research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­{1-phenyl-3-methyl-4-[(quinolin-3-yl)imino­methyl-κN]-1H-pyrazol-5-olato-κO}zinc methanol 2.5-solvate from synchrotron X-ray diffraction

CROSSMARK_Color_square_no_text.svg

aInstitute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachki Ave., Rostov-on-Don 344090, Russian Federation, bInstitute of Physics, Southern Federal University, 194 Stachki Ave., Rostov-on-Don 344090, Russian Federation, cNational Research Centre `Kurchatov Institute', 1 Acad. Kurchatov Sq., Moscow 123182, Russian Federation, and dInorganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation
*Correspondence e-mail: vnkhrustalev@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 27 June 2017; accepted 13 July 2017; online 18 July 2017)

The title compound, [Zn(C20H15N4O)2]·2.5CH3OH, I, was synthesized via the reaction of zinc acetate with the respective ligand and isolated as a methanol solvate, i.e., as I·2.5CH3OH. The crystal structure is triclinic (space group P-1), with two complex mol­ecules (A and B) and five methanol solvent mol­ecules in the asymmetric unit. One of the five methanol solvent mol­ecules is disordered over two sets of sites, with an occupancy ratio of 0.75:0.25. Mol­ecules A and B are conformers and distinguished by the conformations of the bidentate 1-phenyl-3-methyl-4-[(quinolin-3-yl)imino­meth­yl]-1H-pyrazol-5-olate ligands. In both mol­ecules, the zinc cations have distorted tetra­hedral coordination spheres, binding the monoanionic ligands through the pyrazolo­late O and imine N atoms. The two ligands adopt slightly different conformations in terms of the orientation of the terminal phenyl and quinoline substituents with respect to the central pyrazolo­late moiety. The mol­ecular geometries of A and B are supported by intra­molecular C—H⋯O and C—H⋯N hydrogen bonds. In the crystal of I, mol­ecules form dimers both by secondary inter­molecular Zn⋯O [3.140 (2)–3.553 (3) Å] and ππ stacking inter­actions. The dimers are linked by inter­molecular hydrogen bonds through the solvent methanol mol­ecules into a three-dimensional network.

1. Chemical context

Zinc complexes of azomethine ligands with heterocyclic derivatives are the subject of significant inter­est owing to their

[Scheme 1]
photo- (PL) and electro-luminescent (EL) properties (Burlov, Chesnokov et al., 2014[Burlov, A. S., Chesnokov, V. V., Vlasenko, V. G., Garnovskii, D. A., Mal'Tsev, E. I., Dmitriev, A. V., Lypenko, D. A., Borodkin, G. S. & Revinskii, Y. V. (2014). Russ. Chem. Bull. 63, 1753-1758.]; Burlov, Koshchienko et al., 2014[Burlov, A. S., Koshchienko, Yu. V., Vlasenko, V. G., Zubenko, A. A., Kiskin, M. A., Dmitriev, A. V., Mal'tsev, E. I., Lypenko, D. A., Nikolaevskii, S. A. & Garnovskii, D. A. (2014). Russ. J. Coord. Chem. 40, 531-538.]; Burlov et al., 2015[Burlov, A. S., Vlasenko, V. G., Dmitriev, A. V., Chesnokov, V. V., Uraev, A. I., Garnovskii, D. A., Zubavichus, Y. V., Trigub, A. L., Vasilchenko, I. S., Lypenko, D. A., Mal'Tsev, E. I., Lifintseva, T. V. & Borodkin, G. S. (2015). Synth. Met. 203, 156-163.], 2016[Burlov, A. S., Koshchienko, Y. V., Kiskin, M. A., Nikolaevskii, S. A., Garnovskii, D. A., Lermontov, A. S., Makarova, N. I., Metelitsa, A. V. & Eremenko, I. L. (2016). J. Mol. Struct. 1104, 7-13.]; Nikolaevskii et al., 2014[Nikolaevskii, S. A., Koshchienko, Y. V., Chernyshev, A. V., Burlov, A. S., Cheprasov, A. S., Aleksandrov, G. G., Kiskin, M. A. & Metelitsa, A. V. (2014). Russ. J. Coord. Chem. 40, 468-472.]). The thermal stability, high vitrification temperatures, easy sublimation during deposition of thin amorphous films, variability of structures, relative synthetic affordability and electron-transfer characteristics of such zinc complexes make them good candidates for application as active layers for organic light-emitting diode (OLED) devices.

We report here a synthetic approach for the preparation of a new zinc complex based on an amino­methyl­ene derivative of 1-phenyl-3-methyl-4-[(quinolin-3-yl)imino­meth­yl]-1H-pyra­zol-5(4H)-one and 3-amino­quinoline, and its structural characterization by synchrotron single-crystal X-ray diffraction.

2. Structural commentary

Compound I, [Zn(C20H15N4O)2], crystallizes in the triclinic space group P[\overline{1}] with two complex mol­ecules (A and B) and five methanol solvent mol­ecules in the asymmetric unit, i.e., as I·2.5CH3OH, with one of the five methanol solvent mol­ecules being disordered over two positions in a 0.75:0.25 ratio (Fig. 1[link]). Complex mol­ecules A and B are conformers and distinguished by the conformations of the bidentate 1-phenyl-3-methyl-4-[(quino­lin-3-yl)imino­meth­yl]-1H-pyrazol-5-olate ligands.

[Figure 1]
Figure 1
The structures of the mol­ecular entities in I·2.5CH3OH. Mol­ecules A and B are shown. Displacement ellipsoids are depicted at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Dashed lines indicate inter­molecular O—H⋯N hydrogen bonds.

The zinc cations of A and B in I are four-coordinated by two monoanionic O,N-chelating ligands, which bind to the cation through pyrazolo­late O and imine N atoms. The coordination sphere around each zinc cation can be described as distorted tetra­hedral [the bond-angle ranges are 94.83 (8)–121.00 (8) and 95.73 (8)–118.36 (10)° for mol­ecules A and B, respectively], with dihedral angles between the planar six-membered chelating rings (r.m.s. deviations are 0.031/0.021 and 0.017/0.033 Å for mol­ecules A and B, respectively) of 82.97 (7) and 84.52 (7)° for mol­ecules A and B, respectively.

The four pyrazolo­late ligands in mol­ecules A and B of I adopt different conformations. The main difference pertains to the twist angles of the terminal phenyl and quinoline substituents relative to the central imino­methyl-1H-pyrazol-5-olate fragment. In mol­ecule A (Fig. 2[link]), the corresponding angles are 20.40 (13) and 25.34 (8)° for the phenyl groups, and 37.02 (5) and 52.57 (7)° for the quinoline substituents, whereas in mol­ecule B, these angles are 15.03 (13) and 8.24 (11)° for the phenyl groups, and 27.47 (10) and 26.08 (6)° for the quinoline substituents. Thus, one of the two 1-phenyl-3-methyl-4-[(quinolin-3-yl)imino­meth­yl]-1H-pyrazol-5-olate ligands in mol­ecule B is flattened, while one of the two pyrazolo­late ligands in mol­ecule A is substanti­ally twisted (Fig. 3[link]). The mol­ecular conformation observed for I is supported by weak intra­molecular hydrogen bonds: C6—H6⋯O2 in mol­ecule A and C66—H66⋯O3 and C46—H46⋯N13 in mol­ecule B (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O5i 0.98 2.43 3.312 (4) 149
C6—H6⋯O2 0.95 2.25 3.148 (4) 157
C23—H23⋯O6ii 0.95 2.31 3.260 (3) 179
C46—H46⋯N13 0.95 2.56 3.368 (3) 144
C66—H66⋯O3 0.95 2.46 3.344 (4) 155
C68—H68⋯O9iii 0.95 2.40 3.334 (4) 170
O5—H5O⋯N3iv 0.91 2.10 2.977 (4) 164
O6—H6O⋯N4 0.91 1.92 2.830 (3) 175
O7—H7O⋯N8 0.91 2.10 2.993 (4) 168
O7′—H7OA⋯N8 0.90 1.89 2.794 (10) 179
O8—H8O⋯N12v 0.91 1.91 2.816 (3) 173
O9—H9O⋯O8 0.90 1.73 2.622 (3) 170
C85—H85C⋯O9vi 0.98 2.46 3.340 (4) 150
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z; (iv) x, y, z-1; (v) x+1, y, z; (vi) -x+2, -y, -z.
[Figure 2]
Figure 2
The mol­ecular structure of conformer A.
[Figure 3]
Figure 3
Comparison of the geometries of conformers A (magenta) and B (green dashed lines).

3. Supra­molecular features

In the crystal of I, mol­ecules form robust dimers both by inter­molecular secondary Zn⋯O inter­actions [Zn1⋯O3 = 3.386 (2) Å, Zn1⋯O4 = 3.279 (3) Å, Zn2⋯O1 = 3.553 (3) Å and Zn2⋯O2 = 3.140 (2) Å] and ππ stacking inter­actions between the O2/N5/N6/N7/C21–C24 and O4/N13/N14/N15/C61–C64 imino-methyl-pyrazolo­nate fragments {the shortest distances are N6⋯C63 [3.083 (3) Å], C21⋯C62 [3.210 (4) Å], C24⋯C64 [3.216 (4) Å], C21⋯C61 [3.261 (3) Å], N14⋯C23 [3.293 (4) Å], C22⋯C61 [3.297 (4) Å], N6⋯C62 [3.319 (3) Å] and N14⋯C22 [3.362 (3) Å]}, as well as phenyl and pyridine rings [the Cg1⋯Cg2 distance is 3.330 (6) Å, where Cg1 is the centroid of the C35–C40 phenyl ring and Cg2 is the centroid of the N16/C66–C69/C74 pyridine ring] (Fig. 4[link]). The dimers are bound to each other by inter­molecular C—H⋯π hydrogen bonds [the strongest is C17—H17⋯Cg3vii (H⋯Cg3vii = 2.48 Å and C—H⋯Cg3vii = 169°), where Cg3vii is the centroid of the C69vii–C74vii benzene ring; symmetry code: (vii) −x, −y, −z + 1] and ππ stacking inter­actions {the shortest distances are between the C75–C80 and C75viii–C80viii phenyl rings [C75⋯C79viii = 3.196 (4) Å and C80⋯C80viii = 3.279 (4) Å]; symmetry code: (viii) −x, −y + 1, −z + 1}, as well as C—H⋯O and N⋯H—O hydrogen bonds involving the solvent methanol mol­ecules (Table 1[link]), forming a three-dimensional network.

[Figure 4]
Figure 4
The crystal packing of the dimers present in I. Dashed lines indicate inter­molecular secondary Zn⋯O inter­actions.

4. Synthesis and crystallization

4.1. 1-Phenyl-3-methyl-4-[(quinolin-3-imino)­meth­yl]-1H-pyrazol-5(4H)-one

A solution containing 1.44 g (0.01 mol) of 3-amino­quinoline in 10 ml of toluene was added to a solution of 2.02 g (0.01 mol) of 1-phenyl-3-methyl-4-formyl­pyrazol-5-one in 20 ml of toluene. The mixture was refluxed for 3 h with a Dean–Stark trap until water stripping was completed. Subsequently, two-thirds of the total volume was distilled off on a rotary evaporator. The precipitate which formed was filtered off and recrystallized from ethanol to give light-yellow crystals (m.p. 473–474 K; yield 84%). FT–IR in KBr (νmax, cm−1): 1664 ν(C=O), 1627 δ(NH). 1H NMR (600 MHz, DMSO-d6, 300 K): δ 2.31 (3H, s, CH3), 7.08–8.03 (9H, m, CAr-H), 8.52 (1H, s, H4quin), 8.89 (1H, d, J3 = 2.7 Hz, CH—NH), 11.46 (1H, br d, J3 = 2.7 Hz, CH—NH). UV–vis spectrum (nm): 232, 254, 358. PL spectrum (nm): λPL = 454, 534, λex = 450 nm. Quantum yield of PL φ = 0.002. Analysis calculated for C20H16N4O: C 73.15, H 4.91, N 17.06%; found: C 73.25, H 5.10, N 17.18%.

4.2. Bis{1-phenyl-3-methyl-4-[(quinolin-3-yl)imino­meth­yl]-1H-pyrazol-5-olato}zinc, (I)

A hot solution of 0.22 g of zinc acetate dihydrate (1 mmol) in 20 ml of methanol was added to hot solutions of I (0.66 g, 2 mmol) in 20 ml of the same solvent (Fig. 5[link]). The reaction mixture was refluxed for 2 h. The precipitates of complexes were filtered off, washed three times with 10 ml of hot methanol and dried in vacuo. All products were crystallized from a chloro­form–methanol (1:2 v/v) mixture and dried at 423 K, resulting in a yellow crystalline powder (m.p. 483–484 K, yield 45%). FT–IR (νmax, cm−1): 1608 ν(C=N). 1H NMR (600 MHz, DMSO-d6, 300 K): δ 2.25 (6H, s, CH3), 6.99–8.92 (22H, m, CH), 8.46 (2H, s, HC=N). UV–vis (nm): 360, 340, 304. PL (nm): λPL = 478, λex = 450 nm. Analysis calculated for C40H30N8O2Zn: C 66.72, H 4.20, N 15.56%; found: C 66.78, H 4.25, N 15.64, Zn 9.11%.

[Figure 5]
Figure 5
Synthesis scheme to obtain zinc complex I.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C20H15N4O)2]·2.5CH4O
Mr 800.20
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 15.569 (3), 16.994 (3), 17.035 (3)
α, β, γ (°) 111.56 (3), 114.71 (3), 96.30 (3)
V3) 3618.1 (16)
Z 4
Radiation type Synchrotron, λ = 0.96990 Å
μ (mm−1) 1.68
Crystal size (mm) 0.20 × 0.12 × 0.07
 
Data collection
Diffractometer Rayonix SX165 CCD
Absorption correction Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.])
Tmin, Tmax 0.730, 0.880
No. of measured, independent and observed [I > 2σ(I)] reflections 48608, 15616, 12285
Rint 0.055
(sin θ/λ)max−1) 0.682
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.152, 1.10
No. of reflections 15616
No. of parameters 1020
No. of restraints 9
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.03, −1.00
Computer programs: Marccd (Doyle, 2011[Doyle, R. A. (2011). Marccd. Rayonix LLC, Evanston, IL 60201, USA.]), iMosflm (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

The X-ray diffraction study was carried out on the `Belok' beamline of the National Research Center `Kurchatov Institute' (Moscow, Russian Federation) using a Rayonix SX165 CCD detector. A total of 360 images were collected using an oscillation range of 1.0° (φ scan mode, two different crystal orientations) and corrected for absorption using the Scala program (Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.]). The data were indexed, integrated and scaled using the utility iMOSFLM in the CCP4 program (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]).

The data completeness of 97.8% is caused by the low (triclinic) crystal symmetry. It is very difficult to get a high data completeness for this symmetry using the φ scan mode only (`Belok' beamline limitation), even though we have run two different crystal orientations.

A rather large number of reflections have been omitted from refinement due to the following reasons. (i) In order to achieve better I/σ statistics for high-angle reflections, we selected an exposure time so as to admit a minor fraction of intensity overloads in the low-angle part of the detector. These low-angle reflections have imprecisely measured intensities and thus were excluded from the final steps of refinement. (ii) In the present set-up of the synchrotron diffractometer, the low-temperature device eclipses a small region of the 2D detector near the high-angle limit. This small shadowed region has not been masked during integration of the diffraction frames, which erroneously resulted in zero intensity of some reflections. (iii) The quality of the single crystal chosen for the diffraction experiment was not perfect. Some systematic differences between the calculated and observed intensities are probably caused by extinction and defects present in the crystal specimen.

The H atoms of the hy­droxy groups were localized from difference Fourier maps and included in a riding mode, with fixed displacement parameters [Uiso(H) = 1.5Ueq(O)]. All other H atoms were placed in calculated positions, with C—H = 0.95–0.98 Å, and refined in a riding mode, with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for the CH3 groups and 1.2Ueq(C) for the other groups]. Disorder over two sets of sites was observed for one methanol solvent mol­ecule (atoms O7–C83). In the last cycles of refinement, the occupancy ratio was fixed at 0.75:0.25 and each of the non-H atoms was modelled with a common displacement ellipsoid.

Supporting information


Computing details top

Data collection: Marccd (Doyle, 2011); cell refinement: iMosflm (Battye et al., 2011); data reduction: iMosflm (Battye et al., 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Bis{1-phenyl-3-methyl-4-[(quinolin-3-yl)iminomethyl-κN]-1H-pyrazol-5-olato-κO}zinc methanol 2.5-solvate top
Crystal data top
[Zn(C20H15N4O)2]·2.5CH4OZ = 4
Mr = 800.20F(000) = 1668
Triclinic, P1Dx = 1.469 Mg m3
a = 15.569 (3) ÅSynchrotron radiation, λ = 0.96990 Å
b = 16.994 (3) ÅCell parameters from 600 reflections
c = 17.035 (3) Åθ = 3.3–33.0°
α = 111.56 (3)°µ = 1.68 mm1
β = 114.71 (3)°T = 100 K
γ = 96.30 (3)°Prism, yellow
V = 3618.1 (16) Å30.20 × 0.12 × 0.07 mm
Data collection top
Rayonix SX165 CCD
diffractometer
12285 reflections with I > 2σ(I)
/f scanRint = 0.055
Absorption correction: multi-scan
(SCALA; Evans, 2006)
θmax = 41.5°, θmin = 3.3°
Tmin = 0.730, Tmax = 0.880h = 1921
48608 measured reflectionsk = 2121
15616 independent reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0757P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
15616 reflectionsΔρmax = 1.03 e Å3
1020 parametersΔρmin = 1.00 e Å3
9 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.0043 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.37780 (2)0.39436 (2)0.67054 (2)0.02024 (11)
O10.29175 (13)0.38716 (12)0.72004 (13)0.0238 (4)
O20.35484 (12)0.29575 (11)0.54978 (13)0.0209 (4)
N10.49660 (15)0.40526 (14)0.78587 (16)0.0205 (5)
N20.26374 (15)0.36528 (14)0.83484 (16)0.0214 (5)
N30.31383 (16)0.36130 (14)0.92341 (16)0.0218 (5)
N40.66016 (16)0.38308 (14)0.69054 (17)0.0243 (5)
N50.37862 (15)0.49341 (13)0.63202 (16)0.0206 (5)
N60.34901 (15)0.25383 (13)0.39951 (16)0.0207 (5)
N70.34356 (16)0.29006 (14)0.33570 (16)0.0231 (5)
N80.36736 (15)0.67970 (14)0.82180 (16)0.0232 (5)
C10.32160 (18)0.38125 (16)0.80065 (19)0.0192 (5)
C20.41154 (18)0.38661 (16)0.86662 (19)0.0194 (5)
C30.49342 (18)0.39740 (15)0.85906 (19)0.0207 (5)
H30.55310.39960.90940.025*
C40.40116 (19)0.37385 (16)0.94125 (19)0.0215 (5)
C50.4747 (2)0.37338 (18)1.0299 (2)0.0272 (6)
H5A0.44390.36991.06880.041*
H5B0.53110.42821.06790.041*
H5C0.49810.32181.01230.041*
C60.58466 (19)0.37789 (17)0.6995 (2)0.0229 (6)
H60.52200.34470.64200.028*
C70.58503 (18)0.41789 (16)0.7891 (2)0.0208 (5)
C80.66931 (19)0.46668 (17)0.8722 (2)0.0242 (6)
H80.67050.49380.93250.029*
C90.75239 (19)0.47558 (16)0.8663 (2)0.0253 (6)
C100.8428 (2)0.52813 (18)0.9490 (2)0.0320 (7)
H100.84790.55621.01100.038*
C110.9204 (2)0.53763 (19)0.9387 (3)0.0361 (7)
H110.98350.57430.99420.043*
C120.9134 (2)0.4946 (2)0.8465 (3)0.0356 (7)
H120.97240.50320.84230.043*
C130.8272 (2)0.44248 (19)0.7652 (2)0.0296 (6)
H130.82390.41370.70400.036*
C140.74590 (18)0.43292 (16)0.7742 (2)0.0229 (6)
C150.16479 (18)0.34483 (16)0.7905 (2)0.0219 (5)
C160.1179 (2)0.30312 (17)0.8231 (2)0.0267 (6)
H160.15450.29030.87500.032*
C170.0215 (2)0.28156 (18)0.7807 (2)0.0302 (6)
H170.01390.25280.80160.036*
C180.0290 (2)0.30057 (19)0.7053 (2)0.0326 (7)
H180.09960.28350.67440.039*
C190.0175 (2)0.3428 (2)0.6730 (2)0.0368 (7)
H190.01960.35520.62080.044*
C200.1150 (2)0.3659 (2)0.7157 (2)0.0325 (7)
H200.15040.39620.69600.039*
C210.35394 (17)0.31461 (16)0.48261 (19)0.0199 (5)
C220.35634 (18)0.39531 (16)0.4747 (2)0.0208 (5)
C230.36918 (18)0.47910 (16)0.5466 (2)0.0208 (5)
H230.37110.52810.53240.025*
C240.34803 (19)0.37380 (17)0.3816 (2)0.0223 (5)
C250.3440 (2)0.43470 (18)0.3360 (2)0.0293 (6)
H25A0.40540.48520.37720.044*
H25B0.28690.45650.32940.044*
H25C0.33710.40220.27170.044*
C260.34980 (18)0.60058 (17)0.75209 (19)0.0221 (5)
H260.29770.55240.73560.026*
C270.40126 (18)0.58290 (16)0.70177 (19)0.0198 (5)
C280.47348 (19)0.65111 (16)0.7258 (2)0.0232 (6)
H280.51020.64310.69240.028*
C290.49628 (19)0.73673 (17)0.8020 (2)0.0243 (6)
C300.5750 (2)0.80897 (18)0.8366 (2)0.0309 (6)
H300.61430.80380.80590.037*
C310.5984 (2)0.88879 (19)0.9149 (2)0.0339 (7)
H310.65440.93670.93760.041*
C320.5434 (2)0.90042 (18)0.9601 (2)0.0300 (6)
H320.56040.95561.01410.036*
C330.4658 (2)0.83314 (18)0.9272 (2)0.0266 (6)
H330.42540.84100.95680.032*
C340.44091 (18)0.74835 (17)0.84777 (19)0.0219 (5)
C350.35835 (18)0.16739 (16)0.3774 (2)0.0236 (6)
C360.3223 (2)0.10542 (17)0.2805 (2)0.0287 (6)
H360.28950.12050.22950.034*
C370.3349 (2)0.02128 (19)0.2594 (3)0.0363 (7)
H370.31160.02070.19400.044*
C380.3812 (2)0.00050 (19)0.3338 (3)0.0392 (8)
H380.38940.05780.31940.047*
C390.4160 (2)0.06077 (19)0.4293 (3)0.0366 (7)
H390.44740.04460.47970.044*
C400.4059 (2)0.14537 (18)0.4529 (2)0.0297 (6)
H400.43060.18720.51870.036*
Zn20.14334 (2)0.19055 (2)0.49603 (2)0.02038 (11)
O30.25041 (12)0.18339 (12)0.59848 (13)0.0232 (4)
O40.14119 (13)0.30882 (11)0.50551 (13)0.0220 (4)
N90.03944 (15)0.14139 (13)0.51630 (16)0.0200 (4)
N100.30601 (15)0.14766 (13)0.72752 (16)0.0199 (4)
N110.27194 (15)0.11814 (14)0.77823 (16)0.0216 (5)
N120.16119 (16)0.13409 (14)0.30661 (17)0.0251 (5)
N130.13225 (15)0.12821 (14)0.36285 (16)0.0209 (5)
N140.12460 (15)0.39837 (14)0.42710 (16)0.0223 (5)
N150.11355 (16)0.39342 (15)0.33822 (17)0.0247 (5)
N160.20286 (16)0.07021 (15)0.36424 (18)0.0273 (5)
C410.23629 (18)0.15527 (15)0.65373 (19)0.0202 (5)
C420.15239 (18)0.12730 (16)0.65418 (19)0.0193 (5)
C430.06198 (18)0.12112 (16)0.58986 (19)0.0213 (5)
H430.00800.10010.59720.026*
C440.18157 (18)0.10603 (16)0.73460 (19)0.0202 (5)
C450.1212 (2)0.07455 (18)0.7689 (2)0.0258 (6)
H45A0.16180.05890.81940.039*
H45B0.06540.02190.71470.039*
H45C0.09570.12150.79600.039*
C460.07672 (19)0.14521 (17)0.3731 (2)0.0237 (6)
H460.02110.16490.36740.028*
C470.05610 (18)0.13132 (16)0.45597 (19)0.0202 (5)
C480.12988 (18)0.10836 (16)0.4694 (2)0.0221 (5)
H480.11920.10160.52540.027*
C490.22218 (18)0.09481 (16)0.39962 (19)0.0217 (5)
C500.30175 (19)0.06775 (17)0.4078 (2)0.0268 (6)
H500.29440.05980.46230.032*
C510.38957 (19)0.05313 (18)0.3365 (2)0.0289 (6)
H510.44690.03300.33960.035*
C520.4029 (2)0.06606 (18)0.2548 (2)0.0301 (6)
H520.46830.05440.20540.036*
C530.32737 (19)0.09351 (18)0.2461 (2)0.0269 (6)
H530.33620.10300.19200.032*
C540.23574 (19)0.10789 (16)0.3178 (2)0.0230 (6)
C550.40251 (16)0.16565 (15)0.75695 (15)0.0203 (5)
C560.46266 (15)0.17187 (18)0.84735 (17)0.0276 (6)
H560.43580.16250.88520.033*
C570.56265 (16)0.1922 (2)0.8796 (2)0.0332 (7)
H570.60840.19900.94180.040*
C580.59480 (18)0.20255 (18)0.81881 (16)0.0294 (6)
H580.66420.21620.84110.035*
C590.53357 (15)0.19451 (16)0.72805 (17)0.0271 (6)
H590.56030.20210.68940.032*
C600.43374 (15)0.17540 (17)0.69502 (18)0.0239 (6)
H600.38830.16920.63310.029*
C610.12851 (17)0.31969 (16)0.43077 (19)0.0210 (5)
C620.11890 (18)0.26028 (16)0.34075 (19)0.0209 (5)
C630.12335 (18)0.17260 (17)0.3114 (2)0.0224 (5)
H630.11970.14290.25020.027*
C640.11014 (19)0.31161 (17)0.2881 (2)0.0245 (6)
C650.0995 (2)0.28071 (19)0.1886 (2)0.0313 (6)
H65A0.09340.32880.17000.047*
H65B0.03990.22880.14140.047*
H65C0.15830.26440.18970.047*
C660.18713 (19)0.00784 (17)0.3892 (2)0.0245 (6)
H660.21110.04500.45620.029*
C670.13683 (18)0.03949 (16)0.3224 (2)0.0215 (5)
C680.09663 (19)0.01641 (17)0.2251 (2)0.0243 (6)
H680.05750.00100.17820.029*
C690.11342 (18)0.10023 (17)0.1943 (2)0.0233 (6)
C700.0797 (2)0.15916 (18)0.0951 (2)0.0297 (6)
H700.04130.14400.04580.036*
C710.1020 (2)0.23704 (19)0.0701 (2)0.0313 (6)
H710.07970.27560.00390.038*
C720.1582 (2)0.25962 (17)0.1430 (2)0.0299 (7)
H720.17370.31380.12560.036*
C730.19092 (19)0.20465 (17)0.2388 (2)0.0271 (6)
H730.22870.22130.28690.032*
C740.16926 (18)0.12328 (17)0.2671 (2)0.0239 (6)
C750.13075 (18)0.47956 (17)0.4985 (2)0.0238 (6)
C760.16578 (19)0.55997 (17)0.5011 (2)0.0273 (6)
H760.18820.56100.45740.033*
C770.1678 (2)0.63934 (18)0.5686 (2)0.0327 (7)
H770.19080.69400.56970.039*
C780.1373 (2)0.63923 (19)0.6327 (2)0.0323 (7)
H780.13960.69340.67870.039*
C790.1029 (2)0.55904 (18)0.6298 (2)0.0283 (6)
H790.08130.55850.67410.034*
C800.09951 (18)0.47912 (18)0.5630 (2)0.0249 (6)
H800.07580.42460.56200.030*
O50.2941 (2)0.33191 (18)0.0777 (2)0.0621 (7)
H5O0.28830.34310.02800.093*
C810.2308 (3)0.2495 (3)0.0424 (3)0.0624 (11)
H81A0.24120.20500.00610.094*
H81B0.16180.24990.01210.094*
H81C0.24390.23460.09580.094*
O60.6250 (2)0.35347 (13)0.50351 (17)0.0479 (6)
H6O0.64060.36380.56510.072*
C820.6201 (3)0.26479 (19)0.4497 (3)0.0420 (8)
H82A0.63180.26090.39630.063*
H82B0.55410.22430.42310.063*
H82C0.67090.24800.49250.063*
O70.3036 (2)0.5971 (2)0.9244 (3)0.0512 (7)0.75
H7O0.32240.62950.89880.077*0.75
C830.2137 (3)0.6052 (4)0.9191 (4)0.0512 (7)0.75
H83A0.18360.55790.92820.077*0.75
H83B0.16870.60000.85520.077*0.75
H83C0.22550.66330.97000.077*0.75
O7'0.2416 (7)0.6655 (6)0.8977 (7)0.0512 (7)0.25
H7OA0.28270.67100.87410.077*0.25
C83'0.2430 (14)0.5920 (9)0.9165 (14)0.0512 (7)0.25
H83D0.21040.59360.95520.077*0.25
H83E0.31200.59380.95260.077*0.25
H83F0.20750.53700.85500.077*0.25
O80.8195 (2)0.1154 (2)0.1282 (2)0.0642 (8)
H8O0.82730.12640.18760.096*
C840.8099 (4)0.1902 (3)0.1137 (4)0.0820 (16)
H84A0.79690.17680.04790.123*
H84B0.87150.23980.16140.123*
H84C0.75440.20650.12150.123*
O90.94341 (16)0.05123 (15)0.07636 (16)0.0444 (6)
H9O0.90590.07490.10130.067*
C850.8816 (3)0.0250 (2)0.0130 (3)0.0488 (9)
H85A0.83930.00750.06090.073*
H85B0.83970.06510.00470.073*
H85C0.92270.05560.03570.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01949 (16)0.02475 (17)0.0224 (2)0.00955 (13)0.01238 (15)0.01354 (15)
O10.0200 (9)0.0322 (10)0.0250 (11)0.0102 (7)0.0123 (8)0.0169 (9)
O20.0211 (9)0.0222 (8)0.0222 (10)0.0074 (7)0.0113 (8)0.0122 (8)
N10.0168 (10)0.0236 (10)0.0230 (13)0.0090 (8)0.0105 (9)0.0110 (10)
N20.0171 (10)0.0266 (11)0.0236 (13)0.0076 (8)0.0102 (9)0.0143 (10)
N30.0231 (11)0.0263 (11)0.0208 (12)0.0092 (9)0.0126 (10)0.0129 (10)
N40.0206 (11)0.0297 (11)0.0298 (14)0.0109 (9)0.0149 (10)0.0167 (11)
N50.0184 (10)0.0235 (10)0.0231 (13)0.0090 (8)0.0116 (10)0.0116 (10)
N60.0198 (10)0.0222 (10)0.0233 (13)0.0087 (8)0.0120 (10)0.0114 (10)
N70.0229 (11)0.0278 (11)0.0232 (13)0.0095 (9)0.0130 (10)0.0140 (10)
N80.0180 (10)0.0300 (11)0.0212 (13)0.0102 (9)0.0096 (10)0.0108 (10)
C10.0216 (12)0.0201 (11)0.0207 (14)0.0077 (10)0.0139 (11)0.0099 (11)
C20.0203 (12)0.0213 (12)0.0193 (14)0.0090 (10)0.0108 (11)0.0101 (11)
C30.0198 (12)0.0201 (12)0.0221 (15)0.0086 (10)0.0101 (11)0.0093 (11)
C40.0235 (12)0.0229 (12)0.0209 (15)0.0099 (10)0.0117 (11)0.0111 (11)
C50.0288 (14)0.0333 (14)0.0261 (16)0.0140 (12)0.0146 (13)0.0175 (13)
C60.0192 (12)0.0264 (13)0.0278 (16)0.0092 (10)0.0133 (12)0.0145 (12)
C70.0182 (12)0.0233 (12)0.0283 (16)0.0112 (10)0.0133 (12)0.0158 (12)
C80.0230 (13)0.0257 (13)0.0197 (15)0.0072 (11)0.0094 (12)0.0078 (12)
C90.0201 (12)0.0225 (12)0.0305 (17)0.0077 (10)0.0104 (12)0.0117 (12)
C100.0208 (13)0.0301 (14)0.0351 (18)0.0066 (11)0.0099 (13)0.0103 (13)
C110.0202 (13)0.0312 (15)0.051 (2)0.0069 (12)0.0127 (14)0.0190 (15)
C120.0189 (13)0.0429 (17)0.053 (2)0.0122 (12)0.0180 (14)0.0290 (16)
C130.0243 (13)0.0368 (15)0.0407 (18)0.0158 (12)0.0204 (14)0.0238 (14)
C140.0196 (12)0.0251 (12)0.0291 (16)0.0104 (10)0.0127 (12)0.0157 (12)
C150.0169 (12)0.0235 (12)0.0249 (15)0.0076 (10)0.0111 (11)0.0095 (11)
C160.0249 (13)0.0268 (13)0.0327 (17)0.0076 (11)0.0169 (13)0.0149 (13)
C170.0238 (13)0.0313 (14)0.0359 (18)0.0052 (11)0.0170 (13)0.0141 (14)
C180.0214 (13)0.0364 (15)0.0381 (19)0.0092 (12)0.0167 (13)0.0129 (14)
C190.0232 (14)0.0553 (19)0.042 (2)0.0165 (13)0.0174 (14)0.0300 (17)
C200.0206 (13)0.0479 (17)0.0380 (19)0.0122 (12)0.0165 (13)0.0257 (15)
C210.0131 (11)0.0232 (12)0.0233 (15)0.0062 (9)0.0078 (11)0.0119 (11)
C220.0205 (12)0.0225 (12)0.0237 (15)0.0087 (10)0.0125 (11)0.0125 (11)
C230.0188 (12)0.0217 (12)0.0268 (16)0.0080 (10)0.0120 (11)0.0143 (11)
C240.0211 (12)0.0252 (12)0.0233 (15)0.0089 (10)0.0126 (12)0.0117 (12)
C250.0379 (16)0.0318 (14)0.0298 (17)0.0156 (12)0.0215 (14)0.0184 (13)
C260.0176 (12)0.0287 (13)0.0200 (15)0.0094 (10)0.0091 (11)0.0108 (12)
C270.0185 (11)0.0228 (12)0.0203 (14)0.0110 (10)0.0088 (11)0.0118 (11)
C280.0227 (12)0.0261 (13)0.0257 (15)0.0097 (10)0.0141 (12)0.0136 (12)
C290.0226 (13)0.0254 (13)0.0264 (16)0.0088 (10)0.0117 (12)0.0136 (12)
C300.0270 (14)0.0298 (14)0.0377 (18)0.0082 (12)0.0172 (14)0.0158 (14)
C310.0307 (15)0.0266 (14)0.0384 (19)0.0069 (12)0.0149 (14)0.0120 (14)
C320.0312 (15)0.0244 (13)0.0243 (16)0.0100 (12)0.0088 (13)0.0067 (12)
C330.0276 (14)0.0326 (14)0.0213 (15)0.0165 (12)0.0116 (12)0.0126 (12)
C340.0196 (12)0.0274 (13)0.0180 (14)0.0114 (10)0.0061 (11)0.0124 (11)
C350.0178 (12)0.0210 (12)0.0335 (17)0.0065 (10)0.0153 (12)0.0108 (12)
C360.0249 (13)0.0252 (13)0.0361 (18)0.0060 (11)0.0198 (13)0.0094 (13)
C370.0275 (15)0.0264 (14)0.044 (2)0.0028 (12)0.0224 (15)0.0020 (14)
C380.0328 (16)0.0260 (14)0.072 (3)0.0150 (13)0.0360 (18)0.0219 (17)
C390.0353 (16)0.0323 (15)0.057 (2)0.0195 (13)0.0282 (16)0.0259 (16)
C400.0268 (14)0.0285 (14)0.0421 (19)0.0142 (11)0.0209 (14)0.0182 (14)
Zn20.01867 (16)0.02417 (17)0.0226 (2)0.00916 (12)0.01069 (14)0.01370 (15)
O30.0187 (9)0.0312 (10)0.0266 (11)0.0098 (7)0.0114 (8)0.0192 (9)
O40.0226 (9)0.0248 (9)0.0225 (10)0.0102 (7)0.0112 (8)0.0136 (8)
N90.0171 (10)0.0232 (10)0.0222 (12)0.0097 (8)0.0107 (9)0.0107 (10)
N100.0167 (10)0.0232 (10)0.0222 (12)0.0078 (8)0.0094 (9)0.0126 (10)
N110.0200 (10)0.0242 (11)0.0241 (13)0.0079 (9)0.0115 (10)0.0135 (10)
N120.0214 (11)0.0266 (11)0.0274 (14)0.0101 (9)0.0114 (10)0.0124 (10)
N130.0159 (10)0.0235 (10)0.0246 (13)0.0076 (8)0.0092 (9)0.0128 (10)
N140.0206 (10)0.0244 (11)0.0249 (13)0.0101 (9)0.0107 (10)0.0138 (10)
N150.0266 (11)0.0311 (12)0.0220 (13)0.0117 (10)0.0125 (10)0.0161 (10)
N160.0248 (11)0.0294 (12)0.0309 (15)0.0114 (10)0.0141 (11)0.0159 (11)
C410.0215 (12)0.0182 (11)0.0198 (14)0.0077 (10)0.0092 (11)0.0084 (11)
C420.0182 (11)0.0193 (11)0.0210 (14)0.0063 (9)0.0096 (11)0.0098 (11)
C430.0214 (12)0.0204 (12)0.0252 (15)0.0091 (10)0.0135 (12)0.0103 (11)
C440.0208 (12)0.0190 (11)0.0211 (14)0.0076 (10)0.0098 (11)0.0099 (11)
C450.0248 (13)0.0312 (14)0.0276 (16)0.0118 (11)0.0142 (12)0.0171 (13)
C460.0199 (12)0.0290 (13)0.0240 (16)0.0104 (10)0.0108 (12)0.0134 (12)
C470.0172 (11)0.0200 (12)0.0215 (15)0.0080 (10)0.0081 (11)0.0088 (11)
C480.0225 (12)0.0249 (12)0.0214 (15)0.0096 (10)0.0110 (11)0.0124 (11)
C490.0185 (12)0.0192 (11)0.0251 (15)0.0079 (10)0.0097 (11)0.0087 (11)
C500.0211 (13)0.0281 (13)0.0309 (17)0.0081 (11)0.0112 (12)0.0151 (13)
C510.0189 (13)0.0307 (14)0.0350 (18)0.0083 (11)0.0122 (13)0.0141 (13)
C520.0212 (13)0.0291 (14)0.0327 (18)0.0111 (11)0.0084 (13)0.0120 (13)
C530.0222 (13)0.0308 (14)0.0232 (16)0.0121 (11)0.0069 (12)0.0119 (12)
C540.0223 (12)0.0198 (12)0.0244 (15)0.0089 (10)0.0114 (12)0.0072 (11)
C550.0173 (11)0.0172 (11)0.0245 (15)0.0059 (9)0.0090 (11)0.0090 (11)
C560.0214 (13)0.0324 (14)0.0249 (16)0.0077 (11)0.0094 (12)0.0117 (13)
C570.0225 (14)0.0435 (17)0.0304 (18)0.0116 (12)0.0117 (13)0.0151 (14)
C580.0180 (12)0.0324 (14)0.0330 (17)0.0085 (11)0.0094 (12)0.0138 (13)
C590.0257 (13)0.0245 (13)0.0385 (18)0.0120 (11)0.0197 (13)0.0160 (13)
C600.0222 (13)0.0268 (13)0.0287 (16)0.0114 (11)0.0131 (12)0.0167 (12)
C610.0134 (11)0.0247 (12)0.0244 (15)0.0075 (10)0.0064 (11)0.0138 (12)
C620.0191 (12)0.0242 (12)0.0204 (14)0.0082 (10)0.0087 (11)0.0122 (11)
C630.0156 (11)0.0241 (12)0.0245 (15)0.0045 (10)0.0097 (11)0.0090 (11)
C640.0214 (12)0.0282 (13)0.0254 (16)0.0083 (10)0.0106 (12)0.0146 (12)
C650.0397 (16)0.0351 (15)0.0269 (17)0.0149 (13)0.0183 (14)0.0188 (14)
C660.0237 (13)0.0268 (13)0.0241 (15)0.0104 (11)0.0115 (12)0.0123 (12)
C670.0165 (11)0.0219 (12)0.0257 (15)0.0044 (10)0.0115 (11)0.0098 (11)
C680.0213 (12)0.0257 (13)0.0272 (16)0.0070 (10)0.0125 (12)0.0128 (12)
C690.0150 (11)0.0247 (13)0.0264 (16)0.0023 (10)0.0090 (11)0.0106 (12)
C700.0305 (14)0.0275 (14)0.0266 (17)0.0075 (12)0.0121 (13)0.0108 (13)
C710.0294 (14)0.0286 (14)0.0324 (18)0.0076 (12)0.0160 (14)0.0102 (13)
C720.0234 (13)0.0215 (13)0.0457 (19)0.0063 (11)0.0214 (14)0.0114 (13)
C730.0198 (12)0.0253 (13)0.0367 (18)0.0066 (10)0.0145 (12)0.0142 (13)
C740.0171 (12)0.0267 (13)0.0296 (16)0.0054 (10)0.0127 (12)0.0138 (12)
C750.0150 (11)0.0261 (13)0.0300 (16)0.0112 (10)0.0079 (11)0.0149 (12)
C760.0219 (13)0.0273 (13)0.0334 (17)0.0089 (11)0.0123 (12)0.0161 (13)
C770.0269 (14)0.0251 (13)0.0376 (18)0.0093 (11)0.0090 (14)0.0141 (13)
C780.0289 (14)0.0297 (14)0.0288 (17)0.0146 (12)0.0092 (13)0.0086 (13)
C790.0248 (13)0.0344 (15)0.0262 (16)0.0164 (12)0.0108 (13)0.0145 (13)
C800.0192 (12)0.0294 (13)0.0263 (16)0.0115 (11)0.0081 (12)0.0156 (12)
O50.0685 (18)0.0618 (16)0.0607 (19)0.0147 (14)0.0344 (15)0.0314 (15)
C810.052 (2)0.063 (2)0.072 (3)0.0076 (19)0.024 (2)0.041 (2)
O60.0923 (19)0.0298 (11)0.0359 (14)0.0267 (12)0.0391 (14)0.0182 (10)
C820.057 (2)0.0298 (15)0.042 (2)0.0132 (15)0.0303 (18)0.0127 (15)
O70.0479 (17)0.0638 (16)0.0593 (17)0.0222 (14)0.0350 (15)0.0340 (14)
C830.0479 (17)0.0638 (16)0.0593 (17)0.0222 (14)0.0350 (15)0.0340 (14)
O7'0.0479 (17)0.0638 (16)0.0593 (17)0.0222 (14)0.0350 (15)0.0340 (14)
C83'0.0479 (17)0.0638 (16)0.0593 (17)0.0222 (14)0.0350 (15)0.0340 (14)
O80.0617 (17)0.109 (2)0.0485 (17)0.0452 (17)0.0387 (15)0.0440 (17)
C840.092 (4)0.142 (5)0.079 (3)0.077 (4)0.063 (3)0.081 (4)
O90.0315 (11)0.0557 (14)0.0372 (14)0.0163 (10)0.0146 (11)0.0148 (12)
C850.0362 (18)0.050 (2)0.049 (2)0.0066 (15)0.0205 (17)0.0140 (18)
Geometric parameters (Å, º) top
Zn1—O11.8721 (18)N13—C671.433 (3)
Zn1—O21.972 (2)N14—C611.368 (3)
Zn1—N11.983 (2)N14—N151.419 (3)
Zn1—N52.019 (2)N14—C751.426 (3)
O1—C11.300 (3)N15—C641.319 (3)
O2—C211.292 (3)N16—C661.321 (3)
N1—C31.322 (3)N16—C741.379 (4)
N1—C71.344 (3)C41—C421.344 (3)
N2—C11.314 (3)C42—C431.337 (4)
N2—C151.335 (3)C42—C441.447 (4)
N2—N31.411 (3)C43—H430.9500
N3—C41.237 (3)C44—C451.446 (4)
N4—C61.245 (3)C45—H45A0.9800
N4—C141.343 (4)C45—H45B0.9800
N5—C231.323 (3)C45—H45C0.9800
N5—C271.433 (3)C46—C471.426 (4)
N6—C211.376 (3)C46—H460.9500
N6—N71.412 (3)C47—C481.308 (3)
N6—C351.417 (3)C48—C491.352 (4)
N7—C241.325 (3)C48—H480.9500
N8—C261.329 (3)C49—C501.353 (4)
N8—C341.331 (3)C49—C541.424 (4)
C1—C21.346 (4)C50—C511.312 (4)
C2—C31.334 (3)C50—H500.9500
C2—C41.434 (4)C51—C521.422 (4)
C3—H30.9500C51—H510.9500
C4—C51.469 (4)C52—C531.303 (4)
C5—H5A0.9800C52—H520.9500
C5—H5B0.9800C53—C541.355 (4)
C5—H5C0.9800C53—H530.9500
C6—C71.422 (4)C55—C561.3828 (19)
C6—H60.9500C55—C601.3845 (18)
C7—C81.326 (4)C56—C571.3682 (19)
C8—C91.335 (4)C56—H560.9500
C8—H80.9500C57—C581.3795 (19)
C9—C101.380 (4)C57—H570.9500
C9—C141.418 (4)C58—C591.3789 (19)
C10—C111.292 (4)C58—H580.9500
C10—H100.9500C59—C601.3642 (18)
C11—C121.418 (5)C59—H590.9500
C11—H110.9500C60—H600.9500
C12—C131.337 (4)C61—C621.425 (4)
C12—H120.9500C62—C631.407 (3)
C13—C141.338 (4)C62—C641.444 (3)
C13—H130.9500C63—H630.9500
C15—C161.363 (4)C64—C651.506 (4)
C15—C201.386 (4)C65—H65A0.9800
C16—C171.299 (4)C65—H65B0.9800
C16—H160.9500C65—H65C0.9800
C17—C181.374 (4)C66—C671.412 (4)
C17—H170.9500C66—H660.9500
C18—C191.361 (4)C67—C681.374 (4)
C18—H180.9500C68—C691.421 (4)
C19—C201.312 (4)C68—H680.9500
C19—H190.9500C69—C741.406 (4)
C20—H200.9500C69—C701.426 (4)
C21—C221.425 (3)C70—C711.365 (4)
C22—C231.421 (4)C70—H700.9500
C22—C241.434 (4)C71—C721.403 (4)
C23—H230.9500C71—H710.9500
C24—C251.497 (4)C72—C731.369 (4)
C25—H25A0.9800C72—H720.9500
C25—H25B0.9800C73—C741.417 (4)
C25—H25C0.9800C73—H730.9500
C26—C271.380 (4)C75—C801.377 (4)
C26—H260.9500C75—C761.392 (4)
C27—C281.325 (3)C76—C771.401 (4)
C28—C291.429 (4)C76—H760.9500
C28—H280.9500C77—C781.360 (4)
C29—C341.369 (4)C77—H770.9500
C29—C301.375 (4)C78—C791.384 (4)
C30—C311.381 (4)C78—H780.9500
C30—H300.9500C79—C801.393 (4)
C31—C321.357 (4)C79—H790.9500
C31—H310.9500C80—H800.9500
C32—C331.320 (4)O5—C811.370 (4)
C32—H320.9500O5—H5O0.9055
C33—C341.437 (4)C81—H81A0.9800
C33—H330.9500C81—H81B0.9800
C35—C401.401 (4)C81—H81C0.9800
C35—C361.402 (4)O6—C821.420 (3)
C36—C371.399 (4)O6—H6O0.9121
C36—H360.9500C82—H82A0.9800
C37—C381.379 (5)C82—H82B0.9800
C37—H370.9500C82—H82C0.9800
C38—C391.385 (5)O7—C831.390 (3)
C38—H380.9500O7—H7O0.9094
C39—C401.390 (4)C83—H83A0.9800
C39—H390.9500C83—H83B0.9800
C40—H400.9500C83—H83C0.9800
Zn2—O31.8992 (19)O7'—C83'1.400 (3)
Zn2—N91.954 (2)O7'—H7OA0.8999
Zn2—O41.9616 (17)C83'—H83D0.9800
Zn2—N132.041 (2)C83'—H83E0.9800
O3—C411.282 (3)C83'—H83F0.9800
O4—C611.290 (3)O8—C841.392 (3)
N9—C431.337 (3)O8—H8O0.9090
N9—C471.354 (3)C84—H84A0.9800
N10—C551.326 (3)C84—H84B0.9800
N10—C411.336 (3)C84—H84C0.9800
N10—N111.387 (3)O9—C851.405 (4)
N11—C441.234 (3)O9—H9O0.9038
N12—C461.261 (3)C85—H85A0.9800
N12—C541.310 (3)C85—H85B0.9800
N13—C631.328 (3)C85—H85C0.9800
O1—Zn1—O2121.00 (8)N15—N14—C75119.40 (19)
O1—Zn1—N194.83 (8)C64—N15—N14105.4 (2)
O2—Zn1—N1111.47 (9)C66—N16—C74117.8 (2)
O1—Zn1—N5112.58 (8)O3—C41—N10126.3 (2)
O2—Zn1—N599.04 (8)O3—C41—C42130.6 (2)
N1—Zn1—N5119.45 (9)N10—C41—C42103.1 (2)
C1—O1—Zn1120.56 (15)C43—C42—C41124.1 (2)
C21—O2—Zn1117.75 (15)C43—C42—C44129.6 (2)
C3—N1—C7117.4 (2)C41—C42—C44106.4 (2)
C3—N1—Zn1123.56 (17)C42—C43—N9126.9 (2)
C7—N1—Zn1118.95 (18)C42—C43—H43116.6
C1—N2—C15126.9 (2)N9—C43—H43116.6
C1—N2—N3114.0 (2)N11—C44—C45118.2 (2)
C15—N2—N3118.8 (2)N11—C44—C42112.3 (2)
C4—N3—N2104.2 (2)C45—C44—C42129.5 (2)
C6—N4—C14114.4 (2)C44—C45—H45A109.5
C23—N5—C27118.7 (2)C44—C45—H45B109.5
C23—N5—Zn1121.08 (17)H45A—C45—H45B109.5
C27—N5—Zn1119.84 (16)C44—C45—H45C109.5
C21—N6—N7111.97 (19)H45A—C45—H45C109.5
C21—N6—C35128.4 (2)H45B—C45—H45C109.5
N7—N6—C35119.3 (2)N12—C46—C47126.7 (2)
C24—N7—N6104.9 (2)N12—C46—H46116.6
C26—N8—C34118.9 (2)C47—C46—H46116.6
O1—C1—N2124.8 (2)C48—C47—N9123.2 (2)
O1—C1—C2131.9 (2)C48—C47—C46118.8 (2)
N2—C1—C2103.3 (2)N9—C47—C46117.9 (2)
C3—C2—C1124.7 (3)C47—C48—C49116.6 (3)
C3—C2—C4127.3 (2)C47—C48—H48121.7
C1—C2—C4108.0 (2)C49—C48—H48121.7
N1—C3—C2124.0 (2)C48—C49—C50119.3 (3)
N1—C3—H3118.0C48—C49—C54120.4 (2)
C2—C3—H3118.0C50—C49—C54120.3 (2)
N3—C4—C2110.5 (2)C51—C50—C49116.6 (3)
N3—C4—C5118.5 (2)C51—C50—H50121.7
C2—C4—C5131.0 (2)C49—C50—H50121.7
C4—C5—H5A109.5C50—C51—C52123.0 (3)
C4—C5—H5B109.5C50—C51—H51118.5
H5A—C5—H5B109.5C52—C51—H51118.5
C4—C5—H5C109.5C53—C52—C51121.6 (3)
H5A—C5—H5C109.5C53—C52—H52119.2
H5B—C5—H5C109.5C51—C52—H52119.2
N4—C6—C7125.0 (3)C52—C53—C54116.8 (3)
N4—C6—H6117.5C52—C53—H53121.6
C7—C6—H6117.5C54—C53—H53121.6
C8—C7—N1121.6 (3)N12—C54—C53115.7 (3)
C8—C7—C6121.1 (2)N12—C54—C49122.6 (2)
N1—C7—C6117.3 (2)C53—C54—C49121.8 (2)
C7—C8—C9116.3 (3)N10—C55—C56116.09 (19)
C7—C8—H8121.9N10—C55—C60117.83 (19)
C9—C8—H8121.9C56—C55—C60126.1 (2)
C8—C9—C10119.9 (3)C57—C56—C55116.8 (2)
C8—C9—C14119.3 (2)C57—C56—H56121.6
C10—C9—C14120.8 (3)C55—C56—H56121.6
C11—C10—C9117.4 (3)C56—C57—C58117.7 (2)
C11—C10—H10121.3C56—C57—H57121.2
C9—C10—H10121.3C58—C57—H57121.2
C10—C11—C12121.5 (3)C59—C58—C57124.8 (2)
C10—C11—H11119.3C59—C58—H58117.6
C12—C11—H11119.3C57—C58—H58117.6
C13—C12—C11122.7 (3)C60—C59—C58118.5 (2)
C13—C12—H12118.7C60—C59—H59120.8
C11—C12—H12118.7C58—C59—H59120.8
C12—C13—C14116.7 (3)C59—C60—C55116.2 (2)
C12—C13—H13121.7C59—C60—H60121.9
C14—C13—H13121.7C55—C60—H60121.9
C13—C14—N4115.0 (3)O4—C61—N14123.0 (2)
C13—C14—C9120.9 (3)O4—C61—C62130.8 (2)
N4—C14—C9124.0 (2)N14—C61—C62106.2 (2)
N2—C15—C16116.3 (2)C63—C62—C61127.9 (2)
N2—C15—C20120.4 (2)C63—C62—C64127.0 (3)
C16—C15—C20123.4 (2)C61—C62—C64104.9 (2)
C17—C16—C15117.7 (3)N13—C63—C62124.9 (3)
C17—C16—H16121.2N13—C63—H63117.5
C15—C16—H16121.2C62—C63—H63117.5
C16—C17—C18119.6 (3)N15—C64—C62111.8 (2)
C16—C17—H17120.2N15—C64—C65121.3 (2)
C18—C17—H17120.2C62—C64—C65126.9 (2)
C19—C18—C17122.9 (3)C64—C65—H65A109.5
C19—C18—H18118.5C64—C65—H65B109.5
C17—C18—H18118.5H65A—C65—H65B109.5
C20—C19—C18118.2 (3)C64—C65—H65C109.5
C20—C19—H19120.9H65A—C65—H65C109.5
C18—C19—H19120.9H65B—C65—H65C109.5
C19—C20—C15118.2 (3)N16—C66—C67124.0 (3)
C19—C20—H20120.9N16—C66—H66118.0
C15—C20—H20120.9C67—C66—H66118.0
O2—C21—N6123.4 (2)C68—C67—C66118.0 (2)
O2—C21—C22130.9 (2)C68—C67—N13125.5 (2)
N6—C21—C22105.8 (2)C66—C67—N13116.5 (2)
C23—C22—C21126.5 (2)C67—C68—C69120.2 (2)
C23—C22—C24128.5 (2)C67—C68—H68119.9
C21—C22—C24105.0 (2)C69—C68—H68119.9
N5—C23—C22124.4 (2)C74—C69—C68117.2 (3)
N5—C23—H23117.8C74—C69—C70119.5 (2)
C22—C23—H23117.8C68—C69—C70123.3 (2)
N7—C24—C22112.4 (2)C71—C70—C69120.9 (3)
N7—C24—C25120.8 (2)C71—C70—H70119.6
C22—C24—C25126.8 (2)C69—C70—H70119.6
C24—C25—H25A109.5C70—C71—C72119.5 (3)
C24—C25—H25B109.5C70—C71—H71120.3
H25A—C25—H25B109.5C72—C71—H71120.3
C24—C25—H25C109.5C73—C72—C71120.9 (3)
H25A—C25—H25C109.5C73—C72—H72119.5
H25B—C25—H25C109.5C71—C72—H72119.5
N8—C26—C27125.2 (2)C72—C73—C74120.9 (3)
N8—C26—H26117.4C72—C73—H73119.5
C27—C26—H26117.4C74—C73—H73119.5
C28—C27—C26116.4 (3)N16—C74—C69122.6 (2)
C28—C27—N5123.9 (2)N16—C74—C73119.1 (2)
C26—C27—N5119.6 (2)C69—C74—C73118.3 (3)
C27—C28—C29120.1 (3)C80—C75—C76119.6 (3)
C27—C28—H28119.9C80—C75—N14120.7 (2)
C29—C28—H28119.9C76—C75—N14119.7 (2)
C34—C29—C30116.7 (3)C75—C76—C77119.6 (3)
C34—C29—C28119.5 (2)C75—C76—H76120.2
C30—C29—C28123.7 (3)C77—C76—H76120.2
C29—C30—C31121.7 (3)C78—C77—C76121.0 (3)
C29—C30—H30119.1C78—C77—H77119.5
C31—C30—H30119.1C76—C77—H77119.5
C32—C31—C30121.6 (3)C77—C78—C79119.0 (3)
C32—C31—H31119.2C77—C78—H78120.5
C30—C31—H31119.2C79—C78—H78120.5
C33—C32—C31118.3 (3)C78—C79—C80121.2 (3)
C33—C32—H32120.9C78—C79—H79119.4
C31—C32—H32120.9C80—C79—H79119.4
C32—C33—C34121.7 (3)C75—C80—C79119.6 (2)
C32—C33—H33119.2C75—C80—H80120.2
C34—C33—H33119.2C79—C80—H80120.2
N8—C34—C29119.8 (2)C81—O5—H5O110.1
N8—C34—C33120.1 (2)O5—C81—H81A109.5
C29—C34—C33120.0 (2)O5—C81—H81B109.5
C40—C35—C36120.6 (2)H81A—C81—H81B109.5
C40—C35—N6119.6 (3)O5—C81—H81C109.5
C36—C35—N6119.8 (2)H81A—C81—H81C109.5
C37—C36—C35119.6 (3)H81B—C81—H81C109.5
C37—C36—H36120.2C82—O6—H6O109.7
C35—C36—H36120.2O6—C82—H82A109.5
C38—C37—C36119.8 (3)O6—C82—H82B109.5
C38—C37—H37120.1H82A—C82—H82B109.5
C36—C37—H37120.1O6—C82—H82C109.5
C37—C38—C39120.3 (3)H82A—C82—H82C109.5
C37—C38—H38119.8H82B—C82—H82C109.5
C39—C38—H38119.8C83—O7—H7O109.4
C38—C39—C40121.4 (3)O7—C83—H83A109.5
C38—C39—H39119.3O7—C83—H83B109.5
C40—C39—H39119.3H83A—C83—H83B109.5
C39—C40—C35118.3 (3)O7—C83—H83C109.5
C39—C40—H40120.8H83A—C83—H83C109.5
C35—C40—H40120.8H83B—C83—H83C109.5
O3—Zn2—N995.73 (8)C83'—O7'—H7OA109.6
O3—Zn2—O4118.13 (9)O7'—C83'—H83D109.5
N9—Zn2—O4109.94 (8)O7'—C83'—H83E109.5
O3—Zn2—N13115.06 (8)H83D—C83'—H83E109.5
N9—Zn2—N13118.36 (10)O7'—C83'—H83F109.5
O4—Zn2—N13100.62 (8)H83D—C83'—H83F109.5
C41—O3—Zn2121.49 (16)H83E—C83'—H83F109.5
C61—O4—Zn2116.80 (16)C84—O8—H8O109.7
C43—N9—C47120.6 (2)O8—C84—H84A109.5
C43—N9—Zn2121.09 (17)O8—C84—H84B109.5
C47—N9—Zn2118.28 (17)H84A—C84—H84B109.5
C55—N10—C41127.2 (2)O8—C84—H84C109.5
C55—N10—N11117.63 (19)H84A—C84—H84C109.5
C41—N10—N11115.1 (2)H84B—C84—H84C109.5
C44—N11—N10103.2 (2)C85—O9—H9O109.3
C46—N12—C54114.7 (2)O9—C85—H85A109.5
C63—N13—C67117.6 (2)O9—C85—H85B109.5
C63—N13—Zn2118.75 (18)H85A—C85—H85B109.5
C67—N13—Zn2123.63 (17)O9—C85—H85C109.5
C61—N14—N15111.7 (2)H85A—C85—H85C109.5
C61—N14—C75128.9 (2)H85B—C85—H85C109.5
O2—Zn1—O1—C1111.56 (19)N9—Zn2—O3—C412.09 (19)
N1—Zn1—O1—C17.08 (19)O4—Zn2—O3—C41114.16 (19)
N5—Zn1—O1—C1131.79 (18)N13—Zn2—O3—C41127.12 (19)
C1—N2—N3—C40.8 (3)C55—N10—N11—C44179.1 (2)
C15—N2—N3—C4173.0 (2)C41—N10—N11—C441.3 (3)
C21—N6—N7—C241.7 (3)C61—N14—N15—C640.4 (3)
C35—N6—N7—C24172.4 (2)C75—N14—N15—C64180.0 (2)
Zn1—O1—C1—N2171.44 (18)Zn2—O3—C41—N10179.97 (19)
Zn1—O1—C1—C26.6 (4)Zn2—O3—C41—C420.4 (4)
C15—N2—C1—O16.3 (4)C55—N10—C41—O31.5 (4)
N3—N2—C1—O1179.5 (2)N11—N10—C41—O3178.0 (2)
C15—N2—C1—C2172.3 (2)C55—N10—C41—C42178.8 (2)
N3—N2—C1—C21.0 (3)N11—N10—C41—C421.7 (3)
O1—C1—C2—C32.3 (5)O3—C41—C42—C432.3 (4)
N2—C1—C2—C3176.1 (2)N10—C41—C42—C43178.0 (2)
O1—C1—C2—C4179.2 (3)O3—C41—C42—C44178.3 (3)
N2—C1—C2—C40.8 (3)N10—C41—C42—C441.3 (3)
C7—N1—C3—C2178.5 (2)C41—C42—C43—N90.4 (4)
Zn1—N1—C3—C24.2 (3)C44—C42—C43—N9179.6 (2)
C1—C2—C3—N10.8 (4)C47—N9—C43—C42179.6 (2)
C4—C2—C3—N1177.1 (2)Zn2—N9—C43—C422.9 (4)
N2—N3—C4—C20.2 (3)N10—N11—C44—C45179.9 (2)
N2—N3—C4—C5179.7 (2)N10—N11—C44—C420.3 (3)
C3—C2—C4—N3176.4 (2)C43—C42—C44—N11178.6 (3)
C1—C2—C4—N30.4 (3)C41—C42—C44—N110.7 (3)
C3—C2—C4—C53.4 (4)C43—C42—C44—C451.9 (5)
C1—C2—C4—C5179.8 (3)C41—C42—C44—C45178.8 (3)
C14—N4—C6—C71.7 (4)C54—N12—C46—C470.7 (4)
C3—N1—C7—C836.2 (3)C43—N9—C47—C485.3 (4)
Zn1—N1—C7—C8146.4 (2)Zn2—N9—C47—C48172.3 (2)
C3—N1—C7—C6144.8 (2)C43—N9—C47—C46173.6 (2)
Zn1—N1—C7—C632.7 (3)Zn2—N9—C47—C468.7 (3)
N4—C6—C7—C81.3 (4)N12—C46—C47—C483.2 (4)
N4—C6—C7—N1179.6 (2)N12—C46—C47—N9175.8 (2)
N1—C7—C8—C9179.1 (2)N9—C47—C48—C49175.5 (2)
C6—C7—C8—C90.1 (4)C46—C47—C48—C493.4 (4)
C7—C8—C9—C10177.5 (2)C47—C48—C49—C50177.6 (2)
C7—C8—C9—C140.5 (4)C47—C48—C49—C541.7 (4)
C8—C9—C10—C11177.0 (3)C48—C49—C50—C51178.0 (2)
C14—C9—C10—C110.9 (4)C54—C49—C50—C511.3 (4)
C9—C10—C11—C121.1 (4)C49—C50—C51—C521.2 (4)
C10—C11—C12—C130.4 (5)C50—C51—C52—C530.1 (4)
C11—C12—C13—C140.6 (4)C51—C52—C53—C540.9 (4)
C12—C13—C14—N4177.4 (2)C46—N12—C54—C53178.5 (2)
C12—C13—C14—C90.8 (4)C46—N12—C54—C491.2 (4)
C6—N4—C14—C13177.1 (2)C52—C53—C54—N12179.0 (2)
C6—N4—C14—C91.0 (4)C52—C53—C54—C490.8 (4)
C8—C9—C14—C13178.0 (2)C48—C49—C54—N120.7 (4)
C10—C9—C14—C130.1 (4)C50—C49—C54—N12179.9 (2)
C8—C9—C14—N40.0 (4)C48—C49—C54—C53179.0 (2)
C10—C9—C14—N4177.9 (2)C50—C49—C54—C530.4 (4)
C1—N2—C15—C16159.1 (2)C41—N10—C55—C56165.9 (2)
N3—N2—C15—C1613.9 (3)N11—N10—C55—C5613.6 (3)
C1—N2—C15—C2020.9 (4)C41—N10—C55—C6014.8 (4)
N3—N2—C15—C20166.1 (2)N11—N10—C55—C60165.7 (2)
N2—C15—C16—C17179.3 (3)N10—C55—C56—C57178.7 (2)
C20—C15—C16—C170.7 (4)C60—C55—C56—C572.1 (4)
C15—C16—C17—C180.5 (4)C55—C56—C57—C581.6 (4)
C16—C17—C18—C191.0 (5)C56—C57—C58—C590.5 (4)
C17—C18—C19—C200.2 (5)C57—C58—C59—C600.3 (4)
C18—C19—C20—C150.9 (5)C58—C59—C60—C550.0 (4)
N2—C15—C20—C19178.6 (3)N10—C55—C60—C59179.5 (2)
C16—C15—C20—C191.4 (5)C56—C55—C60—C591.3 (4)
Zn1—O2—C21—N6173.05 (17)Zn2—O4—C61—N14179.41 (17)
Zn1—O2—C21—C227.7 (3)Zn2—O4—C61—C622.6 (3)
N7—N6—C21—O2176.7 (2)N15—N14—C61—O4178.0 (2)
C35—N6—C21—O29.9 (4)C75—N14—C61—O41.6 (4)
N7—N6—C21—C222.7 (3)N15—N14—C61—C620.5 (3)
C35—N6—C21—C22170.7 (2)C75—N14—C61—C62180.0 (2)
O2—C21—C22—C235.9 (4)O4—C61—C62—C631.6 (4)
N6—C21—C22—C23174.8 (2)N14—C61—C62—C63176.6 (2)
O2—C21—C22—C24176.9 (2)O4—C61—C62—C64177.9 (2)
N6—C21—C22—C242.5 (3)N14—C61—C62—C640.3 (3)
C27—N5—C23—C22173.7 (2)C67—N13—C63—C62179.3 (2)
Zn1—N5—C23—C221.0 (3)Zn2—N13—C63—C621.3 (3)
C21—C22—C23—N51.7 (4)C61—C62—C63—N133.9 (4)
C24—C22—C23—N5178.3 (2)C64—C62—C63—N13179.4 (2)
N6—N7—C24—C220.0 (3)N14—N15—C64—C620.2 (3)
N6—N7—C24—C25179.8 (2)N14—N15—C64—C65179.5 (2)
C23—C22—C24—N7175.6 (2)C63—C62—C64—N15176.4 (2)
C21—C22—C24—N71.6 (3)C61—C62—C64—N150.1 (3)
C23—C22—C24—C254.6 (4)C63—C62—C64—C652.8 (4)
C21—C22—C24—C25178.2 (2)C61—C62—C64—C65179.2 (2)
C34—N8—C26—C271.1 (4)C74—N16—C66—C671.0 (4)
N8—C26—C27—C280.1 (4)N16—C66—C67—C684.0 (4)
N8—C26—C27—N5176.4 (2)N16—C66—C67—N13176.0 (2)
C23—N5—C27—C2848.8 (3)C63—N13—C67—C6826.4 (3)
Zn1—N5—C27—C28124.0 (2)Zn2—N13—C67—C68155.7 (2)
C23—N5—C27—C26134.9 (2)C63—N13—C67—C66153.6 (2)
Zn1—N5—C27—C2652.3 (3)Zn2—N13—C67—C6624.2 (3)
C26—C27—C28—C291.6 (4)C66—C67—C68—C695.4 (4)
N5—C27—C28—C29174.7 (2)N13—C67—C68—C69174.6 (2)
C27—C28—C29—C342.1 (4)C67—C68—C69—C742.0 (3)
C27—C28—C29—C30174.6 (3)C67—C68—C69—C70175.7 (2)
C34—C29—C30—C311.3 (4)C74—C69—C70—C710.8 (4)
C28—C29—C30—C31175.4 (3)C68—C69—C70—C71176.9 (2)
C29—C30—C31—C321.5 (5)C69—C70—C71—C720.5 (4)
C30—C31—C32—C330.3 (4)C70—C71—C72—C730.0 (4)
C31—C32—C33—C342.1 (4)C71—C72—C73—C740.1 (4)
C26—N8—C34—C290.6 (4)C66—N16—C74—C694.7 (4)
C26—N8—C34—C33175.8 (2)C66—N16—C74—C73175.7 (2)
C30—C29—C34—N8176.0 (2)C68—C69—C74—N163.3 (4)
C28—C29—C34—N80.9 (4)C70—C69—C74—N16179.0 (2)
C30—C29—C34—C330.5 (4)C68—C69—C74—C73177.2 (2)
C28—C29—C34—C33177.3 (2)C70—C69—C74—C730.6 (3)
C32—C33—C34—N8174.2 (2)C72—C73—C74—N16179.4 (2)
C32—C33—C34—C292.2 (4)C72—C73—C74—C690.1 (4)
C21—N6—C35—C4020.8 (4)C61—N14—C75—C8028.5 (4)
N7—N6—C35—C40152.1 (2)N15—N14—C75—C80152.0 (2)
C21—N6—C35—C36160.8 (2)C61—N14—C75—C76153.6 (2)
N7—N6—C35—C3626.2 (3)N15—N14—C75—C7625.9 (3)
C40—C35—C36—C370.7 (4)C80—C75—C76—C770.7 (4)
N6—C35—C36—C37177.7 (2)N14—C75—C76—C77177.3 (2)
C35—C36—C37—C381.0 (4)C75—C76—C77—C780.9 (4)
C36—C37—C38—C390.5 (4)C76—C77—C78—C790.7 (4)
C37—C38—C39—C400.3 (4)C77—C78—C79—C800.3 (4)
C38—C39—C40—C350.7 (4)C76—C75—C80—C790.3 (4)
C36—C35—C40—C390.2 (4)N14—C75—C80—C79177.7 (2)
N6—C35—C40—C39178.6 (2)C78—C79—C80—C750.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O5i0.982.433.312 (4)149
C6—H6···O20.952.253.148 (4)157
C23—H23···O6ii0.952.313.260 (3)179
C46—H46···N130.952.563.368 (3)144
C66—H66···O30.952.463.344 (4)155
C68—H68···O9iii0.952.403.334 (4)170
O5—H5O···N3iv0.912.102.977 (4)164
O6—H6O···N40.911.922.830 (3)175
O7—H7O···N80.912.102.993 (4)168
O7—H7OA···N80.901.892.794 (10)179
O8—H8O···N12v0.911.912.816 (3)173
O9—H9O···O80.901.732.622 (3)170
C85—H85C···O9vi0.982.463.340 (4)150
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x, y, z1; (v) x+1, y, z; (vi) x+2, y, z.
 

Funding information

Funding for this research was provided by: Ministry of Education and Science of the Russian Federation (Base state program No. 4.5388.2017/8.9). This work was supported financially in part by the Ministry of Education and Science of the Russian Federation (the Agreement number 02.a03.21.0008).

References

First citationBattye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurlov, A. S., Chesnokov, V. V., Vlasenko, V. G., Garnovskii, D. A., Mal'Tsev, E. I., Dmitriev, A. V., Lypenko, D. A., Borodkin, G. S. & Revinskii, Y. V. (2014). Russ. Chem. Bull. 63, 1753–1758.  CrossRef CAS Google Scholar
First citationBurlov, A. S., Koshchienko, Y. V., Kiskin, M. A., Nikolaevskii, S. A., Garnovskii, D. A., Lermontov, A. S., Makarova, N. I., Metelitsa, A. V. & Eremenko, I. L. (2016). J. Mol. Struct. 1104, 7–13.  CSD CrossRef CAS Google Scholar
First citationBurlov, A. S., Koshchienko, Yu. V., Vlasenko, V. G., Zubenko, A. A., Kiskin, M. A., Dmitriev, A. V., Mal'tsev, E. I., Lypenko, D. A., Nikolaevskii, S. A. & Garnovskii, D. A. (2014). Russ. J. Coord. Chem. 40, 531–538.  CSD CrossRef CAS Google Scholar
First citationBurlov, A. S., Vlasenko, V. G., Dmitriev, A. V., Chesnokov, V. V., Uraev, A. I., Garnovskii, D. A., Zubavichus, Y. V., Trigub, A. L., Vasilchenko, I. S., Lypenko, D. A., Mal'Tsev, E. I., Lifintseva, T. V. & Borodkin, G. S. (2015). Synth. Met. 203, 156–163.  CrossRef CAS Google Scholar
First citationDoyle, R. A. (2011). Marccd. Rayonix LLC, Evanston, IL 60201, USA.  Google Scholar
First citationEvans, P. (2006). Acta Cryst. D62, 72–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNikolaevskii, S. A., Koshchienko, Y. V., Chernyshev, A. V., Burlov, A. S., Cheprasov, A. S., Aleksandrov, G. G., Kiskin, M. A. & Metelitsa, A. V. (2014). Russ. J. Coord. Chem. 40, 468–472.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds