research communications
A one-dimensional bromide-bridged PtII/PtIV mixed-valence complex with a 2-bromoethanesulfonate counter-ion
aDepartment of Chemistry & Research Center for Smart Molecules, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, 171-8501 Tokyo, Japan, bDepartment of Chemistry, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, 153-8902 Tokyo, Japan, and cDepartment of Chemistry, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, 171-8501 Tokyo, Japan
*Correspondence e-mail: cnmatsu@rikkyo.ac.jp
The title salt, catena-poly[[[bis(ethylenediamine)platinum(II)]-μ-bromido-[bis(ethylenediamine)platinum(IV)]-μ-bromido] tetrakis(2-bromoethanesulfonate) dihydrate], {[PtIIPtIVBr2(C2H8N2)4](C2H4BrSO3)4·2H2O}n, crystallizes in the P21212. It has a linear chain structure extending parallel to the c axis, composed of square-planar [Pt(en)2]2+ and elongated octahedral trans-[PtBr2(en)2]2+ cations (en is ethylenediamine) stacked alternately and bridged by the Br atoms. The Pt site of the [PtII/IV(en)2] unit is located on a general position. The Br site, which is also located on a general position, is equally disordered over two positions. The Pt and Br atoms form a slight zigzag ⋯Br—PtIV—Br⋯PtII⋯ chain, with PtIV—Br bond lengths of 2.453 (2) and 2.491 (3) Å, PtII⋯Br contacts of 3.069 (2) and 3.032 (3) Å, and PtIV—Br⋯PtII angles of 178.06 (13) and 177.70 (13)°. The mixed-valence state of the Pt site is expressed by the parameter δ = (PtIV–Br)/(PtII⋯Br), with values of 0.799 and 0.822 for the two independent Br atoms. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds between the amine groups of the Pt complex chains, the sulfonate groups and water molecules of crystallization, stabilize the cationic columnar structure.
Keywords: crystal structure; platinum complex; one-dimensional chain complex; halide-bridged complex; MX-chain structure; PtII,IV mixed valence.
CCDC reference: 1559067
1. Chemical context
The title mixed-valence compound, [PtII(en)2][PtIVBr2(en)2](BrC2H4SO3)4·2H2O (en is ethylenediamine, C2N2H8), (I), is a member of the family of one-dimensional halogenido-bridged mixed-valence metal complexes, formulated as [MII(AA)2][MIVX2(AA)2]Y4 [MII/MIV = PtII/PtIV, PdII/PdIV, NiII/NiIV, PdII/PtIV, NiII/PtIV; X = Cl, Br, I; AA = NH2(CH2)2NH2, etc.; Y = ClO4−, HSO4−, X−, etc.], hereafter abbreviated as MX-chain structures, which occur in typical mixed-valence compounds belonging to class II in the classification of Robin & Day (1967). Compounds with MX-chain structures have attracted much interest because of their one-dimensional mixed-valence electron systems, as described in a previous report (Matsushita, 2006).
The metal–halogen distances in compounds with MX-chain structures characterize the physical properties based on the mixed-valence electronic state. Compound (I) is one of the first examples of such a compound comprising a sulfonate ion having an alkyl group with a halogen atom at the terminal position, as an organic part of the counter-ion.
2. Structural commentary
The structures of the molecular components of (I) are displayed in Fig. 1. The of (I) comprises of a Pt-complex moiety, [PtII(en)2]2+ or [PtIVBr2(en)2]2+, two 2-BrCH2CH2SO3− anions, and two half-molecules of water, the O atoms of which are located on a site with symmetry ..2. The Pt-complex moiety and the sulfonate anions lie on general positions. As shown in Fig. 2, the structure of (I) is built up of columns extending parallel to the c axis, composed of square-planar [Pt(en)2]2+ and elongated octahedral trans-[PtBr2(en)2]2+ cations stacked alternately and bridged by the Br atoms. The Pt and Br atoms form an infinite slight zigzag ⋯Br—PtIV—Br⋯PtII⋯ chain. The Br atoms are not located at the exact midpoint between adjacent Pt atoms and are equally disordered over two sites close to the midpoint. Thus, the Pt site is occupationally disordered by PtII and PtIV atoms. The valence ordering of the Pt site in (I) belongs to one of three different classes of the order–disorder problem pointed out by Keller (1982). The structure of (I) can be regarded as being of an one-dimensionally ordered structure type, with the other two directions being in a disordered state. The structural order–disorder situation of the Pt site in (I) has also been observed in the structures of a number of other MX-chain compounds (Endres et al., 1980; Beauchamp et al., 1982; Cannas et al., 1983; Yamashita et al., 1985; Matsushita et al., 1992; Toriumi et al., 1993; Huckett et al., 1993; Matsushita, 2003, 2005a,b, 2015; Matsushita & Taira, 2015).
With respect to the two sites for the disordered Br atoms, the shorter Pt—Br distances are assigned to PtIV—Br and the longer ones to PtII⋯Br, as follows: Br—PtIV—Br; Pt1—Br1 = 2.453 (2) Å, Pt1—Br2 = 2.491 (3) Å, and Br1—PtIV—Br2 = 178.33 (6)°; Br⋯PtII⋯Br; Pt1⋯Br1 = 3.069 (2) Å, Pt⋯Br2 = 3.032 (3) Å, and Br1⋯PtII⋯Br2 = 178.64 (5)°. Bond angles of the Pt—Br chain are Pt1—Br1⋯Pt1 = 178.06 (13)° and Pt1—Br2⋯Pt1 = 177.70 (13)°. Other bond lengths and angles are given in Table 1.
The structural parameters indicating the mixed-valence state of the Pt atom, expressed by δ = (PtIV–Br)/(PtII⋯Br), are 0.799 and 0.822 for Br1 and Br2, respectively. These values are slightly smaller than those of [Pt(tn)2][PtBr2(tn)2](BF4)4 (tn is 1,3-diaminopropane; 0.826; Cannas et al., 1983), [Pt(en)2][PtBr2(en)2](ClO4)4 (0.827 for a higher temperature phase at 313 K exhibiting space-group type Ibam and 0.828 for a lower temperature phase at 298 K exhibiting space-group type P21/m; Toriumi et al., 1993), and comparable with those of [Pt(NH3)4][PtBr2(NH3)4](HSO4)4 (0.817; Tanaka et al., 1982), [Pt(tn)2][PtBr2(tn)2](ClO4)4 (0.815; Cannas et al., 1983), [Pt(en)2][PtBr2(en)2](HSO4)4 (0.813; Matsushita et al., 1992) but larger than those of [Pt(CH3CH2NH2)4][PtBr2(CH3CH2NH2)4]Br4 (0.787 and 0.599; Endres et al., 1980).
3. Supramolecular features
Hydrogen-bonding interactions in (I) (Table 2) stabilize the columnar structure composed only of the cationic complexes, as shown in Fig. 2. A [PtII/IV(en)2] unit is bound to an adjacent Pt-complex unit in the column by four hydrogen-bond linkages as follows: N1—H1A⋯O4⋯H8–O8⋯H1B—N1, N2—H2A⋯O7—H7⋯O3—S1—O2⋯H2B—N2, N3—H3A⋯O6—S2—O5⋯H3B—N3, N4—H4A⋯O3⋯H4B—N4. In addition, the donor N4—H4A group is also hydrogen bonded to atom O1, and forms a three-centre hydrogen bond. Such hydrogen-bond linkages are a common structural motif in MX-chain compounds (Matsushita, 2003, 2005a,b, 2006, 2015; Matsushita & Taira, 2015).
|
The columns are arranged in layers parallel to the ac plane as a result of the intercolumnar hydrogen-bond linkages, connecting in the direction of the a axis, as shown in Figs. 3 and 4. Stacking the layers to the direction of the b axis makes the three-dimensional crystal packing through contacts between the terminal Br atoms of the 2-bromoethane-1-sulfonate ions. The needle-like crystal form, its elongated direction being parallel to the c axis, does not reflect the layer structure but the columnar structure. The crystal form suggests that the Br⋯Br contacts contribute as much to binding the layers and constructing the crystal packing as the intercolumnar hydrogen-bond linkages. Such terminal Br atoms of the alkyl chain therefore appear as significant contributors to the crystal packing.
4. Synthesis and crystallization
The title compound was prepared by a procedure similar to a previous literature protocal (Matsushita & Taira, 1999). To a solution of [Pt(en)2]Cl2 (0.231 g, 0.598 mmol) solved in a mixture of water (10 ml) and ethanol (2 ml) was added an ethanolic solution (2 ml) of Br2 (32 µl, 0.62 mmol). After removing excess Br2 by heating for 2.5 h, to this solution (including the PtIV complex species) was added an aqueous solution of [Pt(en)2]Cl2 (0.346 g, 0.896 mmol), and then an aqueous solution of sodium 2-bromoethanesulfonate (3.414 g, 0.0162 mol). The resulting solution was allowed to stand at room temperature for about one month. Metallic lustrous green needle-like crystals of (I) suitable for X-ray analysis were obtained and were collected by filtration (yield 0.553 g, 0.350 mmol, 59%, based on PtIV).
5. Refinement
Crystal data, data collection and structure . The H atoms were placed in geometrically calculated positions and refined as riding, with C—H = 0.97 Å, N—H = 0.89 Å, and O—H = 0.82 Å, and with the constraint Uiso(H) = 1.5Ueq(C,N,O). Reflections (0 2 0) and (1 2 0) were affected by the beam-stop and were omitted in the final The maximum and minimum electron density peaks are located 0.25 and 0.77 Å, respectively, from atom Pt1.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1559067
https://doi.org/10.1107/S2056989017009598/wm5394sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017009598/wm5394Isup2.hkl
Data collection: RAPID-AUTO (Rigaku, 2000); cell
RAPID-AUTO (Rigaku, 2000); data reduction: RAPID-AUTO (Rigaku, 2000); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2017); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and publCIF (Westrip, 2010).[Pt(C2H8N2)2][PtBr2(C2H8N2)2](BrC2H4SO3)4·2H2O | Dx = 2.444 Mg m−3 |
Mr = 1578.53 | Mo Kα radiation, λ = 0.71069 Å |
Orthorhombic, P21212 | Cell parameters from 41554 reflections |
a = 14.3568 (8) Å | θ = 1.4–32.6° |
b = 27.0628 (13) Å | µ = 12.36 mm−1 |
c = 5.5212 (2) Å | T = 296 K |
V = 2145.18 (18) Å3 | Needle, green metallic |
Z = 2 | 0.27 × 0.13 × 0.06 mm |
F(000) = 1492 |
Rigaku R-AXIS RAPID imaging-plate diffractometer | 7690 independent reflections |
Radiation source: X-ray sealed tube | 6041 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.072 |
Detector resolution: 10.00 pixels mm-1 | θmax = 32.6°, θmin = 1.6° |
ω scans | h = −21→21 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −40→40 |
Tmin = 0.268, Tmax = 1.000 | l = −8→7 |
48781 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.042 | w = 1/[σ2(Fo2) + (0.0502P)2 + 1.7628P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.103 | (Δ/σ)max = 0.002 |
S = 1.03 | Δρmax = 1.40 e Å−3 |
7690 reflections | Δρmin = −2.29 e Å−3 |
238 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0011 (2) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Refined as an inversion twin. |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.081 (14) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Pt1 | 0.24017 (2) | 0.56156 (2) | 0.28907 (6) | 0.03200 (10) | |
Br1 | 0.2416 (2) | 0.56002 (11) | 0.7333 (4) | 0.0411 (5) | 0.5 |
Br2 | 0.2367 (2) | 0.56067 (12) | 0.8381 (5) | 0.0434 (5) | 0.5 |
N1 | 0.3661 (5) | 0.5269 (3) | 0.2750 (16) | 0.0417 (17) | |
H1A | 0.4016 | 0.5409 | 0.1619 | 0.063* | |
H1B | 0.3950 | 0.5298 | 0.4169 | 0.063* | |
N2 | 0.1894 (5) | 0.4912 (3) | 0.2898 (16) | 0.0433 (17) | |
H2A | 0.1439 | 0.4884 | 0.3986 | 0.065* | |
H2B | 0.1663 | 0.4838 | 0.1447 | 0.065* | |
N3 | 0.2941 (5) | 0.6313 (3) | 0.2881 (16) | 0.0409 (16) | |
H3A | 0.3394 | 0.6336 | 0.3976 | 0.061* | |
H3B | 0.3181 | 0.6381 | 0.1432 | 0.061* | |
N4 | 0.1146 (5) | 0.5973 (3) | 0.2971 (18) | 0.0451 (17) | |
H4A | 0.0776 | 0.5858 | 0.1810 | 0.068* | |
H4B | 0.0869 | 0.5925 | 0.4393 | 0.068* | |
C1 | 0.3522 (7) | 0.4736 (4) | 0.217 (2) | 0.051 (2) | |
H1C | 0.4061 | 0.4546 | 0.2667 | 0.077* | |
H1D | 0.3434 | 0.4693 | 0.0442 | 0.077* | |
C2 | 0.2676 (8) | 0.4568 (4) | 0.3516 (19) | 0.050 (2) | |
H2C | 0.2793 | 0.4574 | 0.5246 | 0.075* | |
H2D | 0.2517 | 0.4233 | 0.3050 | 0.075* | |
C3 | 0.2185 (9) | 0.6674 (4) | 0.346 (4) | 0.081 (5) | |
H3C | 0.2146 | 0.6716 | 0.5204 | 0.121* | |
H3D | 0.2337 | 0.6992 | 0.2756 | 0.121* | |
C4 | 0.1329 (9) | 0.6517 (4) | 0.258 (4) | 0.082 (5) | |
H4C | 0.1299 | 0.6588 | 0.0863 | 0.123* | |
H4D | 0.0841 | 0.6706 | 0.3372 | 0.123* | |
Br3 | 0.08492 (11) | 0.25167 (5) | −0.4944 (3) | 0.0718 (4) | |
S1 | 0.08693 (18) | 0.39688 (9) | −0.1163 (5) | 0.0473 (6) | |
O1 | 0.0837 (7) | 0.3825 (4) | 0.1320 (16) | 0.074 (3) | |
O2 | 0.1537 (6) | 0.4354 (3) | −0.1664 (17) | 0.074 (2) | |
O3 | −0.0049 (5) | 0.4096 (3) | −0.202 (2) | 0.067 (2) | |
C5 | 0.1242 (7) | 0.3452 (3) | −0.298 (2) | 0.052 (2) | |
H5A | 0.1201 | 0.3535 | −0.4682 | 0.078* | |
H5B | 0.1884 | 0.3371 | −0.2606 | 0.078* | |
C6 | 0.0628 (9) | 0.3020 (4) | −0.243 (2) | 0.065 (3) | |
H6A | −0.0020 | 0.3121 | −0.2443 | 0.098* | |
H6B | 0.0774 | 0.2888 | −0.0845 | 0.098* | |
Br4 | 0.68975 (12) | 0.71974 (7) | 0.1645 (4) | 0.1022 (6) | |
S2 | 0.47517 (16) | 0.62794 (9) | −0.2099 (5) | 0.0430 (5) | |
O4 | 0.4804 (5) | 0.5844 (3) | −0.0529 (13) | 0.0478 (16) | |
O5 | 0.3986 (5) | 0.6599 (3) | −0.1465 (17) | 0.059 (2) | |
O6 | 0.4751 (7) | 0.6155 (4) | −0.4668 (15) | 0.067 (2) | |
C7 | 0.5787 (8) | 0.6632 (4) | −0.158 (2) | 0.053 (3) | |
H7A | 0.6330 | 0.6430 | −0.1912 | 0.079* | |
H7B | 0.5799 | 0.6915 | −0.2649 | 0.079* | |
C8 | 0.5809 (10) | 0.6798 (6) | 0.094 (3) | 0.080 (4) | |
H8A | 0.5806 | 0.6512 | 0.2002 | 0.120* | |
H8B | 0.5252 | 0.6989 | 0.1278 | 0.120* | |
O7 | 0.0000 | 0.5000 | 0.525 (2) | 0.058 (3) | |
H7 | 0.0086 | 0.4769 | 0.6227 | 0.087* | |
O8 | 0.5000 | 0.5000 | 0.655 (2) | 0.056 (3) | |
H8 | 0.4991 | 0.4763 | 0.7486 | 0.085* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.02252 (13) | 0.04414 (15) | 0.02934 (15) | −0.00288 (12) | −0.00031 (10) | −0.00007 (11) |
Br1 | 0.0407 (11) | 0.0549 (10) | 0.0277 (9) | −0.0046 (17) | −0.0016 (14) | 0.0015 (14) |
Br2 | 0.0392 (11) | 0.0578 (10) | 0.0331 (11) | −0.0020 (17) | −0.0062 (12) | 0.0006 (14) |
N1 | 0.028 (3) | 0.052 (4) | 0.045 (4) | 0.002 (3) | −0.001 (3) | 0.008 (3) |
N2 | 0.033 (4) | 0.050 (4) | 0.047 (4) | 0.001 (3) | 0.004 (4) | −0.003 (4) |
N3 | 0.033 (4) | 0.046 (4) | 0.044 (4) | −0.006 (3) | −0.004 (4) | 0.001 (3) |
N4 | 0.031 (4) | 0.050 (4) | 0.054 (5) | −0.004 (3) | 0.003 (4) | 0.001 (4) |
C1 | 0.042 (5) | 0.067 (6) | 0.045 (5) | 0.006 (4) | 0.010 (5) | −0.005 (5) |
C2 | 0.050 (6) | 0.052 (5) | 0.048 (5) | −0.004 (4) | 0.006 (5) | 0.006 (4) |
C3 | 0.045 (7) | 0.049 (6) | 0.149 (14) | 0.002 (5) | 0.003 (8) | 0.000 (8) |
C4 | 0.052 (7) | 0.058 (6) | 0.136 (15) | 0.009 (5) | 0.001 (9) | −0.002 (8) |
Br3 | 0.0743 (10) | 0.0543 (6) | 0.0867 (9) | 0.0003 (6) | 0.0018 (7) | −0.0150 (6) |
S1 | 0.0378 (13) | 0.0503 (12) | 0.0537 (15) | −0.0055 (10) | 0.0055 (11) | −0.0100 (10) |
O1 | 0.063 (6) | 0.109 (7) | 0.050 (5) | −0.022 (5) | 0.010 (4) | −0.003 (5) |
O2 | 0.069 (5) | 0.083 (5) | 0.070 (6) | −0.034 (5) | 0.015 (4) | −0.020 (5) |
O3 | 0.045 (4) | 0.060 (4) | 0.096 (7) | 0.010 (3) | −0.006 (5) | −0.007 (5) |
C5 | 0.042 (5) | 0.052 (5) | 0.063 (7) | 0.001 (4) | 0.000 (5) | −0.011 (5) |
C6 | 0.062 (7) | 0.068 (7) | 0.066 (8) | −0.001 (5) | 0.013 (6) | −0.007 (6) |
Br4 | 0.0756 (11) | 0.1267 (14) | 0.1041 (13) | −0.0417 (10) | −0.0052 (9) | −0.0394 (11) |
S2 | 0.0333 (11) | 0.0518 (12) | 0.0437 (12) | −0.0085 (8) | −0.0021 (11) | 0.0087 (11) |
O4 | 0.044 (4) | 0.056 (4) | 0.043 (4) | −0.004 (3) | −0.006 (3) | 0.008 (3) |
O5 | 0.038 (4) | 0.052 (4) | 0.087 (6) | −0.001 (3) | 0.006 (4) | 0.018 (4) |
O6 | 0.071 (6) | 0.093 (6) | 0.038 (4) | −0.023 (5) | −0.005 (4) | 0.002 (4) |
C7 | 0.036 (5) | 0.074 (7) | 0.049 (6) | −0.014 (5) | −0.001 (4) | 0.007 (5) |
C8 | 0.061 (9) | 0.101 (10) | 0.079 (9) | −0.036 (8) | 0.000 (8) | −0.004 (8) |
O7 | 0.039 (6) | 0.074 (7) | 0.061 (8) | −0.008 (5) | 0.000 | 0.000 |
O8 | 0.080 (8) | 0.049 (5) | 0.040 (6) | 0.012 (5) | 0.000 | 0.000 |
Pt1—N2 | 2.039 (7) | C3—H3C | 0.9700 |
Pt1—N1 | 2.039 (7) | C3—H3D | 0.9700 |
Pt1—N3 | 2.040 (7) | C4—H4C | 0.9700 |
Pt1—N4 | 2.046 (8) | C4—H4D | 0.9700 |
Pt1—Br1 | 2.453 (2) | Br3—C6 | 1.970 (12) |
Pt1—Br2i | 2.491 (3) | Br3—Br4iii | 3.822 (2) |
Pt1—Br2 | 3.032 (3) | Br3—Br4iv | 4.429 (2) |
Pt1—Br1i | 3.069 (2) | S1—O1 | 1.425 (9) |
Br1—Br2 | 0.5826 (18) | S1—O3 | 1.442 (8) |
Br1—Pt1ii | 3.069 (2) | S1—O2 | 1.444 (8) |
Br2—Pt1ii | 2.491 (3) | S1—C5 | 1.802 (10) |
N1—C1 | 1.490 (13) | C5—C6 | 1.493 (15) |
N1—H1A | 0.8900 | C5—H5A | 0.9700 |
N1—H1B | 0.8900 | C5—H5B | 0.9700 |
N2—C2 | 1.498 (13) | C6—H6A | 0.9700 |
N2—H2A | 0.8900 | C6—H6B | 0.9700 |
N2—H2B | 0.8900 | Br4—C8 | 1.940 (12) |
N3—C3 | 1.494 (15) | S2—O5 | 1.442 (8) |
N3—H3A | 0.8900 | S2—O6 | 1.459 (9) |
N3—H3B | 0.8900 | S2—O4 | 1.464 (7) |
N4—C4 | 1.511 (14) | S2—C7 | 1.789 (10) |
N4—H4A | 0.8900 | C7—C8 | 1.461 (18) |
N4—H4B | 0.8900 | C7—H7A | 0.9700 |
C1—C2 | 1.494 (14) | C7—H7B | 0.9700 |
C1—H1C | 0.9700 | C8—H8A | 0.9700 |
C1—H1D | 0.9700 | C8—H8B | 0.9700 |
C2—H2C | 0.9700 | O7—H7 | 0.8350 |
C2—H2D | 0.9700 | O8—H8 | 0.8239 |
C3—C4 | 1.387 (19) | ||
N2—Pt1—N1 | 83.6 (3) | C1—C2—N2 | 107.9 (8) |
N2—Pt1—N3 | 178.7 (3) | C1—C2—H2C | 110.1 |
N1—Pt1—N3 | 95.1 (3) | N2—C2—H2C | 110.1 |
N2—Pt1—N4 | 97.3 (3) | C1—C2—H2D | 110.1 |
N1—Pt1—N4 | 178.7 (4) | N2—C2—H2D | 110.1 |
N3—Pt1—N4 | 84.1 (3) | H2C—C2—H2D | 108.4 |
N2—Pt1—Br1 | 89.2 (3) | C4—C3—N3 | 111.6 (11) |
N1—Pt1—Br1 | 91.3 (3) | C4—C3—H3C | 109.3 |
N3—Pt1—Br1 | 90.9 (3) | N3—C3—H3C | 109.3 |
N4—Pt1—Br1 | 89.6 (3) | C4—C3—H3D | 109.3 |
N2—Pt1—Br2i | 89.2 (3) | N3—C3—H3D | 109.3 |
N1—Pt1—Br2i | 88.6 (3) | H3C—C3—H3D | 108.0 |
N3—Pt1—Br2i | 90.8 (3) | C3—C4—N4 | 113.7 (11) |
N4—Pt1—Br2i | 90.5 (3) | C3—C4—H4C | 108.8 |
Br1—Pt1—Br2i | 178.33 (6) | N4—C4—H4C | 108.8 |
N2—Pt1—Br2 | 89.1 (3) | C3—C4—H4D | 108.8 |
N1—Pt1—Br2 | 92.8 (3) | N4—C4—H4D | 108.8 |
N3—Pt1—Br2 | 90.9 (3) | H4C—C4—H4D | 107.7 |
N4—Pt1—Br2 | 88.2 (3) | C6—Br3—Br4iii | 110.1 (4) |
Br2i—Pt1—Br2 | 177.70 (13) | C6—Br3—Br4iv | 72.7 (4) |
N2—Pt1—Br1i | 89.5 (3) | Br4iii—Br3—Br4iv | 174.67 (5) |
N1—Pt1—Br1i | 87.1 (3) | O1—S1—O3 | 110.6 (6) |
N3—Pt1—Br1i | 90.4 (3) | O1—S1—O2 | 113.7 (6) |
N4—Pt1—Br1i | 91.9 (3) | O3—S1—O2 | 111.8 (6) |
Br1—Pt1—Br1i | 178.06 (13) | O1—S1—C5 | 109.4 (6) |
Br2—Pt1—Br1i | 178.64 (5) | O3—S1—C5 | 105.8 (5) |
Br2—Br1—Pt1 | 172.2 (6) | O2—S1—C5 | 104.9 (5) |
Pt1—Br1—Pt1ii | 178.06 (13) | C6—C5—S1 | 108.7 (8) |
Br1—Br2—Pt1ii | 172.0 (6) | C6—C5—H5A | 110.0 |
Pt1ii—Br2—Pt1 | 177.70 (13) | S1—C5—H5A | 110.0 |
C1—N1—Pt1 | 109.5 (6) | C6—C5—H5B | 110.0 |
C1—N1—H1A | 109.8 | S1—C5—H5B | 110.0 |
Pt1—N1—H1A | 109.8 | H5A—C5—H5B | 108.3 |
C1—N1—H1B | 109.8 | C5—C6—Br3 | 107.7 (8) |
Pt1—N1—H1B | 109.8 | C5—C6—H6A | 110.2 |
H1A—N1—H1B | 108.2 | Br3—C6—H6A | 110.2 |
C2—N2—Pt1 | 108.2 (6) | C5—C6—H6B | 110.2 |
C2—N2—H2A | 110.1 | Br3—C6—H6B | 110.2 |
Pt1—N2—H2A | 110.1 | H6A—C6—H6B | 108.5 |
C2—N2—H2B | 110.1 | O5—S2—O6 | 112.0 (6) |
Pt1—N2—H2B | 110.1 | O5—S2—O4 | 112.2 (5) |
H2A—N2—H2B | 108.4 | O6—S2—O4 | 112.9 (5) |
C3—N3—Pt1 | 109.2 (6) | O5—S2—C7 | 105.9 (5) |
C3—N3—H3A | 109.8 | O6—S2—C7 | 106.3 (5) |
Pt1—N3—H3A | 109.8 | O4—S2—C7 | 106.9 (5) |
C3—N3—H3B | 109.8 | C8—C7—S2 | 109.6 (8) |
Pt1—N3—H3B | 109.8 | C8—C7—H7A | 109.8 |
H3A—N3—H3B | 108.3 | S2—C7—H7A | 109.8 |
C4—N4—Pt1 | 107.7 (6) | C8—C7—H7B | 109.8 |
C4—N4—H4A | 110.2 | S2—C7—H7B | 109.8 |
Pt1—N4—H4A | 110.2 | H7A—C7—H7B | 108.2 |
C4—N4—H4B | 110.2 | C7—C8—Br4 | 112.3 (9) |
Pt1—N4—H4B | 110.2 | C7—C8—H8A | 109.2 |
H4A—N4—H4B | 108.5 | Br4—C8—H8A | 109.2 |
N1—C1—C2 | 107.3 (8) | C7—C8—H8B | 109.2 |
N1—C1—H1C | 110.3 | Br4—C8—H8B | 109.2 |
C2—C1—H1C | 110.3 | H8A—C8—H8B | 107.9 |
N1—C1—H1D | 110.3 | H7—O7—H7v | 99.4 |
C2—C1—H1D | 110.3 | H8—O8—H8vi | 102.2 |
H1C—C1—H1D | 108.5 |
Symmetry codes: (i) x, y, z−1; (ii) x, y, z+1; (iii) −x+1, −y+1, z−1; (iv) −x+1/2, y−1/2, −z; (v) −x, −y+1, z; (vi) −x+1, −y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O4 | 0.89 | 2.02 | 2.897 (11) | 169 |
N1—H1B···O8 | 0.89 | 2.16 | 2.936 (11) | 146 |
N2—H2A···O7 | 0.89 | 2.20 | 3.022 (9) | 153 |
N2—H2B···O2 | 0.89 | 2.17 | 2.981 (12) | 152 |
N3—H3A···O6ii | 0.89 | 2.14 | 2.962 (12) | 152 |
N3—H3B···O5 | 0.89 | 2.06 | 2.934 (12) | 167 |
N4—H4A···O1v | 0.89 | 2.48 | 3.039 (13) | 121 |
N4—H4A···O3v | 0.89 | 2.36 | 3.182 (14) | 153 |
N4—H4B···O3vii | 0.89 | 2.30 | 3.186 (13) | 172 |
O7—H7···O3ii | 0.83 | 2.07 | 2.874 (11) | 161 |
O8—H8···O4viii | 0.82 | 2.00 | 2.811 (10) | 169 |
Symmetry codes: (ii) x, y, z+1; (v) −x, −y+1, z; (vii) −x, −y+1, z+1; (viii) −x+1, −y+1, z+1. |
Funding information
Funding for this research was provided by: Ministry of Education, Culture, Sports, Science and Technology, MEXT-Supported Program for the Strategic Research Foundation at Private Universities (award No. S1311027).
References
Beauchamp, A. L., Layek, D. & Theophanides, T. (1982). Acta Cryst. B38, 1158–1164. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Brandenburg, K. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Cannas, M., Bonaria Lucchesini, M. & Marongiu, G. (1983). Acta Cryst. C39, 1514–1517. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Endres, H., Keller, H. J., Keppler, B., Martin, R., Steiger, W. & Traeger, U. (1980). Acta Cryst. B36, 760–761. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Huckett, S. C., Scott, B., Love, S. P., Donohoe, R. J., Burns, C. J., Garcia, E., Frankcom, T. & Swanson, B. I. (1993). Inorg. Chem. 32, 2137–2144. CSD CrossRef CAS Web of Science Google Scholar
Keller, H. J. (1982). Extended Linear Chain Compounds, edited by J. S. Miller, pp. 357–407. New York: Plenum. Google Scholar
Matsushita, N. (2003). Acta Cryst. E59, m26–m28. Web of Science CSD CrossRef IUCr Journals Google Scholar
Matsushita, N. (2005a). Acta Cryst. E61, m514–m516. Web of Science CSD CrossRef IUCr Journals Google Scholar
Matsushita, N. (2005b). Acta Cryst. E61, m1301–m1303. Web of Science CSD CrossRef IUCr Journals Google Scholar
Matsushita, N. (2006). Acta Cryst. C62, m33–m36. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Matsushita, N. (2015). Acta Cryst. E71, 1155–1158. Web of Science CSD CrossRef IUCr Journals Google Scholar
Matsushita, N., Taga, T. & Tsujikawa, I. (1992). Acta Cryst. C48, 1936–1939. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Matsushita, N. & Taira, A. (1999). Synth. Met. 102, 1787–1788. Web of Science CSD CrossRef CAS Google Scholar
Matsushita, N. & Taira, A. (2015). Acta Cryst. C71, 1033–1036. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku (2000). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Robin, M. B. & Day, P. (1967). Advances Inorganic Chemistry and Radiochemistry, edited by H. J. Emeléus & A. G. Sharpe, Vol. 10, pp. 247–422. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tanaka, M., Tsujikawa, I., Toriumi, K. & Ito, T. (1982). Acta Cryst. B38, 2793–2797. CrossRef CAS Web of Science IUCr Journals Google Scholar
Toriumi, K., Yamashita, M., Kurita, S., Murase, I. & Ito, T. (1993). Acta Cryst. B49, 497–506. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yamashita, M., Toriumi, K. & Ito, T. (1985). Acta Cryst. C41, 876–878. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.