals of (I)[link] suitable for X-ray analysis were obtained and were collected by filtration (yield 0.553 g, 0.350 mmol, 59%, based on PtIV).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms were placed in geometrically calculated positions and refined as riding, with C—H = 0.97 Å, N—H = 0.89 Å, and O—H = 0.82 Å, and with the constraint Uiso(H) = 1.5Ueq(C,N,O). Reflections (0 2 0) and (1 2 0) were affected by the beam-stop and were omitted in the final refinement. The maximum and minimum electron density peaks are located 0.25 and 0.77 Å, respectively, from atom Pt1.

Table 3
Experimental details

Crystal data
Chemical formula [Pt(C2H8N2)2][PtBr2(C2H8N2)2](BrC2H4SO3)4·2H2O
Mr 1578.53
Crystal system, space group Orthorhombic, P21212
Temperature (K) 296
a, b, c (Å) 14.3568 (8), 27.0628 (13), 5.5212 (2)
V3) 2145.18 (18)
Z 2
Radiation type Mo Kα
μ (mm−1) 12.36
Crystal size (mm) 0.27 × 0.13 × 0.06
 
Data collection
Diffractometer Rigaku R-AXIS RAPID imaging-plate
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.268, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 48781, 7690, 6041
Rint 0.072
(sin θ/λ)max−1) 0.757
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.103, 1.03
No. of reflections 7690
No. of parameters 238
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.40, −2.29
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.081 (14)
Computer programs: RAPID-AUTO (Rigaku, 2000[Rigaku (2000). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), DIAMOND (Brandenburg, 2017[Brandenburg, K. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: RAPID-AUTO (Rigaku, 2000); cell refinement: RAPID-AUTO (Rigaku, 2000); data reduction: RAPID-AUTO (Rigaku, 2000); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2017); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and publCIF (Westrip, 2010).

catena-Poly[[[bis(ethylenediamine)platinum(II)]-µ-bromido-[bis(ethylenediamine)platinum(IV)]-µ-bromido] tetrakis(2-bromoethanesulfonate) dihydrate] top
Crystal data top
[Pt(C2H8N2)2][PtBr2(C2H8N2)2](BrC2H4SO3)4·2H2ODx = 2.444 Mg m3
Mr = 1578.53Mo Kα radiation, λ = 0.71069 Å
Orthorhombic, P21212Cell parameters from 41554 reflections
a = 14.3568 (8) Åθ = 1.4–32.6°
b = 27.0628 (13) ŵ = 12.36 mm1
c = 5.5212 (2) ÅT = 296 K
V = 2145.18 (18) Å3Needle, green metallic
Z = 20.27 × 0.13 × 0.06 mm
F(000) = 1492
Data collection top
Rigaku R-AXIS RAPID imaging-plate
diffractometer
7690 independent reflections
Radiation source: X-ray sealed tube6041 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 10.00 pixels mm-1θmax = 32.6°, θmin = 1.6°
ω scansh = 2121
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 4040
Tmin = 0.268, Tmax = 1.000l = 87
48781 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0502P)2 + 1.7628P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.103(Δ/σ)max = 0.002
S = 1.03Δρmax = 1.40 e Å3
7690 reflectionsΔρmin = 2.29 e Å3
238 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0011 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Refined as an inversion twin.
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.081 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.24017 (2)0.56156 (2)0.28907 (6)0.03200 (10)
Br10.2416 (2)0.56002 (11)0.7333 (4)0.0411 (5)0.5
Br20.2367 (2)0.56067 (12)0.8381 (5)0.0434 (5)0.5
N10.3661 (5)0.5269 (3)0.2750 (16)0.0417 (17)
H1A0.40160.54090.16190.063*
H1B0.39500.52980.41690.063*
N20.1894 (5)0.4912 (3)0.2898 (16)0.0433 (17)
H2A0.14390.48840.39860.065*
H2B0.16630.48380.14470.065*
N30.2941 (5)0.6313 (3)0.2881 (16)0.0409 (16)
H3A0.33940.63360.39760.061*
H3B0.31810.63810.14320.061*
N40.1146 (5)0.5973 (3)0.2971 (18)0.0451 (17)
H4A0.07760.58580.18100.068*
H4B0.08690.59250.43930.068*
C10.3522 (7)0.4736 (4)0.217 (2)0.051 (2)
H1C0.40610.45460.26670.077*
H1D0.34340.46930.04420.077*
C20.2676 (8)0.4568 (4)0.3516 (19)0.050 (2)
H2C0.27930.45740.52460.075*
H2D0.25170.42330.30500.075*
C30.2185 (9)0.6674 (4)0.346 (4)0.081 (5)
H3C0.21460.67160.52040.121*
H3D0.23370.69920.27560.121*
C40.1329 (9)0.6517 (4)0.258 (4)0.082 (5)
H4C0.12990.65880.08630.123*
H4D0.08410.67060.33720.123*
Br30.08492 (11)0.25167 (5)0.4944 (3)0.0718 (4)
S10.08693 (18)0.39688 (9)0.1163 (5)0.0473 (6)
O10.0837 (7)0.3825 (4)0.1320 (16)0.074 (3)
O20.1537 (6)0.4354 (3)0.1664 (17)0.074 (2)
O30.0049 (5)0.4096 (3)0.202 (2)0.067 (2)
C50.1242 (7)0.3452 (3)0.298 (2)0.052 (2)
H5A0.12010.35350.46820.078*
H5B0.18840.33710.26060.078*
C60.0628 (9)0.3020 (4)0.243 (2)0.065 (3)
H6A0.00200.31210.24430.098*
H6B0.07740.28880.08450.098*
Br40.68975 (12)0.71974 (7)0.1645 (4)0.1022 (6)
S20.47517 (16)0.62794 (9)0.2099 (5)0.0430 (5)
O40.4804 (5)0.5844 (3)0.0529 (13)0.0478 (16)
O50.3986 (5)0.6599 (3)0.1465 (17)0.059 (2)
O60.4751 (7)0.6155 (4)0.4668 (15)0.067 (2)
C70.5787 (8)0.6632 (4)0.158 (2)0.053 (3)
H7A0.63300.64300.19120.079*
H7B0.57990.69150.26490.079*
C80.5809 (10)0.6798 (6)0.094 (3)0.080 (4)
H8A0.58060.65120.20020.120*
H8B0.52520.69890.12780.120*
O70.00000.50000.525 (2)0.058 (3)
H70.00860.47690.62270.087*
O80.50000.50000.655 (2)0.056 (3)
H80.49910.47630.74860.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02252 (13)0.04414 (15)0.02934 (15)0.00288 (12)0.00031 (10)0.00007 (11)
Br10.0407 (11)0.0549 (10)0.0277 (9)0.0046 (17)0.0016 (14)0.0015 (14)
Br20.0392 (11)0.0578 (10)0.0331 (11)0.0020 (17)0.0062 (12)0.0006 (14)
N10.028 (3)0.052 (4)0.045 (4)0.002 (3)0.001 (3)0.008 (3)
N20.033 (4)0.050 (4)0.047 (4)0.001 (3)0.004 (4)0.003 (4)
N30.033 (4)0.046 (4)0.044 (4)0.006 (3)0.004 (4)0.001 (3)
N40.031 (4)0.050 (4)0.054 (5)0.004 (3)0.003 (4)0.001 (4)
C10.042 (5)0.067 (6)0.045 (5)0.006 (4)0.010 (5)0.005 (5)
C20.050 (6)0.052 (5)0.048 (5)0.004 (4)0.006 (5)0.006 (4)
C30.045 (7)0.049 (6)0.149 (14)0.002 (5)0.003 (8)0.000 (8)
C40.052 (7)0.058 (6)0.136 (15)0.009 (5)0.001 (9)0.002 (8)
Br30.0743 (10)0.0543 (6)0.0867 (9)0.0003 (6)0.0018 (7)0.0150 (6)
S10.0378 (13)0.0503 (12)0.0537 (15)0.0055 (10)0.0055 (11)0.0100 (10)
O10.063 (6)0.109 (7)0.050 (5)0.022 (5)0.010 (4)0.003 (5)
O20.069 (5)0.083 (5)0.070 (6)0.034 (5)0.015 (4)0.020 (5)
O30.045 (4)0.060 (4)0.096 (7)0.010 (3)0.006 (5)0.007 (5)
C50.042 (5)0.052 (5)0.063 (7)0.001 (4)0.000 (5)0.011 (5)
C60.062 (7)0.068 (7)0.066 (8)0.001 (5)0.013 (6)0.007 (6)
Br40.0756 (11)0.1267 (14)0.1041 (13)0.0417 (10)0.0052 (9)0.0394 (11)
S20.0333 (11)0.0518 (12)0.0437 (12)0.0085 (8)0.0021 (11)0.0087 (11)
O40.044 (4)0.056 (4)0.043 (4)0.004 (3)0.006 (3)0.008 (3)
O50.038 (4)0.052 (4)0.087 (6)0.001 (3)0.006 (4)0.018 (4)
O60.071 (6)0.093 (6)0.038 (4)0.023 (5)0.005 (4)0.002 (4)
C70.036 (5)0.074 (7)0.049 (6)0.014 (5)0.001 (4)0.007 (5)
C80.061 (9)0.101 (10)0.079 (9)0.036 (8)0.000 (8)0.004 (8)
O70.039 (6)0.074 (7)0.061 (8)0.008 (5)0.0000.000
O80.080 (8)0.049 (5)0.040 (6)0.012 (5)0.0000.000
Geometric parameters (Å, º) top
Pt1—N22.039 (7)C3—H3C0.9700
Pt1—N12.039 (7)C3—H3D0.9700
Pt1—N32.040 (7)C4—H4C0.9700
Pt1—N42.046 (8)C4—H4D0.9700
Pt1—Br12.453 (2)Br3—C61.970 (12)
Pt1—Br2i2.491 (3)Br3—Br4iii3.822 (2)
Pt1—Br23.032 (3)Br3—Br4iv4.429 (2)
Pt1—Br1i3.069 (2)S1—O11.425 (9)
Br1—Br20.5826 (18)S1—O31.442 (8)
Br1—Pt1ii3.069 (2)S1—O21.444 (8)
Br2—Pt1ii2.491 (3)S1—C51.802 (10)
N1—C11.490 (13)C5—C61.493 (15)
N1—H1A0.8900C5—H5A0.9700
N1—H1B0.8900C5—H5B0.9700
N2—C21.498 (13)C6—H6A0.9700
N2—H2A0.8900C6—H6B0.9700
N2—H2B0.8900Br4—C81.940 (12)
N3—C31.494 (15)S2—O51.442 (8)
N3—H3A0.8900S2—O61.459 (9)
N3—H3B0.8900S2—O41.464 (7)
N4—C41.511 (14)S2—C71.789 (10)
N4—H4A0.8900C7—C81.461 (18)
N4—H4B0.8900C7—H7A0.9700
C1—C21.494 (14)C7—H7B0.9700
C1—H1C0.9700C8—H8A0.9700
C1—H1D0.9700C8—H8B0.9700
C2—H2C0.9700O7—H70.8350
C2—H2D0.9700O8—H80.8239
C3—C41.387 (19)
N2—Pt1—N183.6 (3)C1—C2—N2107.9 (8)
N2—Pt1—N3178.7 (3)C1—C2—H2C110.1
N1—Pt1—N395.1 (3)N2—C2—H2C110.1
N2—Pt1—N497.3 (3)C1—C2—H2D110.1
N1—Pt1—N4178.7 (4)N2—C2—H2D110.1
N3—Pt1—N484.1 (3)H2C—C2—H2D108.4
N2—Pt1—Br189.2 (3)C4—C3—N3111.6 (11)
N1—Pt1—Br191.3 (3)C4—C3—H3C109.3
N3—Pt1—Br190.9 (3)N3—C3—H3C109.3
N4—Pt1—Br189.6 (3)C4—C3—H3D109.3
N2—Pt1—Br2i89.2 (3)N3—C3—H3D109.3
N1—Pt1—Br2i88.6 (3)H3C—C3—H3D108.0
N3—Pt1—Br2i90.8 (3)C3—C4—N4113.7 (11)
N4—Pt1—Br2i90.5 (3)C3—C4—H4C108.8
Br1—Pt1—Br2i178.33 (6)N4—C4—H4C108.8
N2—Pt1—Br289.1 (3)C3—C4—H4D108.8
N1—Pt1—Br292.8 (3)N4—C4—H4D108.8
N3—Pt1—Br290.9 (3)H4C—C4—H4D107.7
N4—Pt1—Br288.2 (3)C6—Br3—Br4iii110.1 (4)
Br2i—Pt1—Br2177.70 (13)C6—Br3—Br4iv72.7 (4)
N2—Pt1—Br1i89.5 (3)Br4iii—Br3—Br4iv174.67 (5)
N1—Pt1—Br1i87.1 (3)O1—S1—O3110.6 (6)
N3—Pt1—Br1i90.4 (3)O1—S1—O2113.7 (6)
N4—Pt1—Br1i91.9 (3)O3—S1—O2111.8 (6)
Br1—Pt1—Br1i178.06 (13)O1—S1—C5109.4 (6)
Br2—Pt1—Br1i178.64 (5)O3—S1—C5105.8 (5)
Br2—Br1—Pt1172.2 (6)O2—S1—C5104.9 (5)
Pt1—Br1—Pt1ii178.06 (13)C6—C5—S1108.7 (8)
Br1—Br2—Pt1ii172.0 (6)C6—C5—H5A110.0
Pt1ii—Br2—Pt1177.70 (13)S1—C5—H5A110.0
C1—N1—Pt1109.5 (6)C6—C5—H5B110.0
C1—N1—H1A109.8S1—C5—H5B110.0
Pt1—N1—H1A109.8H5A—C5—H5B108.3
C1—N1—H1B109.8C5—C6—Br3107.7 (8)
Pt1—N1—H1B109.8C5—C6—H6A110.2
H1A—N1—H1B108.2Br3—C6—H6A110.2
C2—N2—Pt1108.2 (6)C5—C6—H6B110.2
C2—N2—H2A110.1Br3—C6—H6B110.2
Pt1—N2—H2A110.1H6A—C6—H6B108.5
C2—N2—H2B110.1O5—S2—O6112.0 (6)
Pt1—N2—H2B110.1O5—S2—O4112.2 (5)
H2A—N2—H2B108.4O6—S2—O4112.9 (5)
C3—N3—Pt1109.2 (6)O5—S2—C7105.9 (5)
C3—N3—H3A109.8O6—S2—C7106.3 (5)
Pt1—N3—H3A109.8O4—S2—C7106.9 (5)
C3—N3—H3B109.8C8—C7—S2109.6 (8)
Pt1—N3—H3B109.8C8—C7—H7A109.8
H3A—N3—H3B108.3S2—C7—H7A109.8
C4—N4—Pt1107.7 (6)C8—C7—H7B109.8
C4—N4—H4A110.2S2—C7—H7B109.8
Pt1—N4—H4A110.2H7A—C7—H7B108.2
C4—N4—H4B110.2C7—C8—Br4112.3 (9)
Pt1—N4—H4B110.2C7—C8—H8A109.2
H4A—N4—H4B108.5Br4—C8—H8A109.2
N1—C1—C2107.3 (8)C7—C8—H8B109.2
N1—C1—H1C110.3Br4—C8—H8B109.2
C2—C1—H1C110.3H8A—C8—H8B107.9
N1—C1—H1D110.3H7—O7—H7v99.4
C2—C1—H1D110.3H8—O8—H8vi102.2
H1C—C1—H1D108.5
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) x+1, y+1, z1; (iv) x+1/2, y1/2, z; (v) x, y+1, z; (vi) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.892.022.897 (11)169
N1—H1B···O80.892.162.936 (11)146
N2—H2A···O70.892.203.022 (9)153
N2—H2B···O20.892.172.981 (12)152
N3—H3A···O6ii0.892.142.962 (12)152
N3—H3B···O50.892.062.934 (12)167
N4—H4A···O1v0.892.483.039 (13)121
N4—H4A···O3v0.892.363.182 (14)153
N4—H4B···O3vii0.892.303.186 (13)172
O7—H7···O3ii0.832.072.874 (11)161
O8—H8···O4viii0.822.002.811 (10)169
Symmetry codes: (ii) x, y, z+1; (v) x, y+1, z; (vii) x, y+1, z+1; (viii) x+1, y+1, z+1.
 

Funding information

Funding for this research was provided by: Ministry of Education, Culture, Sports, Science and Technology, MEXT-Supported Program for the Strategic Research Foundation at Private Universities (award No. S1311027).

References

First citationBeauchamp, A. L., Layek, D. & Theophanides, T. (1982). Acta Cryst. B38, 1158–1164.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCannas, M., Bonaria Lucchesini, M. & Marongiu, G. (1983). Acta Cryst. C39, 1514–1517.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEndres, H., Keller, H. J., Keppler, B., Martin, R., Steiger, W. & Traeger, U. (1980). Acta Cryst. B36, 760–761.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHuckett, S. C., Scott, B., Love, S. P., Donohoe, R. J., Burns, C. J., Garcia, E., Frankcom, T. & Swanson, B. I. (1993). Inorg. Chem. 32, 2137–2144.  CSD CrossRef CAS Web of Science Google Scholar
First citationKeller, H. J. (1982). Extended Linear Chain Compounds, edited by J. S. Miller, pp. 357–407. New York: Plenum.  Google Scholar
First citationMatsushita, N. (2003). Acta Cryst. E59, m26–m28.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMatsushita, N. (2005a). Acta Cryst. E61, m514–m516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMatsushita, N. (2005b). Acta Cryst. E61, m1301–m1303.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMatsushita, N. (2006). Acta Cryst. C62, m33–m36.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMatsushita, N. (2015). Acta Cryst. E71, 1155–1158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMatsushita, N., Taga, T. & Tsujikawa, I. (1992). Acta Cryst. C48, 1936–1939.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMatsushita, N. & Taira, A. (1999). Synth. Met. 102, 1787–1788.  Web of Science CSD CrossRef CAS Google Scholar
First citationMatsushita, N. & Taira, A. (2015). Acta Cryst. C71, 1033–1036.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2000). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRobin, M. B. & Day, P. (1967). Advances Inorganic Chemistry and Radiochemistry, edited by H. J. Emeléus & A. G. Sharpe, Vol. 10, pp. 247–422. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTanaka, M., Tsujikawa, I., Toriumi, K. & Ito, T. (1982). Acta Cryst. B38, 2793–2797.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationToriumi, K., Yamashita, M., Kurita, S., Murase, I. & Ito, T. (1993). Acta Cryst. B49, 497–506.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamashita, M., Toriumi, K. & Ito, T. (1985). Acta Cryst. C41, 876–878.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds